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We consider the quasilinear parabolic equation with inhomogeneous term u; = Au™+(x) uP+f (x),
u(x,0) = up(x), where 0 < f(x), up(x) € C(RN), m > 0, p > max{l,m}, and ¢ > -2,

1/2
(x) = (|x]* +1) / . In this paper, we investigate the critical exponents of this equation.

1. Introduction

We consider the quasi-linear parabolic equation with inhomogeneous term

w = Au™ + (x)°uP + f(x) (x eRN, t> 0>,

(1.1)
u(x,0) = up(x) (x € RN>,
where 0 < f(x), up(x) € C(RN), m > 0, p > max{1,m}, and 0 > -2, (x) = (x> + 1)/~
For the solution u(x, t) of (1.1), let T* > 0 be the maximal existence time, that is,
T* :==supqyT > 0; sup ||u(-, )], <oo¢. (1.2)
te[0,T)

If T* = oo, we say that u(x, t) is a global solution; if T* < oo, we say that u(x, t) blows up in
finite time.
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For quasi-linear parabolic equations, the authors of [1-5] and so on. study the
homogeneous equations (i.e., f(x) = 0 in (1.1)). Baras and Kersner [1] proved that (1.1)

with m = 1 and f(x) = 0 has a global solution, two constants ¢; and ¢, depending on N and
p exist such that

dx
lim inf{ 72/~ f oD > fuodx,
re ixf<r (x)7/ %7V

lliﬁjgﬂx)mzuo(x)”_l <o.

(1.3)

Mochizuki and Mukai [2] and Qi [4] study the case m > 0, o = 0, Pinsky [3] studies the case
m =1, 0> -2, and Suzuki [5] studies the case m > 1, —oo < 0 < 0. The following two results
are proved by them:

(1) if p < p;, -, then every nontrivial solution u(x, t) of (1.1) blows up in finite time;

(2) if p > p, o, then (1.1) has a global solution for some initial value uo(x),
wherep;, , =m+ (2+0)/Nfor N >2,0>-2andfor N=1,0>-1,p;, , =m+1for N =1,
o < -1. This p}, , is called the critical exponent.

On the other hand, [6-9] and so on. study the inhomogeneous equations (i.e., f(x)#0
in (1.1)). Bandle et al. [6] study the case m =1, 0 = 0, and Zeng [8] and Zhang [9] study the

case 0 = 0. In this paper, we investigate the critical exponents of (1.1) in the case f(x) #0. Our
results are as follows.

Theorem 1.1. Suppose that N >3, 0> -2, m> (N -2)/(N + o), and p > max{1, m}. Put

. . m(N+o0)

= 14
pm,o‘ N N _ 2 ( )

(@) If p < P, o, then every nontrivial solution u(x,t) of (1.1) blows up in finite time.

Ifv>p , u(x) < Ci{x)” - an x) < Colx)~ 7 then (1.1) has
(b) P> o ( ) C (2+0)/ (p—m) d (x)<C m(2+0)/ (p—m)—4 h ( )h
a global solution for some constants Cy and Cs.

Theorem 1.2. Suppose that N = 1,2, 0 > =2, m > 0, and p > max{1,m}. Then every nontrivial
solution u(x,t) of (1.1) blows up in finite time.

Remark 1.3. Theorems 1.1 and 1.2 are the extension of the results of [8]. If we put o = 0 in
these theorems, the same results as Theorem 1 in [8] are obtained.

We will prove Theorem 1.1(a) and (b) in Sections 3 and 4, respectively. The proof of
Theorem 1.2 is included in the proof of Theorem 1.1(a).

In the following, R and T are two given positive real numbers greater than 1. C is a
positive constant independent of R and T, and its value may change from line to line.

2. Preliminaries

In this section, we first give the definition of a solution for Problem (1.1) and then cite the
comparison theorem and a known result.
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Definition 2.1. A continuous function u = u(x,t) is called a solution of Problem (1.1) in Qr =
RN x [0, T) if the following holds:

(i) Vau™ € Li (RY);

(ii) for any bounded domain D ¢ RN and for all ¢ € C*(D x [0,T)) and vanishing on
oD x [0,T),

ITI (udiy — Vu" Vg + (x)uPy + fy)dx dt = f u(x, ) (x,-) |gdx, (2.1)
0/p D

forall T € [0,T).

