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The main purpose of this paper is to present some properties of the meromorphic solutions
of complex difference equation of the form

∑
λ∈I αλ(z)(

∏n
ν=1f(z + cν)

lλ,ν )/
∑

μ∈J βμ(z)(
∏n

ν=1f(z +
cν)

mμ,ν ) = R(z, f(z)), where I = {λ = (lλ,1, lλ,2, . . . , lλ,n) | lλ,ν ∈ N ∪ {0}, ν = 1, 2, . . . , n} and
J = {μ = (mμ,1,mμ,2, . . . , mμ,n) | mμ, ν ∈ N ∪ {0}, ν = 1, 2, . . . , n} are two finite index sets,
cν (ν = 1, 2, . . . , n) are distinct, nonzero complex numbers, αλ(z) (λ ∈ I) and βμ(z) (μ ∈ J) are
small functions relative to f(z), R(z, f(z)) is a rational function in f(z)with coefficients which are
small functions of f(z). We also consider related complex functional equations in the paper.

1. Introduction and Main Results

Let f(z) be a meromorphic function in the complex plane. We assume that the reader is
familiar with the standard notations and results in Nevanlinna’s value distribution theory
of meromorphic functions such as the characteristic function T(r, f), proximity function
m(r, f), counting function N(r, f), the first and second main theorems (see, e.g., [1–4]). We
also use N(r, f) to denote the counting function of the poles of f(z) whose every pole is
counted only once. The notation S(r, f) denotes any quantity that satisfies the condition:
S(r, f) = o(T(r, f)) as r → ∞ possibly outside an exceptional set of r of finite linear
measure. A meromorphic function a(z) is called a small function of f(z) if and only if
T(r, a(z)) = S(r, f).

Recently, a number of papers (see, e.g., [5–9]) focusing on Malmquist type theorem of
the complex difference equations emerged. In 2000, Ablowitz et al. [5] proved some results
on the classical Malmquist theorem of the complex difference equations in the complex
differential equation by utilizing Nevanlinna theory. They obtained the following two results.
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Theorem A. If the second-order difference equation

f(z + 1) + f(z − 1) = R
(
z, f(z)

)
=

a0(z) + a1(z)f + · · · + ap(z)fp

b0(z) + b1(z)f + · · · + bq(z)fq
, (1.1)

with polynomial coefficients ai (i = 1, 2, . . . , p) and bj (j = 1, 2, . . . , q), admits a transcendental
meromorphic solution of finite order, then d = max{p, q} ≤ 2.

Theorem B. If the second-order difference equation

f(z + 1)f(z − 1) = R
(
z, f(z)

)
=

a0(z) + a1(z)f + · · · + ap(z)fp

b0(z) + b1(z)f + · · · + bq(z)fq
, (1.2)

with polynomial coefficients ai (i = 1, 2, . . . , p) and bj (j = 1, 2, . . . , q), admits a transcendental
meromorphic solution of finite order, then d = max{p, q} ≤ 2.

One year later, Heittokangas et al. [7] extended the above two results to the case of
higher-order difference equations of more general type. They got the following.

Theorem C. Let c1, c2, . . . , cn ∈ C \ {0}. If the difference equation

n∑

i=1

f(z + ci) = R
(
z, f(z)

)
=

a0(z) + a1(z)f + · · · + ap(z)fp

b0(z) + b1(z)f + · · · + bq(z)fq
, (1.3)

with the coefficients of rational functions ai (i = 1, 2, . . . , p) and bj (j = 1, 2, . . . , q) admits a
transcendental meromorphic solution of finite order, then d = max{p, q} ≤ n.

Theorem D. Let c1, c2, . . . , cn ∈ C \ {0}. If the difference equation

n∏

i=1

f(z + ci) = R
(
z, f(z)

)
=

a0(z) + a1(z)f + · · · + ap(z)fp

b0(z) + b1(z)f + · · · + bq(z)fq
, (1.4)

with the coefficients of rational functions ai (i = 1, 2, . . . , p) and bj (j = 1, 2, . . . , q) admits a
transcendental meromorphic solution of finite order, then d = max{p, q} ≤ n.

Laine et al. [9] and Huang and Chen [8], respectively, generalized the above results.
They obtained the following theorem.

Theorem E. Let c1, c2, . . . , cn be distinct, nonzero complex numbers, and suppose that f(z) is a
transcendental meromorphic solution of the difference equation

∑

{J}
αJ(z)

⎛

⎝
∏

j∈J
f
(
z + cj

)
⎞

⎠ = R
(
z, f(z)

)
=

a0(z) + a1(z)f(z) + · · · + ap(z)f(z)p

b0(z) + b1(z)f(z) + · · · + bq(z)f(z)q
, (1.5)
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with coefficients αJ(z), ai(z) (i = 0, 1, . . . , p) and bj(z) (j = 0, 1, . . . , q), which are small functions
relative to f(z), where {J} is a collection of all subsets of {1, 2, . . . , n}. If the order ρ(f) is finite, then
d = max{p, q} ≤ n.

