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Wewill establish some oscillation criteria for the third-order Emden-Fowler neutral delay dynamic
equations (r(t)(x(t) − a(t)x(τ(t)))ΔΔ)Δ + p(t)xγ (δ(t)) = 0 on a time scale T, where γ > 0 is a
quotient of odd positive integers with r, a, and p real-valued positive rd-continuous functions
defined on T. To the best of our knowledge nothing is known regarding the qualitative behavior
of these equations on time scales, so this paper initiates the study. Some examples are considered
to illustrate the main results.

1. Introduction

The study of dynamic equations on time-scales, which goes back to its founder Hilger
[1], is an area of mathematics that has recently received a lot of attention. It has
been created in order to unify the study of differential and difference equations. Many
results concerning differential equations carry over quite easily to corresponding results
for difference equations, while other results seem to be completely different from their
continuous counterparts. The study of dynamic equations on time-scales reveals such
discrepancies, and helps avoid proving results twice—once for differential equations and
once again for difference equations.

Several authors have expounded on various aspects of this new theory; see the survey
paper by Agarwal et al. [2], Bohner and Guseinov [3], and references cited therein. A book
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on the subject of time-scales, by Bohner and Peterson [4], summarizes and organizes much of
the time-scale calculus; see also the book by Bohner and Peterson [5] for advances in dynamic
equations on time-scales.

In the recent years, there has been increasing interest in obtaining sufficient conditions
for the oscillation and nonoscillation of solutions of various equations on time-scales; we
refer the reader to the papers [6–38]. To the best of our knowledge, it seems to have few
oscillation results for the oscillation of third-order dynamic equations; see, for example, [14–
16, 21, 35]. However, the paper which deals with the third-order delay dynamic equation is
due to Hassan [21].

Hassan [21] considered the third-order nonlinear delay dynamic equations

(
c(t)

(
(a(t)xΔ(t))Δ

)γ)Δ
+ f(t, x(τ(t))) = 0, t ∈ T, (1.1)

where τ(σ(t)) = σ(τ(t)) is required, and the author established some oscillation criteria for
(1.1) which extended the results given in [16].

To the best of our knowledge, there are no results regarding the oscillation of the
solutions of the following third-order nonlinear neutral delay dynamic equations on time-
scales up to now:

(
r(t)(x(t) − a(t)x(τ(t)))ΔΔ

)Δ
+ p(t)xγ(δ(t)) = 0, t ∈ T. (1.2)

We assume that γ > 0 is a quotient of odd positive integers, r, a and p are positive
real-valued rd-continuous functions defined on T such that rΔ(t) ≥ 0, 0 < a(t) ≤ a0 <
1, limt→∞a(t) = a < 1, the delay functions τ : T → T, δ : T → T are rd-continuous
functions such that τ(t) ≤ t, δ(t) ≤ t, and limt→∞τ(t) = limt→∞δ(t) = ∞.

As we are interested in oscillatory behavior, we assume throughout this paper that the
given time-scale T is unbounded above. We assume t0 ∈ T and it is convenient to assume
t0 > 0. We define the time-scale interval of the form [t0,∞)

T
by [t0,∞)

T
= [t0,∞) ∩ T.

For the oscillation of neutral delay dynamic equations on time-scales, Mathsen et al.
[26] considered the first-order neutral delay dynamic equations on time-scales

[
y(t) − r(t)y(τ(t))

]Δ + p(t)y(δ(t)) = 0, t ∈ T, (1.3)

and established some new oscillation criteria of (1.3) which as a special case involve some
well-known oscillation results for first-order neutral delay differential equations.

Agarwal et al. [7], Şahı́ner [28], Saker [31], Saker et al. [33], Wu et al. [34] studied the
second-order nonlinear neutral delay dynamic equations on time-scales

(
r(t)((y(t) + p(t)y(τ(t)))Δ)γ

)Δ
+ f

(
t, y(δ(t))

)
= 0, t ∈ T, (1.4)

by means of Riccati transformation technique, the authors established some oscillation
criteria of (1.4).
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Saker [32] investigated the second-order neutral Emden-Fowler delay dynamic
equations on time-scales

[
a(t)(y(t) + r(t)y(τ(t)))Δ

]Δ
+ p(t)yγ(δ(t)) = 0, t ∈ T, (1.5)

and established some new oscillation for (1.5).
Our purpose in this paper is motivated by the question posed in [26]: What can

be said about higher-order neutral dynamic equations on time-scales and the various
generalizations? We refer the reader to the articles [23, 24] and we will consider the particular
case when the order is 3, that is, (1.2). Set t−1 := mint∈[t0,∞)

T
{τ(t), δ(t)}. By a solution of

(1.2), we mean a nontrivial real-valued function x ∈ Crd([t−1,∞)
T
,R) satisfying x − ax ◦ τ ∈

C2
rd
([t0,∞)

T
,R) and r(x − ax ◦ τ)ΔΔ ∈ C1

rd
([t0,∞)

T
,R), and satisfying (1.2) for all t ∈ [t0,∞)

T
.

The paper is organized as follows. In Section 2, we apply a simple consequence of
Keller’s chain rule, devoted to the proof of the sufficient conditions which guarantee that
every solution of (1.2) oscillates or converges to zero. In Section 3, some examples are
considered to illustrate the main results.

2. Main Results

In this section we give some new oscillation criteria for (1.2). In order to prove our main
results, we will use the formula

(
(x(t))γ

)Δ = γ

∫1

0
[hxσ(t) + (1 − h)x(t)]γ−1xΔ(t)dh, (2.1)

where x is delta differentiable and eventually positive or eventually negative, which is a
simple consequence of Keller’s chain rule (see Bohner and Peterson [4, Theorem 1.90]).

Before stating our main results, we begin with the following lemmas which are crucial
in the proofs of the main results.

For the sake of convenience, we denote: z(t) = x(t) − a(t)x(τ(t)), for t ∈ [t0,∞)
T
. Also,

we assume that

(H) there exists {ck}k∈N0
⊂ T such that limk→∞ck = ∞ and τ(ck+1) = ck.

