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We consider the quasilinear parabolic equationwith inhomogeneous term ut = Δum+〈x〉σup+f(x),
u(x, 0) = u0(x), where 0 ≤ f(x), u0(x) ∈ C(RN), m > 0, p > max{1,m}, and σ > −2,
〈x〉 := (|x|2 + 1)

1/2
. In this paper, we investigate the critical exponents of this equation.

1. Introduction

We consider the quasi-linear parabolic equation with inhomogeneous term

ut = Δum + 〈x〉σup + f(x)
(
x ∈ R

N, t > 0
)
,

u(x, 0) = u0(x)
(
x ∈ R

N
)
,

(1.1)

where 0 ≤ f(x), u0(x) ∈ C(RN), m > 0, p > max{1, m}, and σ > −2, 〈x〉 := (|x|2 + 1)1/2.
For the solution u(x, t) of (1.1), let T ∗ > 0 be the maximal existence time, that is,

T ∗ := sup

{
T > 0; sup

t∈[0,T)
‖u(·, t)‖∞ < ∞

}
. (1.2)

If T ∗ = ∞, we say that u(x, t) is a global solution; if T ∗ < ∞, we say that u(x, t) blows up in
finite time.
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For quasi-linear parabolic equations, the authors of [1–5] and so on. study the
homogeneous equations (i.e., f(x) ≡ 0 in (1.1)). Baras and Kersner [1] proved that (1.1)
with m = 1 and f(x) ≡ 0 has a global solution, two constants c1 and c2 depending on N and
p exist such that

lim inf
r→∞

{
r−2/(p−1)

∫

|x|<r

dx

〈x〉σ/(p−1)
}

≥ c1

∫
u0dx,

lim inf
|x|→∞

〈x〉σ+2u0(x)p−1 ≤ c2.

(1.3)

Mochizuki and Mukai [2] and Qi [4] study the case m > 0, σ = 0, Pinsky [3] studies the case
m = 1, σ > −2, and Suzuki [5] studies the case m ≥ 1, −∞ < σ < ∞. The following two results
are proved by them:

(1) if p ≤ p∗m,σ , then every nontrivial solution u(x, t) of (1.1) blows up in finite time;

(2) if p > p∗m,σ , then (1.1) has a global solution for some initial value u0(x),

where p∗m,σ = m + (2 + σ)/N for N ≥ 2, σ > −2 and for N = 1, σ > −1, p∗m,σ = m + 1 for N = 1,
σ ≤ −1. This p∗m,σ is called the critical exponent.

On the other hand, [6–9] and so on. study the inhomogeneous equations (i.e., f(x)/≡ 0
in (1.1)). Bandle et al. [6] study the case m = 1, σ = 0, and Zeng [8] and Zhang [9] study the
case σ = 0. In this paper, we investigate the critical exponents of (1.1) in the case f(x)/≡ 0. Our
results are as follows.

Theorem 1.1. Suppose that N ≥ 3, σ > −2, m > (N − 2)/(N + σ), and p > max{1, m}. Put

p∗m,σ :=
m(N + σ)
N − 2

. (1.4)

(a) If p ≤ p∗m,σ , then every nontrivial solution u(x, t) of (1.1) blows up in finite time.

(b) If p > p∗m,σ , u0(x) ≤ C1〈x〉−(2+σ)/(p−m), and f(x) ≤ C2〈x〉−m(2+σ)/(p−m)−4, then (1.1) has
a global solution for some constants C1 and C2.

Theorem 1.2. Suppose that N = 1, 2, σ ≥ −2, m > 0, and p > max{1, m}. Then every nontrivial
solution u(x, t) of (1.1) blows up in finite time.

Remark 1.3. Theorems 1.1 and 1.2 are the extension of the results of [8]. If we put σ = 0 in
these theorems, the same results as Theorem 1 in [8] are obtained.

We will prove Theorem 1.1(a) and (b) in Sections 3 and 4, respectively. The proof of
Theorem 1.2 is included in the proof of Theorem 1.1(a).

In the following, R and T are two given positive real numbers greater than 1. C is a
positive constant independent of R and T , and its value may change from line to line.