Lemma 2.2 (the comparison theorem). Let u, v € C(0, T; leoc(Q))’ vu™, Vo € L*(0, T;
L7 (Q)), and satisfy
u— Au" <v - Av",  (x,t) € Qr,
(2.2)
u<v, (x,t)€oQr.

Then u < v for all (x,t) € Qr, where Q is a bounded domain in RN with smooth boundary 082 or
Q=RNand Qr = Qx (0,T].

Lemma 2.3 (the monotonicity property). Let u(x) be a nonnegative sub-solution to the stationary
problems of Problem (1.1). Then the positive solution u(x,t) with initial data u(x) is monotone
increasing to t.

3. Proof of Theorem 1.1(a)

We first consider the following problem:

= Au™ + (x)%uf + f(x) (x eRN, t> O),
3.1)
u(x,0)=0 (x € RN>.

It is clear that the positive solution of Problem (3.1) is a sub-solution of Problem (1.1). If every
positive solution of Problem (3.1) blows up in finite time, then, by Lemma 2.2, every positive
solution of Problem (1.1) also blows up in finite time. Therefore, we only need to consider
Problem (3.1).

The stationary problem of Problem (3.1) is as follows:

Au™ + (x)°uP + f(x) =0 <x € RN>. (3.2)

It is obvious that 0 is a sub-solution of Problem (3.2) and does not satisfy Problem (3.2). Thus,
by making use of Lemmas 2.2 and 2.3, the positive solution of Problem (3.1) is monotone
increasing to t.
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We argue by contradiction. Assume that Problem (3.1) has a global positive solution

for p < pj, o
Let ¢(r) and #(t) be two functions in C*([0, «0)), and satisfy

(i) 0 < @(r) £ 1in [0,00); ¢(r) = 11in [0,1], ¢(r) = 01in [2,00); -C < ¢'(r) < 0,
lpn(r)| < C;
(i) 0<n(t) £1in [0,00); (t) =1in [0,1], n(t) =0in [2,00); -C < 7/ (t) < 0.

For R>1and T > 1, define Qrr = Bor x [0,4T], and let W(r, t) = pr(r)nr(t) be a cut-off
function, where ¢r(r) = ¢(r/R), nr(t) = n(t/2T). It is easy to check that

C _ dyr(r) _ d*r(r) C _dm(®
R4 =V i |r T s a =° (3.3)
Let
Ig = f (x) uPWedxdt, (3.4)
RT
where s > 1 is a positive number to be determined. Then
Ig = j (~ud¥* + V"V — U dx dt + f u(x, V¥ (r, )|y dx
Qrr Bor
— dTlT s
=- upp——dxdt + u"n;Veidx dt - f¥dxdt
RT dt RT Qrr
s 54T
o ute ey ax (35)
Bar
_ s dny s
=- upp——dxdt - u"ny Appdx dt - f¥dxdt
RT dt Qrr Qrr
4T 0%,
u™ -9 ds dt.
f .[|x| =2R Yy
Since [,x f(x)dx > 0, there exist 6 > 0 and Ry > 1 such that [, f(x)dx > 6 for R> Ry:
4T 2T
f fPdxdt = I 15 fopdxdt > f f fdxdt > 6T. (3.6)
RT 0 Byr T Bgr

Hence, by the definition of ¢r and 77, we have

4T
Ir<- ’[ j upy de dt - j I u"ny Appdx dt - 6T. (3.7)
Bor d BZR\BR
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Since Ag$, = s Apr + 5(s — 1) % ?|Vog|* and

Agr(r) =

(pR(r) N—ld(pR(r) |V |2:<dlpR(r)>2
dr? r dr ' PR dr !

we obtain from (3.3) that

C N-1C /C\*_ C
| Agk| < spk ( * % -§>+s(s—1)<p1e2<§> < PR

in Bog \ Bg and

in [2T,4T]. Thus, (3.7) becomes

4T
IR<— J Uy 1dxdt+—J‘ J‘ ™ W2 dx dt - 6T.
BZR BZR\BR

(3.8)

(3.9)

(3.10)

(3.11)

Let s be large enough such that (s — 1)p > s and (s —2)p/m > s, and let A;(R) be as follows:

A(R) RN-0/®1 (6 <N(p-1)),
T logR+1) (02 N(p-1)).