Lemma 2.1. Assume that (H) holds. Further, assume that x is an eventually positive solution of
(1.2). If

∫∞

t0

Δt

r(t)
= ∞, (2.2)

then there are only the following three cases for t ≥ t1 sufficiently large:

(i) z(t) > 0, zΔ(t) > 0, zΔΔ(t) > 0, zΔΔΔ(t) < 0,

(ii) z(t) < 0, zΔ(t) > 0, zΔΔ(t) > 0, zΔΔΔ(t) < 0, limt→∞x(t) = 0,

or

(iii) z(t) > 0, zΔ(t) < 0, zΔΔ(t) > 0, zΔΔΔ(t) < 0, limt→∞z(t) = l ≥ 0, limt→∞x(t) =
l/(1 − a) ≥ 0.
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Proof. Let x be an eventually positive solution of (1.2). Then there exists t1 ≥ t0 such that
x(t) > 0, x(τ(t)) > 0, and x(δ(t)) > 0 for all t ≥ t1. From (1.2)we have

(
r(t)zΔΔ(t)

)Δ
= −p(t)xγ(δ(t)) < 0, t ≥ t1. (2.3)

Hence r(t)zΔΔ(t) is strictly decreasing on [t1,∞)
T
. We claim that zΔΔ(t) > 0 eventually.

Assume not, then there exists t2 ≥ t1 such that

r(t)zΔΔ(t) < 0, t ≥ t2. (2.4)

Then we can choose a negative c and t3 ≥ t2 such that

r(t)zΔΔ(t) ≤ c < 0, t ≥ t3. (2.5)

Dividing by r(t) and integrating from t3 to t,we have

zΔ(t) ≤ zΔ(t3) + c

∫ t

t3

Δs

r(s)
. (2.6)

Letting t → ∞, then zΔ(t) → −∞ by (2.2). Thus, there is a t4 ≥ t3 such that for t ≥ t4,

zΔ(t) ≤ zΔ(t4) < 0. (2.7)

Integrating the previous inequality from t4 to t,we obtain

z(t) − z(t4) ≤ zΔ(t4)(t − t4). (2.8)

Therefore, there exist d > 0 and t5 ≥ t4 such that

x(t) ≤ −d + a(t)x(τ(t)) ≤ −d + a0x(τ(t)), t ≥ t5. (2.9)

We can choose some positive integer k0 such that ck ≥ t5, for k ≥ k0. Thus, we obtain

x(ck) ≤ −d + a0x(τ(ck)) = −d + a0x(ck−1) ≤ −d − a0d + a2
0x(τ(ck−1))

= −d − a0d + a2
0x(ck−2) ≤ · · · ≤ −d − a0d − · · · − ak−k0−1

0 d + ak−k0
0 x(τ(ck0+1))

= −d − a0d − · · · − ak−k0−1
0 d + ak−k0

0 x(ck0).

(2.10)

The above inequality implies that x(ck) < 0 for sufficiently large k,which contradicts the fact
that x(t) > 0 eventually. Hence we get

zΔΔ(t) > 0. (2.11)
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It follows from this that either zΔ(t) > 0 or zΔ(t) < 0. Since rΔ(t) ≥ 0,

(
r(t)zΔΔ(t)

)Δ
= rΔ(t)zΔΔ(t) + rσ(t)zΔΔΔ(t) < 0, (2.12)

which yields

zΔΔΔ(t) < 0. (2.13)

If zΔ(t) > 0, then there are two possible cases:

(1) z(t) > 0, eventually; or

(2) z(t) < 0, eventually.

If there exists a t6 ≥ t1 such that case (2) holds, then limt→∞z(t) exists, and
limt→∞z(t) = b ≤ 0. We claim that limt→∞z(t) = 0. Otherwise, limt→∞z(t) = b < 0. We
can choose some positive integer k0 such that ck ≥ t6, for k ≥ k0. Thus, we obtain

x(ck) ≤ a0x(τ(ck)) = a0x(ck−1) ≤ a2
0x(τ(ck−1))

= a2
0x(ck−2) ≤ · · · ≤ ak−k0

0 x(τ(ck0+1)) = ak−k0
0 x(ck0),

(2.14)

which implies that limk→∞x(ck) = 0, and from the definition of z(t),we have limk→∞z(ck) =
0, which contradicts limt→∞z(t) < 0. Now, we assert that x is bounded. If it is not true, there
exists {sk}k∈N ⊂ [t6,∞)

T
with sk → ∞ as k → ∞ such that

x(sk) = sup
t0≤s≤sk

x(s), lim
k→∞

x(sk) = ∞. (2.15)

From τ(t) ≤ t

z(sk) = x(sk) − a(sk)x(τ(sk)) ≥ (1 − a0)x(sk), (2.16)

which implies that limk→∞z(sk) = ∞, it contradicts that limt→∞z(t) = 0. Therefore, we can
assume that

lim sup
t→∞

x(t) = x1, lim inf
t→∞

x(t) = x2. (2.17)

By 0 ≤ a < 1, we get

x1 − ax1 ≤ 0 ≤ x2 − ax2, (2.18)

which implies that x1 ≤ x2, so x1 = x2, hence, limt→∞x(t) = 0.
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Assume that zΔ(t) < 0. We claim that z(t) ≥ 0 eventually. Otherwise, we have
limt→∞z(t) < 0 or limt→∞z(t) = −∞. By (H), there exists t7 ≥ t1,we can choose some positive
integer k0 such that ck ≥ t7 for k ≥ k0, and we obtain

x(ck) ≤ a0x(τ(ck)) = a0x(ck−1) ≤ a2
0x(τ(ck−1))

= a2
0x(ck−2) ≤ · · · ≤ ak−k0

0 x(τ(ck0+1)) = ak−k0
0 x(ck0),

(2.19)

which implies that limk→∞x(ck) = 0, and from the definition of z, we have limk→∞z(ck) = 0,
which contradicts limt→∞z(t) < 0 or limt→∞z(t) = −∞.Now,we have that limt→∞z(t) = l ≥ 0,
here l is finite. We assert that x is bounded. If it is not true, there exists {sk}k∈N ⊂ [t6,∞)

T
with

sk → ∞ as k → ∞ such that

x(sk) = sup
t0≤s≤sk

x(s), lim
k→∞

x(sk) = ∞. (2.20)

From τ(t) ≤ t

z(sk) = x(sk) − a(sk)x(τ(sk)) ≥ (1 − a0)x(sk), (2.21)

which implies that limk→∞z(sk) = ∞, it contradicts that limt→∞z(t) = l ≥ 0. Therefore, we
can assume that

lim sup
t→∞

x(t) = x1∗, lim inf
t→∞

x(t) = x2∗. (2.22)

By 0 ≤ a < 1, we get

x1∗ − ax1∗ ≤ l ≤ x2∗ − ax2∗, (2.23)

which implies that x1∗ ≤ x2∗, so x1∗ = x2∗, hence, limt→∞x(t) = l/(1 − a) ≥ 0. This completes
the proof.