2. Preliminaries

In this section, we first give the definition of a solution for Problem (1.1) and then cite the
comparison theorem and a known result.
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Definition 2.1. A continuous function u = u(x, t) is called a solution of Problem (1.1) in QT ≡
R

N × [0, T) if the following holds:

(i) ∇xu
m ∈ L2

loc(R
N);

(ii) for any bounded domain D ⊂ R
N and for all ψ ∈ C2(D × [0, T)) and vanishing on

∂D × [0, T),

∫ τ

0

∫

D

(
u∂tψ − ∇um∇ψ + 〈x〉σupψ + fψ

)
dx dt =

∫

D

u(x, ·)ψ(x, ·)∣∣τ0dx, (2.1)

for all τ ∈ [0, T).

Lemma 2.2 (the comparison theorem). Let u, v ∈ C(0, T ; L2
loc(Ω)), ∇um, ∇vm ∈ L2(0, T ;

L2
loc(Ω)), and satisfy

ut −Δum ≤ vt −Δvm, (x, t) ∈ ΩT ,

u ≤ v, (x, t) ∈ ∂ΩT .
(2.2)

Then u ≤ v for all (x, t) ∈ ΩT , where Ω is a bounded domain in R
N with smooth boundary ∂Ω or

Ω = R
N and ΩT = Ω × (0, T].

Lemma 2.3 (the monotonicity property). Let u(x) be a nonnegative sub-solution to the stationary
problems of Problem (1.1). Then the positive solution u(x, t) with initial data u(x) is monotone
increasing to t.

3. Proof of Theorem 1.1(a)

We first consider the following problem:

ut = Δum + 〈x〉σup + f(x)
(
x ∈ R

N, t > 0
)
,

u(x, 0) = 0
(
x ∈ R

N
)
.

(3.1)

It is clear that the positive solution of Problem (3.1) is a sub-solution of Problem (1.1). If every
positive solution of Problem (3.1) blows up in finite time, then, by Lemma 2.2, every positive
solution of Problem (1.1) also blows up in finite time. Therefore, we only need to consider
Problem (3.1).

The stationary problem of Problem (3.1) is as follows:

Δum + 〈x〉σup + f(x) = 0
(
x ∈ R

N
)
. (3.2)

It is obvious that 0 is a sub-solution of Problem (3.2) and does not satisfy Problem (3.2). Thus,
by making use of Lemmas 2.2 and 2.3, the positive solution of Problem (3.1) is monotone
increasing to t.



4 Advances in Difference Equations

We argue by contradiction. Assume that Problem (3.1) has a global positive solution
for p ≤ p∗m,σ .

Let ϕ(r) and η(t) be two functions in C∞([0,∞)), and satisfy

(i) 0 ≤ ϕ(r) ≤ 1 in [0,∞); ϕ(r) ≡ 1 in [0, 1], ϕ(r) ≡ 0 in [2,∞); −C ≤ ϕ′(r) ≤ 0,
|ϕ′′(r)| ≤ C;

(ii) 0 ≤ η(t) ≤ 1 in [0,∞); η(t) ≡ 1 in [0, 1], η(t) ≡ 0 in [2,∞); −C ≤ η′(t) ≤ 0.

For R > 1 and T > 1, defineQR,T ≡ B2R× [0, 4T], and letΨ(r, t) = ϕR(r)ηT (t) be a cut-off
function, where ϕR(r) = ϕ(r/R), ηT (t) = η(t/2T). It is easy to check that

−C
R

≤ dϕR(r)
dr

≤ 0,

∣∣∣∣∣
d2ϕR(r)
dr2

∣∣∣∣∣ ≤
C

R2
, − C

2T
≤ dηT (t)

dt
≤ 0. (3.3)

Let

IR =
∫

QR,T

〈x〉σupΨsdxdt, (3.4)

where s > 1 is a positive number to be determined. Then

IR =
∫

QR,T

(−u∂tΨs +∇um∇Ψs − fΨs)dx dt +
∫

B2R

u(x, ·)Ψ(r, ·)s∣∣4T0 dx

= −
∫

QR,T

uϕs
R

dηs
T

dt
dx dt +

∫

QR,T

∇umηs
T∇ϕs

Rdx dt −
∫

QR,T

fΨsdx dt

+
∫

B2R

u(x, ·)ϕR(r)sηT (·)s
∣∣4T
0 dx

= −
∫

QR,T

uϕs
R

dηs
T

dt
dx dt −

∫

QR,T

umηs
TΔϕs

Rdx dt −
∫

QR,T

fΨsdx dt

+
∫4T

0

∫

|x|=2R
umηs

T

∂ϕs
R

∂ν
dSdt.