In the same paper, Laine et al. also obtained Tumura-Clunie theorem about difference
equation.

Theorem F. Suppose that c1, c2, . . . , cn are distinct, nonzero complex numbers and that f(z) is a
transcendental meromorphic solution of

n∑

j=1

αj(z)f
(
z + cj

)
= R

(
z, f(z)

)
=

P
(
z, f(z)

)

Q
(
z, f(z)

) , (1.6)

where the coefficients αj(z) are nonvanishing small functions relative to f(z) and where P(z, f(z))
and Q(z, f(z)) are relatively prime polynomials in f(z) over the field of small functions relative to
f(z). Moreover, we assume that q = degfQ > 0,

n = max
{
p, q

}
= max

{
degfP,degfQ

}
, (1.7)

and that, without restricting generality, Q is a monic polynomial. If there exists α ∈ [0, n) such that
for all r sufficiently large,

N

⎛

⎝r,
n∑

j=1

αj(z)f
(
z + cj

)
⎞

⎠ ≤ αN
(
r + C, f(z)

)
+ S

(
r, f

)
, (1.8)

where C := max{|c1|, |c2|, . . . , |cn|}, then either the order ρ(f) = +∞, or

Q
(
z, f(z)

) ≡ (
f(z) + h(z)

)q
, (1.9)

where h(z) is a small meromorphic function relative to f(z).

Remark 1.1. Huang and Chen [8] proved that the Theorem F remains true when the left hand
side of (1.6) is replaced by the left hand side of (1.5), meanwhile, the condition (1.8) would
be replaced by a corresponding form.

Moreover, Laine et al. [9] also gave the following result.

Theorem G. Suppose that f is a transcendental meromorphic solution of

∑

{J}
αJ(z)

⎛

⎝
∏

j∈J
f
(
z + cj

)
⎞

⎠ = f
(
p(z)

)
, (1.10)
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where p(z) is a polynomial of degree k ≥ 2, {J} is a collection of all subsets of {1, 2, . . . , n}. Moreover,
we assume that the coefficients αJ(z) are small functions relative to f and that n ≥ k. Then

T
(
r, f

)
= O

((
log r

)α+ε
)
, (1.11)

where α = logn/ log k.

In this paper, we consider a more general class of complex difference equations. We
prove the following results, which generalize the above related results.

Theorem 1.2. Let c1, c2, . . . , cn be distinct, nonzero complex numbers and suppose that f(z) is a
transcendental meromorphic solution of the difference equation

∑
λ∈I αλ(z)

(∏n
ν=1f(z + cν)lλ,ν

)

∑
μ∈J βμ(z)

(∏n
ν=1f(z + cν)mμ,ν

) = R
(
z, f(z)

)
=

a0(z) + a1(z)f(z) + · · · + ap(z)f(z)p

b0(z) + b1(z)f(z) + · · · + bq(z)f(z)q
,

(1.12)

with coefficients αλ(z)(λ ∈ I), βμ(z)(μ ∈ J), ai(z) (i = 0, 1, . . . , p), and bj(z) (j = 0, 1, . . . , q) are
small functions relative to f(z), where I = {λ = (lλ,1, lλ,2, . . . , lλ,n) | lλ,ν ∈ N ∪ {0}, ν = 1, 2, . . . , n}
and J = {μ = (mμ,1, mμ,2, . . . , mμ,n) | mμ,ν ∈ N∪{0}, ν = 1, 2, . . . , n} are two finite index sets, denote

σν = max
λ,μ

{
lλ,ν,mμ,ν

}
(ν = 1, 2, . . . , n), σ =

n∑

ν=1

σν. (1.13)

If the order ρ(f) := ρ is finite, then d = max{p, q} ≤ σ.

Corollary 1.3. Let c1, c2, . . . , cn be distinct, nonzero complex numbers and suppose that f(z) is a
transcendental meromorphic solution of the difference equation

∑

λ∈I
αλ(z)

(
n∏

ν=1

f(z + cν)lλ,ν
)

= R
(
z, f(z)

)
=

a0(z) + a1(z)f(z) + · · · + ap(z)f(z)p

b0(z) + b1(z)f(z) + · · · + bq(z)f(z)q
, (1.14)

with coefficients αλ(z)(λ ∈ I), ai(z) (i = 0, 1, . . . , p) and bj(z) (j = 0, 1, . . . , q), which are small
functions relative to f(z), where I = {λ = (lλ,1, lλ,2, . . . , lλ,n) | lλ,ν ∈ N ∪ {0}, ν = 1, 2, . . . , n} is a
finite index set, denote

σν = max
λ

{lλ,ν} (ν = 1, 2, . . . , n), σ =
n∑

ν=1

σν. (1.15)

If the order ρ(f) := ρ is finite, then d = max{p, q} ≤ σ.
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Remark 1.4. In Corollary 1.3, if we take

max
λ,ν

{lλ,ν} = 1, λ ∈ I, ν = 1, 2, . . . , n, (1.16)

then Corollary 1.3 becomes Theorem E. Therefore, Theorem 1.2 is a generalization of Theorem
E.