In [4, Section 1.6] the Taylor monomials {hn(t, s)}∞n=0 are defined recursively by

h0(t, s) = 1, hn+1(t, s) =
∫ t

s

hn(τ, s)Δτ, t, s ∈ T, n ≥ 1. (2.24)

It follows from [4, Section 1.6] that h1(t, s) = t − s for any time-scale, but simple formulas in
general do not hold for n ≥ 2.
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Lemma 2.2 (see [15, Lemma 4]). Assume that z satisfies case (i) of Lemma 2.1. Then

lim inf
t→∞

tz(t)
h2(t, t0)zΔ(t)

≥ 1. (2.25)

Lemma 2.3. Assume that x is a solution of (1.2) satisfying case (i) of Lemma 2.1. If

∫∞

t0

p(t)(h2(δ(t), t0))
γΔt = ∞, (2.26)

then z satisfies eventually

zΔ(t) ≥ tzΔΔ(t),
zΔ(t)
t

is nonincreasing. (2.27)

Proof. Let x be a solution of (1.2) such that case (i) of Lemma 2.1 holds for t ≥ t1. Define

Z(t) = zΔ(t) − tzΔΔ(t). (2.28)

Thus

ZΔ(t) = −σ(t)zΔΔΔ(t) > 0. (2.29)

We claim that Z(t) > 0 eventually. Otherwise, there exists t2 ≥ t1 such that Z(t) < 0 for t ≥ t2.
Therefore,

(
zΔ(t)
t

)Δ

= − Z(t)
tσ(t)

> 0, t ≥ t2, (2.30)

which implies that zΔ(t)/t is strictly increasing on [t2,∞)
T
. Pick t3 ≥ t2 such that δ(t) ≥ δ(t3) ≥

t2, for t ≥ t3. Then we have

zΔ(δ(t))
δ(t)

≥ zΔ(δ(t3))
δ(t3)

= P > 0, (2.31)

then zΔ(δ(t)) ≥ Pδ(t) for t ≥ t3. By Lemma 2.2, for any 0 < k < 1, there exists t4 ≥ t3 such that

z(t)
zΔ(t)

≥ k
h2(t, t0)

t
, t ≥ t4. (2.32)

Hence there exists t5 ≥ t4 so that

z(δ(t)) ≥ k
h2(δ(t), t0)

δ(t)
zΔ(δ(t)) ≥ Pk

h2(δ(t), t0)
δ(t)

δ(t) = Pkh2(δ(t), t0), t ≥ t5. (2.33)
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By the definition of z, we have that

x(t) ≥ z(t). (2.34)

From (1.2), we obtain

(
r(t)zΔΔ(t)

)Δ
+ p(t)zγ(δ(t)) ≤ 0. (2.35)

Integrating both sides of (2.35) from t5 to t, we get

r(t)zΔΔ(t) − r(t5)zΔΔ(t5) + (Pk)γ
∫ t

t5

p(s)(h2(δ(s), t0))
γΔs ≤ 0, (2.36)

which yields that

r(t5)zΔΔ(t5) ≥ (Pk)γ
∫ t

t5

p(s)(h2(δ(s), t0))
γΔs, (2.37)

which contradicts (2.26). Hence Z(t) > 0 and zΔ(t)/t is nonincreasing. The proof is complete.

Lemma 2.4. Assume that (H) holds and x is a solution of (1.2)which satisfies case (iii) of Lemma 2.1.
If

∫∞

t0

p(s)Rσ(s)Δs = ∞, (2.38)

where R(t) :=
∫ t
t0
(σ(u)/r(u))Δu for t ∈ [t0,∞)

T
, then limt→∞x(t) = 0.

Proof. Let x be a solution of (1.2) such that case (iii) of Lemma 2.1 holds for t ≥ t1. Then
limt→∞z(t) = l ≥ 0, limt→∞x(t) = l/(1 − a) ≥ 0. Next we claim that l = 0. Otherwise, there
exists t2 ≥ t1 such that z(δ(t)) ≥ l > 0 for all t ≥ t2. By the definition of z, we have that (2.35)
holds. Integrating both sides of (2.35) from t to∞,we get

zΔΔ(t) ≥ 1
r(t)

∫∞

t

p(s)zγ(δ(s))Δs. (2.39)

Integrating again from t to∞,we have

−zΔ(t) ≥
∫∞

t

1
r(u)

∫∞

u

p(s)zγ(δ(s))ΔsΔu. (2.40)
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Integrating again from t2 to∞,we obtain

z(t1) ≥
∫∞

t2

∫∞

v

1
r(u)

∫∞

u

p(s)zγ(δ(s))ΔsΔuΔv ≥ lγ
∫∞

t2

∫∞

v

1
r(u)

∫∞

u

p(s)ΔsΔuΔv, (2.41)

which contradicts (2.38), since by [23, Lemma 1] and [3, Remark 4.7], we get

∫∞

t0

∫∞

v

1
r(u)

∫∞

u

p(s)ΔsΔuΔv

=
∫∞

t0

∫∞

v

∫∞

u

1
r(u)

p(s)ΔsΔuΔv

=
∫∞

t0

∫∞

v

∫σ(s)

v

1
r(u)

p(s)ΔuΔsΔv =
∫∞

t0

∫σ(s)

t0

∫σ(s)

v

1
r(u)

p(s)ΔuΔvΔs

=
∫∞

t0

p(s)
∫σ(s)

t0

∫σ(s)

v

1
r(u)

ΔuΔvΔs =
∫∞

t0

p(s)
∫σ(s)

t0

∫σ(u)

t0

1
r(u)

ΔvΔuΔs

=
∫∞

t0

p(s)
∫σ(s)

t0

1
r(u)

∫σ(u)

t0

ΔvΔuΔs

=
∫∞

t0

p(s)
∫σ(s)

t0

σ(u) − t0
r(u)

ΔuΔs =
∫∞

t0

p(s)
∫σ(s)

t0

σ(u)
r(u)

ΔuΔs =
∫∞

t0

p(s)Rσ(s)Δs.

(2.42)

Hence limt→∞x(t) = 0 and completes the proof.