Then, by making use of Young’s inequality, we have
J‘ u¥sdx dt
Bar

j j <—(x) wPpEp 4 —(x) ~oa/PCaT ‘7>dxdt
Bor

1 AT AT
<7 f J (x)°uPWedx dt + CT P/ P~V f f ()P dx gt
4o Jb 2T J Bor

1
< —Ig+CT"P/ P DA(R),

q;

(3.12)

(3.13)
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where1/p+1/g=1and

4T
% I f u"WS 2 dx dt
R 0 Bar\Br

AT 1 4q’ L
sj f ——(x) UMY —(x) P CTRT ) dx dt
0 JBar\Bx q

47’y
’ (3.14)
1 AT AT
<7 I I (x)°uPWedx dt + CR™2P/ P f J‘ B (o) 7m0 (=) g gy
4: 0 Bor 0 BZR\BR
< }IIR + CTszp/(P*m)Rmeo‘/(P*m)l
Where pl = p/mr 1/pl + 1/ql =1. ThU.S, (311) becomes
Ik < %IR + T(CT‘P/(P—l)AG(R) + CRN-@p+mo)/(p-m) _ 6). (3.15)

For N >3,sincec >-2,1/p'+1/q =1, and max{1,m} <p <m(N +0)/(N - 2), we have

2p+mo  (N-2)p-(N+o)m <

N 0. (3.16)
p-m p-m
For N =2, since 0 > -2, m > 0, and p > max{1,m}, we have
2p + -
p prmo _—Qrom (3.17)
p-m p-m

For N =1, since 0 > -2, m >0, and p > max{1,m}, we have

_2p+m0'_ —p—(1+0')m<—(2+0')m
p-m — p-m p-m

1 <0. (3.18)

Let T > Ay (R)P V7 such that T?/®D A, (R) < 1, then

Ix < CT, (3.19)
that is,
4T
f j (x)°uP¥dx dt < CT. (3.20)
0 Bar
Thus
2T
f (x)°uPdxdt < CT. (3.21)
T JBg
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By the integral mean value theorem, there exists t; € [T,2T] such that

oT
J (x)°uPdx dt = Tj (x)%u(x, t)Pdx < CT, (3.22)
T BR BR

that is,

J’ (x)%u(x, t)Pdx < C. (3.23)
Br

Since T is a large positive number and a random selection, and u(x, t) is monotone increasing
to t, there exists a positive number T(R) > 1 for any fixed R > Ry such that, for all ¢ > T(R),

(x)u(x, t)Pdx < C. (3.24)
Br

By the monotone increasing property of u(x, t), IBR (x)°u(x, t) dx also is increasing to t. This,
combined with (3.24), yields that the limit I} exists such that

IZ = tlin;o J‘B (x)u(x, t)Pdx < C. (3.25)

Since u(x,t) is nonnegative, I¥ is monotone increasing to R. This, combined with (3.25),
yields that limg . . I} exists. Thus, for any small € > 0, there exists a large positive constant
which still is denoted by Ry, such that, for R > Ry,

lim () %ux, tPdx =I5 - Iy <e. (3.26)

t= JBr\Br

Hence, by similar argument as that in (3.24), there exists a large positive number T(R) > 1
such that

I ~ (x)u(x, t)Pdx <e, Vt>T(R). (3.27)
Bor\Br

On the other hand, we argue as in [6, 10]. Let ¢(x) € C*(RN) be a positive function
satisfying.
(1) 0 <é(x) <1inRN; ¢(x) =1in By, §(x) =0in BS;
(ii) 0¢/0v =00n 0(B; \ By);
(iii) for any a € (0,1), there exists a positive constant C, such that |A¢| < C,¢".