(3.5)

Since
∫
RN f(x)dx > 0, there exist δ > 0 and R0 > 1 such that

∫
BR

f(x)dx ≥ δ for R > R0:

∫

QR,T

fΨsdx dt =
∫4T

0
ηs
T

∫

B2R

fϕs
Rdx dt ≥

∫2T

T

∫

BR

fdx dt ≥ δT. (3.6)

Hence, by the definition of ϕR and ηT , we have

IR ≤ −
∫4T

2T

∫

B2R

uϕs
R

dηs
T

dt
dx dt −

∫4T

0

∫

B2R\BR

umηs
TΔϕs

Rdx dt − δT. (3.7)
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Since Δϕs
R = sϕs−1

R ΔϕR + s(s − 1)ϕs−2
R |∇ϕR|2 and

ΔϕR(r) =
d2ϕR(r)
dr2

+
N − 1

r

dϕR(r)
dr

,
∣∣∇ϕR

∣∣2 =
(
dϕR(r)
dr

)2

, (3.8)

we obtain from (3.3) that

∣∣Δϕs
R

∣∣ ≤ sϕs−1
R

(
C

R2
+
N − 1
R

· C
R

)
+ s(s − 1)ϕs−2

R

(
C

R

)2

≤ C

R2
ϕs−2
R

(3.9)

in B2R \ BR and

dηs
T

dt
= sηs−1

T

dηT
dt

≥ −sηs−1
T

C

2T
≥ −C

T
ηs−1
T

(3.10)

in [2T, 4T]. Thus, (3.7) becomes

IR ≤ C

T

∫4T

2T

∫

B2R

uΨs−1dx dt +
C

R2

∫4T

0

∫

B2R\BR

umΨs−2dx dt − δT. (3.11)

Let s be large enough such that (s − 1)p ≥ s and (s − 2)p/m ≥ s, and let Aσ(R) be as follows:

Aσ(R) =

⎧
⎨
⎩
RN−σ/(p−1) (

σ < N
(
p − 1

))
,

log(R + 1)
(
σ ≥ N

(
p − 1

))
.

(3.12)

Then, by making use of Young’s inequality, we have

C

T

∫4T

2T

∫

B2R

uΨs−1dx dt

≤
∫4T

2T

∫

B2R

(
1
4pp

〈x〉σupΨ(s−1)p +
4q

q
〈x〉−σq/pCqT−q

)
dx dt

≤ 1
4

∫4T

0

∫

B2R

〈x〉σupΨsdx dt + CT−p/(p−1)
∫4T

2T

∫

B2R

〈x〉−σ/(p−1)dx dt

≤ 1
4
IR + CT1−p/(p−1)Aσ(R),

(3.13)
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where 1/p + 1/q = 1 and

C

R2

∫4T

0

∫

B2R\BR

umΨs−2dx dt

≤
∫4T

0

∫

B2R\BR

(
1

4p′p′
〈x〉σump′Ψ(s−2)p′ +

4q
′

q′
〈x〉−σq′/p′Cq′R−2q′

)
dx dt

≤ 1
4

∫4T

0

∫

B2R

〈x〉σupΨsdx dt + CR−2p/(p−m)
∫4T

0

∫

B2R\BR

〈x〉−mσ/(p−m)dx dt

≤ 1
4
IR + CTR−2p/(p−m)RN−mσ/(p−m),

(3.14)

where p′ = p/m, 1/p′ + 1/q′ = 1. Thus, (3.11) becomes

IR ≤ 1
2
IR + T

(
CT−p/(p−1)Aσ(R) + CRN−(2p+mσ)/(p−m) − δ

)
. (3.15)

For N ≥ 3, since σ > −2, 1/p′ + 1/q′ = 1, and max{1, m} < p ≤ m(N + σ)/(N − 2), we have

N − 2p +mσ

p −m
=

(N − 2)p − (N + σ)m
p −m

≤ 0. (3.16)