Theorem 2.5. Assume that (H), (2.2), (2.26), and (2.38) hold, γ ≥ 1. Furthermore, assume that
there exists a positive function η ∈ C1

rd([t0,∞)
T
,R) such that for some 0 < k < 1 and for all constants

M > 0

lim sup
t→∞

∫ t

t0

(
η(s)p(s)ζ(s) − r(s)

(
ηΔ(s)

)2
4kγMγ−1η(s)

)
Δs = ∞, (2.43)

where ζ(t) := (h2(δ(t), t0)/t)
γ . Then every solution x of (1.2) oscillates or limt→∞x(t) = 0.

Proof. Suppose that (1.2) has a nonoscillatory solution x. We may assume without loss of
generality that x(t) > 0, x(τ(t)) > 0, and x(δ(t)) > 0 for all t ∈ [t1,∞)

T
, t1 ∈ [t0,∞)

T
. Then by

Lemma 2.1, z satisfies three cases. Assume that z satisfies case (i). Define the function ω by

ω(t) = η(t)
r(t)zΔΔ(t)(
zΔ(t)

)γ , t ∈ [t1,∞)
T
. (2.44)

Then ω(t) > 0. Using the product rule, we have

ωΔ(t) =
(
r(t)zΔΔ(t)

)σ
[

η(t)(
zΔ(t)

)γ
]Δ

+
(
r(t)zΔΔ(t)

)Δ η(t)(
zΔ(t)

)γ . (2.45)
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By the quotient rule, we get

ωΔ(t) =
(
r(t)zΔΔ(t)

)σ η
Δ(t)

(
zΔ(t)

)γ − η(t)
((

zΔ(t)
)γ)Δ

(
zΔ(t)

)γ(
zΔσ(t)

)γ +
(
r(t)zΔΔ(t)

)Δ η(t)(
zΔ(t)

)γ . (2.46)

By the definition of z and (1.2), we obtain (2.35). From (2.35) and (2.44), we have

ωΔ(t) ≤ ηΔ(t)
ησ(t)

ωσ(t) − η(t)p(t)
zγ(δ(t))(
zΔ(t)

)γ − η(t)

(
r(t)zΔΔ(t)

)σ((
zΔ(t)

)γ)Δ

(
zΔ(t)

)γ(
zΔσ(t)

)γ , (2.47)

from (2.25) and (2.27), for any 0 < k < 1, we obtain

zγ(δ(t))(
zΔ(t)

)γ =
zγ(δ(t))(
zΔ(δ(t))

)γ
(
zΔ(δ(t))

)γ
(
zΔ(t)

)γ ≥
(
k1/γ h2(δ(t), t0)

δ(t)

)γ(δ(t)
t

)γ

= k

(
h2(δ(t), t0)

t

)γ

,

(2.48)

hence by (2.48), we have

ωΔ(t) ≤ ηΔ(t)
ησ(t)

ωσ(t) − kη(t)p(t)ζ(t) − η(t)

(
r(t)zΔΔ(t)

)σ((
zΔ(t)

)γ)Δ

(
zΔ(t)

)γ(
zΔσ(t)

)γ . (2.49)

In view of γ ≥ 1, from (2.1) and (i) of Lemma 2.1, we have

((
zΔ(t)

)γ)Δ
= γ

∫1

0

[
hzΔσ(t) + (1 − h)zΔ(t)

]γ−1
zΔΔ(t)dh

≥ γ
(
zΔ(t)

)γ−1
zΔΔ(t) ≥ γMγ−1zΔΔ(t),

(2.50)

where M = zΔ(t1). By (2.49), we have

ωΔ(t) ≤ ηΔ(t)
ησ(t)

ωσ(t) − kη(t)p(t)ζ(t) − γMγ−1η(t)

[(
r(t)zΔΔ(t)

)σ]2
(
zΔ(t)

)γ(
zΔσ(t)

)γ
zΔΔ(t)

rσ(t)zΔΔσ(t)
, (2.51)

from (i),we have zΔ(t) ≤ zΔσ(t), by (r(t)zΔΔ(t))Δ < 0, we have

zΔΔ(t) ≥ rσ(t)
r(t)

zΔΔσ(t), (2.52)
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so we get

ωΔ(t) ≤ ηΔ(t)
ησ(t)

ωσ(t) − kη(t)p(t)ζ(t) − γMγ−1η(t)

[(
r(t)zΔΔ(t)

)σ]2

r(t)
((
zΔσ(t)

)γ)2 , (2.53)

by (2.44), we have

ωΔ(t) ≤ ηΔ(t)
ησ(t)

ωσ(t) − kη(t)p(t)ζ(t) − γMγ−1 η(t)

r(t)
(
ησ(t)

)2 (ωσ(t))2. (2.54)

Therefore, we obtain

ωΔ(t) ≤ −kη(t)p(t)ζ(t) + r(t)
(
ηΔ(t)

)2
4γMγ−1η(t)

. (2.55)

Integrating inequality (2.55) from t1 to t, we obtain

−ω(t1) ≤ ω(t) −ω(t1) ≤ −
∫ t

t1

(
kη(s)p(s)ζ(s) − r(s)

(
ηΔ(s)

)2
4γMγ−1η(s)

)
Δs, (2.56)

which yields

∫ t

t1

(
kη(s)p(s)ζ(s) − r(s)

(
ηΔ(s)

)2
4γMγ−1η(s)

)
Δs ≤ ω(t1) (2.57)

for all large t, which contradicts (2.43). If (ii) holds, from Lemma 2.1, then limt→∞x(t) = 0. If
case (iii) holds, by Lemma 2.4, then limt→∞x(t) = 0. The proof is complete.

Remark 2.6. From Theorem 2.5, we can obtain different conditions for oscillation of all
solutions of (1.2)with different choices of η.

For example, let η(t) = t. Now Theorem 2.5 yields the following result.

Corollary 2.7. Assume that (H), (2.2), (2.26), and (2.38) hold, γ ≥ 1. If

lim sup
t→∞

∫ t

t0

(
sp(s)

(
h2(δ(s), t0)

s

)γ

− r(s)
4kγMγ−1s

)
Δs = ∞ (2.58)

holds for some 0 < k < 1 and for all constants M > 0, then every solution x of (1.2) is either
oscillatory or limt→∞x(t) = 0.

For example, let η(t) = 1. From Theorem 2.5, we have the following result which can
be considered as the extension of the Leighton-Wintner Theorem.
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Corollary 2.8. Assume that (H), (2.2), (2.26), and (2.38) hold, and γ ≥ 1. If

lim sup
t→∞

∫ t

t0

p(s)
(
h2(δ(s), t0)

s

)γ

Δs = ∞, (2.59)

then every solution x of (1.2) is either oscillatory or limt→∞x(t) = 0.