Let R and T (R) be as defined in (3.26) and (3.27). Multiplying (3.1) by ér(x) = é(x/R)
and then integrating by parts in R, we have

i uérdx = f

dt RN Bor\Br

u™ Aérdx + J‘ (x)uPérdx + j férdx. (3.28)
RN RN
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By the definition of ¢r(x), Holder’s inequality, and (3.27), we have

Cu
<= M
R? Bor\Br K

c 1/p' , 1/q
Sl porems) (o)
R BZR\37R BZR\37R (329)

m/p (p-m)/p
<f (x)"u"’dx) <f (x)ymo/ <P-m>dx>
BZR\37R BZR\37R

< Ce™/p RIN-ma/(p=m))(p-m)/p-2 < Cgm/P,

f u™ Angx
Bog\Br

IN
RO

wherep' =p/m,1/p' +1/4 =1, since

(N— mo )p—m_zz (N—2)p—(N+o)mS

0. (3.30)
p-m/ p p

Let Fr(t) = [pn uérdx and Ggr(t) = [ (x)“uPérdx. Then, by making use of (3.29) and
[gn f(x)dx > 6 for R > Ry, (3.28) becomes

Fi(t) > Gr(t) — Ce™'P + 6. (3.31)

Thus, let € be small enough such that Ce™/'P < 65/2, then F}z(t) > Gg(t) +6/2.
Let ty > T(R). By making use of Holder’s inequality, we obtain that

e ([ mrenas)” ([ o)

(p-1)/p
< Gr(H"? <f (JC)_U/(p_l)dx) (332)
Bor

< CGr(t) P Ao (R)PV,

where 1/p +1/q = 1. Thus, we obtain that

t t t
j Fr(s)Pds < CAg(R)P™ f Gr(s)ds < CAG(R)’HJ‘ Fir(s)ds
b b b (3.33)

< CA4(R)P ™ (Fr(t) - Fr(t)).
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Since Fr(t) > 0 for all t > 0, we have
t
Fr(t) 2 CA(R)7" [ Fu(o)'ds+ Fult)

to

(3.34)
t
> CAy(R)PH f Fr(s)Pds.

to
Let g(t) = ftto Fr(s)Pds, then
g/(t) = Fr(t)? > CA5(R) PP Vg (t)?. (335)

Let t; > ty such that g(t1) > 0. Since p > 1, by solving the differential inequality (3.35) in [t1, ],
we have

t t
g,(sids > CA, (RO [ ds,
f g(s) t
g < g(t)'P - C(p-1)A(R) PPV (k- ty), (3.36)

() 2 {g(t)'™ = C(p 1) A (R 7P (t - 1) }‘”(’"“,

Thus, there exists Ty with t; < Ty < t; + C(p — 1) Ag(R)PP Y g(t1)' 7, such that limyr, g(t) =
+o0, which implies that g(t) and then u blow up in finite time. It contradicts our assumption.
Therefore, every positive solution of Problem (3.1) blows up in finite time. Hence, every
positive solution of Problem (1.1) blows up in finite time.

4. Proof of Theorem 1.1(b)

In this section, we prove that for p > m(N +0)/ (N —2), there exist some f(x) and uy(x), such
that Problem (1.1) admits a global positive solution.
We first consider the stationary problem of Problem (1.1) as follows:

Au™ + (x)°uP + f(x) =0 <x € ]RN>. (4.1)

Let v(x) = C1(x)"°, where s = (2 + 0)/(p — m) and the positive constant C; satisfies

m2+0){(N -2)p— (N +o)m}
(p—m)’

C'™ =ms(N -ms -2) = > 0. (4.2)
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Then, we have
—ms/2-1
~Av" = %cr(mz +1) " A(lxP+1)

et D) e+ 1) " 0 (1P 4 1)

4 (4.3)
= NmsC™(x) ™2 — ms(ms + 2) C™|x|*(x) "™
= ms(N —ms - 2)CI"(x) 7" + ms(ms + 2)CI"(x) ",
Since Cf_m =ms(N —ms - 2) and -ms -2 = 0 — ps, we have
—Av™ = CP(x)7P° + Co(x) ™ = (x) TP + Co(x) ™7, (4.4)

where C, = ms(ms + 2)C}". Thus, if f(x) < Co(x)™™* and ug(x) < v(x), then v is
a supersolution of Problem (1.1). It is obvious that 0 is s sub-solution of Problem (1.1).
Therefore, by the iterative process and the comparison theorem, Problem (1.1) admits a global

positive solution.
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