For N = 2, since σ ≥ −2, m > 0, and p > max{1, m}, we have

2 − 2p +mσ

p −m
=

−(2 + σ)m
p −m

≤ 0. (3.17)

For N = 1, since σ ≥ −2, m > 0, and p > max{1, m}, we have

1 − 2p +mσ

p −m
=

−p − (1 + σ)m
p −m

<
−(2 + σ)m
p −m

≤ 0. (3.18)

Let T ≥ Aσ(R)
(p−1)/p such that T−p/(p−1)Aσ(R) ≤ 1, then

IR ≤ CT, (3.19)

that is,

∫4T

0

∫

B2R

〈x〉σupΨsdx dt ≤ CT. (3.20)

Thus

∫2T

T

∫

BR

〈x〉σupdx dt ≤ CT. (3.21)
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By the integral mean value theorem, there exists t1 ∈ [T, 2T] such that

∫2T

T

∫

BR

〈x〉σupdx dt = T

∫

BR

〈x〉σu(x, t1)pdx ≤ CT, (3.22)

that is,

∫

BR

〈x〉σu(x, t1)pdx ≤ C. (3.23)

Since T is a large positive number and a random selection, and u(x, t) is monotone increasing
to t, there exists a positive number T(R) > 1 for any fixed R > R0 such that, for all t > T(R),

∫

BR

〈x〉σu(x, t)pdx ≤ C. (3.24)

By the monotone increasing property of u(x, t),
∫
BR
〈x〉σu(x, t)pdx also is increasing to t. This,

combined with (3.24), yields that the limit I∞R exists such that

I∞R ≡ lim
t→∞

∫

BR

〈x〉σu(x, t)pdx ≤ C. (3.25)

Since u(x, t) is nonnegative, I∞R is monotone increasing to R. This, combined with (3.25),
yields that limR→∞I∞R exists. Thus, for any small ε > 0, there exists a large positive constant
which still is denoted by R0, such that, for R > R0,

lim
t→∞

∫

B2R\BR

〈x〉σu(x, t)pdx ≡ I∞2R − I∞R < ε. (3.26)

Hence, by similar argument as that in (3.24), there exists a large positive number T(R) > 1
such that

∫

B2R\BR

〈x〉σu(x, t)pdx < ε, ∀t > T(R). (3.27)

On the other hand, we argue as in [6, 10]. Let ξ(x) ∈ C2(RN) be a positive function
satisfying.

(i) 0 ≤ ξ(x) ≤ 1 in R
N ; ξ(x) ≡ 1 in B1, ξ(x) ≡ 0 in Bc

2;

(ii) ∂ξ/∂ν = 0 on ∂(B2 \ B1);

(iii) for any α ∈ (0, 1), there exists a positive constant Cα such that |Δξ| ≤ Cαξ
α.

Let R and T(R) be as defined in (3.26) and (3.27). Multiplying (3.1) by ξR(x) = ξ(x/R)
and then integrating by parts in R

N , we have

d

dt

∫

RN

uξRdx =
∫

B2R\BR

umΔξRdx +
∫

RN

〈x〉σupξRdx +
∫

RN

fξRdx. (3.28)
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By the definition of ξR(x), Hölder’s inequality, and (3.27), we have

∣∣∣∣∣
∫

B2R\BR

umΔξRdx

∣∣∣∣∣ ≤
Cα

R2

∫

B2R\BR

umξαRdx

≤ Cα

R2

(∫

B2R\BR

〈x〉σump′dx

)1/p′(∫

B2R\BR

〈x〉−σq′/p′ξαq′R dx

)1/q′

≤ Cα

R2

(∫

B2R\BR

〈x〉σupdx

)m/p(∫

B2R\BR

〈x〉−mσ/(p−m)dx

)(p−m)/p

≤ Cεm/pR(N−mσ/(p−m))(p−m)/p−2 ≤ Cεm/p,

(3.29)

where p′ = p/m, 1/p′ + 1/q′ = 1, since

(
N − mσ

p −m

)
p −m

p
− 2 =

(N − 2)p − (N + σ)m
p

≤ 0. (3.30)

Let FR(t) =
∫
RN uξRdx and GR(t) =

∫
RN〈x〉σupξRdx. Then, by making use of (3.29) and∫

RN f(x)dx ≥ δ for R > R0, (3.28) becomes

F ′
R(t) ≥ GR(t) − Cεm/p + δ. (3.31)

Thus, let ε be small enough such that Cεm/p ≤ δ/2, then F ′
R(t) ≥ GR(t) + δ/2.