In the following theorem, we present a new Kamenev-type oscillation criteria for (1.2).

Theorem 2.9. Assume that (H), (2.2), (2.26), and (2.38) hold, γ ≥ 1. Let ζ and η be as defined in
Theorem 2.5. If for some 0 < k < 1 and for all constants M > 0

lim sup
t→∞

1
tm

∫ t

t0

(
(t − s)mη(s)p(s)ζ(s) − r(s)B2(t, s)

(
ησ(s)

)2
4kγMγ−1η(s)(t − s)m

)
Δs = ∞, (2.60)

wherem > 1, and

B(t, s) = (t − s)m
ηΔ(s)
ησ(s)

−m(t − σ(s))m−1, t ≥ σ(s) ≥ t0, (2.61)

then every solution x of (1.2) oscillates or limt→∞x(t) = 0.

Proof. Suppose that (1.2) has a nonoscillatory solution x. We may assume without loss of
generality that x(t) > 0, x(τ(t)) > 0, and x(δ(t)) > 0 for all t ∈ [t1,∞)

T
, t1 ∈ [t0,∞)

T
. Then by

Lemma 2.1, z satisfies three cases. Assume that z satisfies case (i).We proceed as in the proof
of Theorem 2.5 to get (2.54) for all t ≥ t1 sufficiently large. Multiplying (2.54) by (t − s)m and
integrating from t1 to t,we have

∫ t

t1

(t − s)mkη(s)p(s)ζ(s)Δs ≤ −
∫ t

t1

(t − s)mωΔ(s)Δs +
∫ t

t1

(t − s)m
ηΔ(s)
ησ(s)

ωσ(s)Δs

−
∫ t

t1

(t − s)mγMγ−1η(s)

r(s)
(
ησ(s)

)2 (ωσ(s))2Δs.

(2.62)

Integration by parts, we obtain

−
∫ t

t1

(t − s)mωΔ(s)Δs = −(t − s)mω(s) |tt1 +
∫ t

t1

(
(t − s)m

)Δsωσ(s)Δs. (2.63)

Next, we show that if t ≥ σ(s) and m ≥ 1, then

(
(t − s)m

)Δs ≤ −m(t − σ(s))m−1. (2.64)
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If μ(s) = 0, it is easy to see that (2.64) is an equality. If μ(s) > 0, then we get

(
(t − s)m

)Δs =
1

μ(s)
[
(t − σ(s))m − (t − s)m

]
= − 1

σ(s) − s

[
(t − s)m − (t − σ(s))m

]
. (2.65)

Using the inequality

xm − ym ≥ mym−1(x − y
)
, x ≥ y > 0, m ≥ 1, (2.66)

we obtain for t ≥ σ(s)

[
(t − s)m − (t − σ(s))m

] ≥ m(t − σ(s))m−1(σ(s) − s), (2.67)

and from this we see that (2.64) holds. From (2.62)–(2.64), we get

∫ t

t1

(t − s)mkη(s)p(s)ζ(s)Δs

≤ (t − t1)mω(t1) +
∫ t

t1

[
(t − s)m

ηΔ(s)
ησ(s)

−m(t − σ(s))m−1
]
ωσ(s)Δs

−
∫ t

t1

(t − s)mγMγ−1η(s)

r(s)
(
ησ(s)

)2 (ωσ(s))2Δs.

(2.68)

Thus

∫ t

t1

(
(t − s)mη(s)p(s)ζ(s) − r(s)B2(t, s)

(
ησ(s)

)2
4kγMγ−1η(s)(t − s)m

)
Δs ≤ 1

k
ω(t1)(t − t1)m, (2.69)

which implies that

1
tm

∫ t

t1

(
(t − s)mη(s)p(s)ζ(s) − r(s)B2(t, s)

(
ησ(s)

)2
4kγMγ−1η(s)(t − s)m

)
Δs ≤ 1

k
ω(t1)

(
t − t1
t

)m

. (2.70)

This easily leads to a contradiction of (2.60). If (ii) holds, from Lemma 2.1, then limt→∞x(t) =
0. If (iii) holds, by Lemma 2.4, then limt→∞x(t) = 0. The proof is complete.

In the following theorem, we present a new Philos-type oscillation criteria for (1.2).

Theorem 2.10. Assume that (H), (2.2), (2.26), and (2.38) hold, γ ≥ 1. Let ζ and η be as defined in
Theorem 2.5. Furthermore, assume that there exist functions H, h ∈ Crd(D,R), where D ≡ {(t, s) :
t ≥ s ≥ t0} such that

H(t, t) = 0, t ≥ t0, H(t, s) > 0, t > s ≥ t0, (2.71)

andH has a nonpositive continuousΔ-partial derivationHΔs(t, s) with respect to the second variable
and satisfies
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HΔs(t, s) +H(t, s)
ηΔ(s)
ησ(s)

= −h(t, s)
ησ(s)

√
H(t, s). (2.72)

If for some 0 < k < 1 and for all constants M > 0

lim sup
t→∞

1
H(t, t0)

∫ t

t0

K(t, s)Δs = ∞, (2.73)

where

K(t, s) = H(t, s)η(s)p(s)ζ(s) − r(s)(h−(t, s))
2

4kγMγ−1η(s)
, (2.74)

where h−(t, s) = max{0,−h(t, s)}, then every solution x of (1.2) oscillates or limt→∞x(t) = 0.

Proof. Suppose that (1.2) has a nonoscillatory solution x. We may assume without loss of
generality that x(t) > 0, x(τ(t)) > 0, and x(δ(t)) > 0 for all t ∈ [t1,∞)

T
, t1 ∈ [t0,∞)

T
. Then by

Lemma 2.1, z satisfies three cases. Assume that z satisfies case (i).We proceed as in the proof
of Theorem 2.5 to get (2.54) for all t ≥ t1 sufficiently large. Multiplying both sides of (2.54),
with t replaced by s, byH(t, s), integrating with respect to s from t1 to t, we have

∫ t

t1

kH(t, s)η(s)p(s)ζ(s)Δs

≤ −
∫ t

t1

H(t, s)ωΔ(s)Δs +
∫ t

t1

H(t, s)
ηΔ(s)
ησ(s)

ωσ(s)Δs −
∫ t

t1

H(t, s)
γMγ−1η(s)

r(s)
(
ησ(s)

)2 (ωσ(s))2Δs.

(2.75)

Integrating by parts and using (2.71) and (2.72), we obtain

∫ t

t1

kH(t, s)η(s)p(s)ζ(s)Δs

≤ H(t, t1)ω(t1) +
∫ t

t1

HΔs(t, s)ωσ(s)Δs +
∫ t

t1

H(t, s)
ηΔ(s)
ησ(s)

ωσ(s)Δs

−
∫ t

t1

H(t, s)
γMγ−1η(s)

r(s)
(
ησ(s)

)2 (ωσ(s))2Δs

≤ H(t, t1)ω(t1)+
∫ t

t1

[
−h(t, s)
ησ(s)

√
H(t, s)ωσ(s)−H(t, s)

γMγ−1η(s)

r(s)
(
ησ(s)

)2 (ωσ(s))2
]
Δs

≤ H(t, t1)ω(t1)+
∫ t

t1

[
h−(t, s)
ησ(s)

√
H(t, s)ωσ(s) −H(t, s)

γMγ−1η(s)

r(s)
(
ησ(s)

)2 (ωσ(s))2
]
Δs

≤ H(t, t1)ω(t1) +
∫ t

t1

r(s)(h−(t, s))
2

4γMγ−1η(s)
Δs.

(2.76)



Advances in Difference Equations 15

Therefore, we get

∫ t

t1

(
H(t, s)η(s)p(s)ζ(s) − r(s)(h−(t, s))

2

4kγMγ−1η(s)

)
Δs ≤ 1

k
H(t, t1)ω(t1). (2.77)

This easily leads to a contradiction of (2.73). If case (ii) holds, from Lemma 2.1, then
limt→∞x(t) = 0. If case (iii) holds, by Lemma 2.4, then limt→∞x(t) = 0. The proof is
complete.

The following result can be considered as the extension of the Atkinson’s theorem [39].

Theorem 2.11. Assume that (H), (2.2), (2.26), and (2.38) hold, γ > 1. If

lim sup
t→∞

∫ t

t0

p(s)
r(s)

σ(s)
(
h2(δ(s), t0)

σ(s)

)γ

Δs = ∞, (2.78)

then every solution x of (1.2) is either oscillatory or limt→∞x(t) = 0.

Proof. Suppose that (1.2) has a nonoscillatory solution x. We may assume without loss of
generality that x(t) > 0, x(τ(t)) > 0 and x(δ(t)) > 0 for all t ∈ [t1,∞)

T
, t1 ∈ [t0,∞)

T
. Then by

Lemma 2.1, z satisfies three cases. Assume that z satisfies case (i). Define the function ω

ω(t) = t
r(t)zΔΔ(t)(
zΔ(t)

)γ , t ∈ [t1,∞)
T
. (2.79)

Using the product rule, (2.25) and (2.27), for any 0 < k < 1, we have that

zγ(δ(t))(
zΔσ(t)

)γ =
zγ(δ(t))(
zΔ(δ(t))

)γ
(
zΔ(δ(t))

)γ
(
zΔσ(t)

)γ ≥
(
k1/γ h2(δ(t), t0)

δ(t)

)γ(δ(t)
σ(t)

)γ

= k

(
h2(δ(t), t0)

σ(t)

)γ

.

(2.80)

By (1.2), we have that (2.35) holds, then from (2.80), we calculate

ωΔ(t) =
{
r(t)zΔΔ(t) + σ(t)

(
r(t)zΔΔ(t)

)Δ
}(

zΔσ(t)
)−γ

+ tr(t)zΔΔ(t)
((

zΔ(t)
)−γ)Δ

≤ r(t)zΔΔ(t)
(
zΔσ(t)

)−γ − σ(t)p(t)
(
z(δ(t))
zΔσ(t)

)γ

+ tr(t)zΔΔ(t)
((

zΔ(t)
)−γ)Δ

≤ r(t)

((
zΔ(t)

)1−γ)Δ

1 − γ
− kσ(t)p(t)

(
h2(δ(t), t0)

σ(t)

)γ

,

(2.81)
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where the last inequality is true because ((zΔ(t))−γ)Δ ≤ 0 due to (2.1) and because

((
zΔ(t)

)1−γ)Δ

=
(
1 − γ

)∫1

0

[
hzΔσ(t) + (1 − h)zΔ(t)

]−γ
zΔΔ(t)dh

≤ (
1 − γ

)∫1

0

[
hzΔσ(t) + (1 − h)zΔσ(t)

]−γ
zΔΔ(t)dh

=
(
1 − γ

)(
zΔσ(t)

)−γ
zΔΔ(t).

(2.82)

Upon integration we arrive at

∫ t

t1

kσ(s)
p(s)
r(s)

(
h2(δ(s), t0)

σ(s)

)γ

Δs ≤
∫ t

t1

((
zΔ(s)

)1−γ)Δ

1 − γ
Δs −

∫ t

t1

ωΔ(s)
r(s)

Δs

=

(
zΔ(t)

)1−γ
1 − γ

−
(
zΔ(t1)

)1−γ
1 − γ

−
∫ t

t1

ωΔ(s)
r(s)

Δs

≤
(
zΔ(t1)

)1−γ
γ − 1

+
ω(t1)
r(t1)

− ω(t)
r(t)

+
∫ t

t1

ωσ(s)
(

1
r(s)

)Δ

Δs

≤
(
zΔ(t1)

)1−γ
γ − 1

+
ω(t1)
r(t1)

(2.83)

from rΔ(t) ≥ 0. This contradicts (2.78). If case (ii) holds, from Lemma 2.1, then limt→∞x(t) =
0. If case (iii) holds, by Lemma 2.4, then limt→∞x(t) = 0. The proof is complete.

Theorem 2.12. Assume that (H), (2.2), (2.26), and (2.38) hold, γ ≤ 1. Furthermore, assume that
there exists a positive function η ∈ C1

rd
([t0,∞)

T
,R) such that for some 0 < k < 1 and for all constants

L > 0

lim sup
t→∞

∫ t

t0

(
η(s)p(s)ζ(s) − r(s)

(
ηΔ(s)

)2

4kγ(Lσ(s))γ−1η(s)

)
Δs = ∞, (2.84)

where ζ is as defined as in Theorem 2.5. Then every solution x of (1.2) is either oscillatory or
limt→∞x(t) = 0.