Let t0 > T(R). By making use of Hölder’s inequality, we obtain that

FR(t) ≤
(∫

RN

〈x〉σupξRdx

)1/p(∫

RN

〈x〉−σq/pξRdx
)1/q

≤ GR(t)1/p
(∫

B2R

〈x〉−σ/(p−1)dx
)(p−1)/p

≤ CGR(t)1/pAσ(R)(p−1)/p,

(3.32)

where 1/p + 1/q = 1. Thus, we obtain that

∫ t

t0

FR(s)pds ≤ CAσ(R)
p−1

∫ t

t0

GR(s)ds ≤ CAσ(R)p−1
∫ t

t0

F′R(s)ds

≤ CAσ(R)p−1(FR(t) − FR(t0)).

(3.33)
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Since FR(t) ≥ 0 for all t ≥ 0, we have

FR(t) ≥ CAσ(R)−p+1
∫ t

t0

FR(s)pds + FR(t0)

≥ CAσ(R)−p+1
∫ t

t0

FR(s)pds.

(3.34)

Let g(t) =
∫ t
t0
FR(s)

pds, then

g′(t) = FR(t)p ≥ CAσ(R)−p(p−1)g(t)p. (3.35)

Let t1 > t0 such that g(t1) > 0. Since p > 1, by solving the differential inequality (3.35) in [t1, t],
we have

∫ t

t1

g′(s)
g(s)p

ds ≥ CAσ(R)−p(p−1)
∫ t

t1

ds,

g(t)1−p ≤ g(t1)1−p − C
(
p − 1

)
Aσ(R)−p(p−1)(t − t1),

g(t) ≥
{
g(t1)1−p − C

(
p − 1

)
Aσ(R)−p(p−1)(t − t1)

}−1/(p−1)
.

(3.36)

Thus, there exists T1 with t1 < T1 ≤ t1 + C(p − 1)−1Aσ(R)
p(p−1)g(t1)

1−p, such that limt↑T1g(t) =
+∞, which implies that g(t) and then u blow up in finite time. It contradicts our assumption.
Therefore, every positive solution of Problem (3.1) blows up in finite time. Hence, every
positive solution of Problem (1.1) blows up in finite time.

4. Proof of Theorem 1.1(b)

In this section, we prove that for p > m(N +σ)/(N −2), there exist some f(x) and u0(x), such
that Problem (1.1) admits a global positive solution.

We first consider the stationary problem of Problem (1.1) as follows:

Δum + 〈x〉σup + f(x) = 0
(
x ∈ R

N
)
. (4.1)

Let v(x) = C1〈x〉−s, where s = (2 + σ)/(p −m) and the positive constant C1 satisfies

C
p−m
1 = ms(N −ms − 2) =

m(2 + σ)
{
(N − 2)p − (N + σ)m

}
(
p −m

)2 > 0. (4.2)
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Then, we have

−Δvm =
ms

2
Cm

1

(
|x|2 + 1

)−ms/2−1
Δ
(
|x|2 + 1

)

− ms(ms + 2)
4

Cm
1

(
|x|2 + 1

)−ms/2−2∣∣∣∇
(
|x|2 + 1

)∣∣∣
2

= NmsCm
1 〈x〉−ms−2 −ms(ms + 2)Cm

1 |x|2〈x〉−ms−4

= ms(N −ms − 2)Cm
1 〈x〉−ms−2 +ms(ms + 2)Cm

1 〈x〉−ms−4.

(4.3)

Since Cp−m
1 = ms(N −ms − 2) and −ms − 2 = σ − ps, we have

−Δvm = C
p

1〈x〉σ−ps + C2〈x〉−ms−4 = 〈x〉σvp + C2〈x〉−ms−4, (4.4)

where C2 = ms(ms + 2)Cm
1 . Thus, if f(x) ≤ C2〈x〉−ms−4 and u0(x) ≤ v(x), then v is

a supersolution of Problem (1.1). It is obvious that 0 is s sub-solution of Problem (1.1).
Therefore, by the iterative process and the comparison theorem, Problem (1.1) admits a global
positive solution.
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