Proof. Suppose that (1.2) has a nonoscillatory solution x. We may assume without loss of
generality that x(t) > 0, x(τ(t)) > 0 and x(δ(t)) > 0 for all t1t ∈ [t1,∞)

T
, ∈ [t0,∞)

T
. Then by

Lemma 2.1, z satisfies three cases. Assume z satisfies case (i). Define the function ω as (2.44).
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We proceed as in the proof of Theorem 2.5 and we get (2.49). In view of γ ≤ 1, from (2.1) and
(i) of Lemma 2.1, we have

((
zΔ(t)

)γ)Δ
= γ

∫1

0

[
hzΔσ(t) + (1 − h)zΔ(t)

]γ−1
zΔΔ(t)dh

≥ γ
(
zΔσ(t)

)γ−1
zΔΔ(t),

(2.85)

from (2.27), there exists a constant L > 0 such that zΔ(t) ≤ Lt, so

((
zΔ(t)

)γ)Δ
≥ γ(Lσ(t))γ−1zΔΔ(t). (2.86)

By (2.49), we have

ωΔ(t) ≤ ηΔ(t)
ησ(t)

ωσ(t) − kη(t)p(t)ζ(t) − γ(Lσ(t))γ−1
η(t)

r(t)
(
ησ(t)

)2 (ωσ(t))2. (2.87)

Therefore, we obtain

ωΔ(t) ≤ −kη(t)p(t)ζ(t) + r(t)
(
ηΔ(t)

)2

4γ(Lσ(t))γ−1η(t)
. (2.88)

Integrating inequality (2.88) from t1 to t, we obtain

−ω(t1) ≤ ω(t) −ω(t1) ≤ −
∫ t

t1

(
kη(s)p(s)ζ(s) − r(s)

(
ηΔ(s)

)2

4γ(Lσ(s))γ−1η(s)

)
Δs, (2.89)

which yields

∫ t

t1

(
kη(s)p(s)ζ(s) − r(s)

(
ηΔ(s)

)2

4γ(Lσ(s))γ−1η(s)

)
Δs ≤ ω(t1) (2.90)

for all large t, which contradicts (2.84). If case (ii) holds, from Lemma 2.1, then limt→∞x(t) =
0. If case (iii) holds, by Lemma 2.4, then limt→∞x(t) = 0. The proof is complete.

Remark 2.13. From Theorem 2.12, we can obtain different conditions for oscillation of all
solutions of (1.2)with different choices of η.

For example, let η(t) = t. Now Theorem 2.12 yields the following results.

Corollary 2.14. Assume that (H), (2.2), (2.26), and (2.38) hold, γ ≤ 1. If

lim sup
t→∞

∫ t

t0

(
sp(s)

(
h2(δ(s), t0)

s

)γ

− r(s)

4kγ(Lσ(s))γ−1s

)
Δs = ∞ (2.91)
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holds for some 0 < k < 1 and for all constants L > 0, then every solution x of (1.2) is either oscillatory
or limt→∞x(t) = 0.

For example, let η(t) = 1. From Theorem 2.12, we have the following result which can
be considered as the extension of the Leighton-Wintner theorem.

Corollary 2.15. Assume that (H), (2.2), (2.26), and (2.38) hold, γ ≤ 1. If (2.59) holds, then every
solution x of (1.2) is either oscillatory or limt→∞x(t) = 0.

In the following theorem, we present a new Kamenev-type oscillation criteria for (1.2).

Theorem 2.16. Assume that (H), (2.2), (2.26), and (2.38) hold, γ ≤ 1. Let ζ and η be as defined in
Theorem 2.12. If for some 0 < k < 1 and for all constants L > 0

lim sup
t→∞

1
tm

∫ t

t0

(
(t − s)mη(s)p(s)ζ(s) − r(s)B2(t, s)

(
ησ(s)

)2

4kγ(Lσ(s))γ−1η(s)(t − s)m

)
Δs = ∞, (2.92)

wherem > 1, and

B(t, s) = (t − s)m
ηΔ(s)
ησ(s)

−m(t − σ(s))m−1, t ≥ σ(s) ≥ t0, (2.93)

then every solution x of (1.2) oscillates or limt→∞x(t) = 0.

The proof is similar to that of Theorem 2.9 using inequality (2.88), so we omit the
details.

In the following theorem, we present a new Philos-type oscillation criteria for (1.2).

Theorem 2.17. Assume that (H), (2.2), (2.26), and (2.38) hold, γ ≤ 1. Let ζ and η be as defined in
Theorem 2.12. Furthermore, assume that there exist functions H, h ∈ Crd(D,R), where D ≡ {(t, s) :
t ≥ s ≥ t0} such that (2.71) holds, andH has a nonpositive continuousΔ-partial derivationHΔs(t, s)
with respect to the second variable and satisfies (2.72). If

lim sup
t→∞

1
H(t, t0)

∫ t

t0

K(t, s)Δs = ∞ (2.94)

holds for some 0 < k < 1 and for all constants L > 0, where

K(t, s) = H(t, s)η(s)p(s)ζ(s) − r(s)(h−(t, s))
2

4kγ(Lσ(s))γ−1η(s)
, (2.95)

where h−(t, s) = max{0,−h(t, s)}. Then every solution x of (1.2) oscillates or limt→∞x(t) = 0.

The proof is similar to that of the proof of Theorem 2.10 using inequality (2.88), so we
omit the details.

The following result can be considered as the extension of the Belohorec’s theorem
[40].
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Theorem 2.18. Assume that (H), (2.2), (2.26), and (2.38) hold γ < 1. If

lim sup
t→∞

∫ t

t0

p(s)
rγ(δ(s))

(h2(δ(s), t0))
γΔs = ∞, (2.96)

then every solution x of (1.2) is either oscillatory or satisfies limt→∞x(t) = 0.

Proof. Suppose that (1.2) has a nonoscillatory solution x. We may assume without loss of
generality that x(t) > 0, x(τ(t)) > 0, and x(δ(t)) > 0 for all t1t ∈ [t1,∞)

T
, ∈ [t0,∞)

T
. Then by

Lemma 2.1, z satisfies three cases. Assume that z satisfies case (i). From (i) and (2.1)we have

((
r(t)zΔΔ(t)

)1−γ)Δ

=
(
1 − γ

)∫1

0

[
h(r(t)zΔΔ(t))σ + (1 − h)r(t)zΔΔ(t)

]−γ(
r(t)zΔΔ(t)

)Δ
dh

≤ (
1 − γ

)∫1

0

[
hr(t)zΔΔ(t) + (1 − h)r(t)zΔΔ(t)

]−γ(
r(t)zΔΔ(t)

)Δ
dh

=
(
1 − γ

)(
r(t)zΔΔ(t)

)−γ(
r(t)zΔΔ(t)

)Δ
,

(2.97)

so

(
r(t)zΔΔ(t)

)−γ(
r(t)zΔΔ(t)

)Δ ≥

((
r(t)zΔΔ(t)

)1−γ)Δ

1 − γ
. (2.98)

By (1.2), we have that (2.35) holds. Using (2.25) and (2.27), for any 0 < k < 1, we obtain after
dividing (2.35) by (r(t)zΔΔ(t))γ for all large t

0 ≥
(
r(t)zΔΔ(t)

)Δ + p(t)zγ(δ(t))(
r(t)zΔΔ(t)

)γ

=
(
r(t)zΔΔ(t)

)−γ(
r(t)zΔΔ(t)

)Δ
+ p(t)

(
z(δ(t))

r(t)zΔΔ(t)

)γ

≥

((
r(t)zΔΔ(t)

)1−γ)Δ

1 − γ
+

p(t)
rγ(δ(t))

(
z(δ(t))
zΔ(δ(t))

zΔ(δ(t))
zΔΔ(δ(t))

)γ

≥

((
r(t)zΔΔ(t)

)1−γ)Δ

1 − γ
+

p(t)
rγ(δ(t))

(
k
h2(δ(t), t0)

δ(t)
δ(t)

)γ

=

((
r(t)zΔΔ(t)

)1−γ)Δ

1 − γ
+ kγ p(t)

rγ(δ(t))
(h2(δ(t), t0))

γ .

(2.99)
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So,

kγ p(t)
rγ(δ(t))

(h2(δ(t), t0))
γ ≤

((
r(t)zΔΔ(t)

)1−γ)Δ

γ − 1
. (2.100)

Upon integration we arrive at

∫ t

t1

kγ p(s)
rγ(δ(s))

(h2(δ(s), t0))
γΔs ≤

∫ t

t1

((
r(t)zΔΔ(s)

)1−γ)Δ

γ − 1
Δs ≤

(
r(t1)zΔΔ(t1)

)1−γ
1 − γ

. (2.101)

This contradicts (2.96). If case (ii) holds, from Lemma 2.1, then limt→∞x(t) = 0. If case (iii)
holds, by Lemma 2.4, then limt→∞x(t) = 0. The proof is complete.

Remark 2.19. One can easily see that the results obtained in [14–16, 21, 23, 24, 35] cannot be
applied in (1.2), so our results are new.

3. Examples

In this section we give the following examples to illustrate our main results.

Example 3.1. Consider the third-order neutral delay dynamic equations on time-scales

(
x(t) − 1

2
x(τ(t))

)ΔΔΔ

+
β

t

(
t

h2(δ(t), t0)

)γ

xγ(δ(t)) = 0, t ∈ [t0,∞)
T
, (3.1)

where β > 0, 1 < γ < 2 is a quotient of odd positive integers, h2(δ(t), t0) ≤ t2.
Let r(t) = 1, a(t) = 1/2, p(t) = (β/t) (t/h2(δ(t), t0))

γ . It is easy to see that (2.2), (2.26),
and (2.38) hold. Also

lim sup
t→∞

∫ t

t0

p(s)
(
h2(δ(s), t0)

s

)γ

Δs = β lim sup
t→∞

∫ t

t0

Δs

s
= ∞. (3.2)

Hence by Corollary 2.8, every solution x of (3.1) is either oscillatory or limt→∞x(t) = 0.

Example 3.2. Consider the third-order neutral delay differential equation

(
x(t) − 1

10
x(t − 2)

)′′′
+

(
1 − e2

10

)
e2tx3(t) = 0, t ∈ [t0,∞). (3.3)

Let γ = 3, r(t) = 1, a(t) = 1/10, p(t) = (1 − e2/10)e2t. It is easy to see that all the conditions
of Corollary 2.8 hold. Then by Corollary 2.8, every solution x of (3.3) is either oscillatory or
satisfies limt→∞x(t) = 0. In fact, x(t) = e−t is a solution of (3.3).
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Example 3.3. Consider the third-order delay dynamic equation

(
t

(
x(t) − 1

2
x(τ(t))

)ΔΔ
)Δ

+
βtγ−1

δ2(t)
xγ(δ(t)) = 0, t ∈ [1,∞)

T
, (3.4)

where T = qN0 , β > 0, γ > 1 is a quotient of odd positive integers.
For T = qN0 , we have h2(δ(t), t0) = h2(δ(t), 1) = (δ(t) − 1)(δ(t) − q)/(1 + q), σ(t) = qt.

Let r(t) = t, p(t) = βtγ−1/δ2(t). It is easy to see that (2.2) and (2.38) hold, and

∫∞

t0

p(t)(h2(δ(t), t0))
γΔt = β

∫∞

1

tγ−1

δ2(t)

(
(δ(t) − 1)(δ(t) − q)

1 + q

)γ

Δt

≥ lβ

∫∞

1
tγ−1Δt = ∞, for some 0 < l < 1.

(3.5)

Hence (2.26) holds. Also

lim sup
t→∞

∫ t

t0

p(s)
r(s)

σ(s)
(
h2(δ(s), t0)

σ(s)

)γ

Δs

= βq1−γ lim sup
t→∞

∫ t

1

1
sδ2(s)

(
(δ(s) − 1)(δ(s) − q)

1 + q

)γ

Δs = ∞,

(3.6)

so (2.78) holds. By Theorem 2.11, every solution x of (3.4) is either oscillatory or satisfies
limt→∞x(t) = 0.

Example 3.4. Consider the third-order delay dynamic equation

(
x(t) − 1

3
x(τ(t))

)ΔΔΔ

+
β

t

(
1

h2(δ(t), t0)

)γ

xγ(δ(t)) = 0, t ∈ [t0,∞)
T
, (3.7)

where h2(δ(t), t0) ≤ t2, β > 0, γ < 1 is a quotient of odd positive integers.
Let r(t) = 1, p(t) = (β/t)(1/h2(δ(t), t0))

γ . It is easy to see that (2.2), (2.26), and (2.38)
hold. Also we have

lim sup
t→∞

∫ t

t0

p(s)
rγ(δ(s))

(h2(δ(s), t0))
γΔs = β lim sup

t→∞

∫ t

t0

Δs

s
= ∞. (3.8)

Hence (2.96) holds. By Theorem 2.18, every solution x of (3.7) is either oscillatory or satisfies
limt→∞x(t) = 0.
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