Example 1.5. Let c1 = arctan 2, c2 = −π/4. Then it is easy to check that f(z) = tan z solves the
following difference equation:

f(z + c1)2f(z + c2)

f(z + c1) + f(z + c2)2
=

f4 + 4f3 + 3f2 − 4f − 4
2f4 − 19f3 + 7f2 − 5f + 3

. (1.17)

Example 1.6. Let c1 = arctan 2 and c2 = arctan(−2). It is easy to check that f(z) = tan z satisfies
the difference equation

f(z + c1)2f(z + c2) + f(z + c1)f(z + c2)2 =
10f3 − 40f

16f4 − 8f2 + 1
. (1.18)

In above two examples, we both have d = σ = 4 and ρ(f) = 1 < +∞. Therefore, the
estimations in Theorem 1.2 and Corollary 1.3 are sharp.

Theorem 1.7. Suppose that c1, c2, . . . , cn are distinct, nonzero complex numbers and that f(z) is a
transcendental meromorphic solution of

∑
λ∈I αλ(z)

(∏n
ν=1f(z + cν)lλ,ν

)

∑
μ∈J βμ(z)

(∏n
ν=1f(z + cν)mμ,ν

) = R
(
z, f(z)

)
=

P
(
z, f(z)

)

Q
(
z, f(z)

) , (1.19)

where the coefficients αλ(z)(λ ∈ I), βμ(z)(μ ∈ J) are nonvanishing small functions relative to
f(z) and P(z, f(z)) and Q(z, f(z)) are relatively prime polynomials in f(z) over the field of small
functions relative to f(z), I = {λ = (lλ,1, lλ,2, . . . , lλ,n) | lλ,ν ∈ N ∪ {0}, ν = 1, 2, . . . , n} and
J = {μ = (mμ,1, mμ,2, . . . , mμ,n) | mμ,ν ∈ N ∪ {0}, ν = 1, 2, . . . , n} are two finite index sets, denote

σν = max
λ,μ

{
lλ,ν,mμ,ν

}
(ν = 1, 2, . . . , n), σ =

n∑

ν=1

σν. (1.20)

Moreover, we assume that q = degfQ > 0,

σ = max
{
p, q

}
:= max

{
degfP,degfQ

}
, (1.21)
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and that, without restricting generality, Q is a monic polynomial. If there exists α ∈ [0, σ) such that
for all r sufficiently large,

N

⎛

⎜
⎝r,

∑
λ∈I αλ(z)

(∏n
ν=1f(z + cν)lλ,ν

)

∑
μ∈J βμ(z)

(∏n
ν=1f(z + cν)mμ,ν

)

⎞

⎟
⎠ ≤ αN

(
r + C, f(z)

)
+ S

(
r, f

)
, (1.22)

n∑

ν=1

σνN
(
r, f(z + cν)

) ≤ αN
(
r + C, f(z)

)
+ S

(
r, f

)
, (1.23)

where C := max{|c1|, |c2|, . . . , |cn|}, then either the order ρ(f) = +∞, or

Q
(
z, f(z)

) ≡ (
f(z) + h(z)

)q
, (1.24)

where h(z) is a small meromorphic function relative to f(z).

If the left hand side of (1.19) in Theorem 1.7 is replaced by the left hand side of (1.14)
in Corollary 1.3, then (1.23) implies (1.22). Since we have

N

(

r,
∑

λ∈I
αλ(z)

(
n∏

ν=1

f(z + cν)lλ,ν
))

≤
n∑

ν=1

σνN
(
r, f(z + cν)

)
+ S

(
r, f

)
(1.25)

by the fundamental property of counting function. Therefore, we get the following result
easily.

Corollary 1.8. Suppose that c1, c2, . . . , cn are distinct, nonzero complex numbers and that f(z) is a
transcendental meromorphic solution of

∑

λ∈I
αλ(z)

(
n∏

ν=1

f(z + cν)lλ,ν
)

= R
(
z, f(z)

)
=

P
(
z, f(z)

)

Q
(
z, f(z)

) , (1.26)

where the coefficients αλ(z)(λ ∈ I) are nonvanishing small functions relative to f(z) and P(z, f(z))
and Q(z, f(z)) are relatively prime polynomials in f(z) over the field of small functions relative to
f(z), I = {λ = (lλ,1, lλ,2, . . . , lλ,n) | lλ,ν ∈ N ∪ {0}, ν = 1, 2, . . . , n} is a finite index set, denote

σν = max
λ

{lλ,ν} (ν = 1, 2, . . . , n), σ =
n∑

ν=1

σν. (1.27)

Moreover, we assume that q = degfQ > 0,

σ = max
{
p, q

}
:= max

{
degfP,degfQ

}
, (1.28)
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and that, without restricting generality, Q is a monic polynomial. If there exists α ∈ [0, σ) such that
for all r sufficiently large,

n∑

ν=1

σνN
(
r, f(z + cν)

) ≤ αN
(
r + C, f(z)

)
+ S

(
r, f

)
, (1.29)

where C := max{|c1|, |c2|, . . . , |cn|}, then either the order ρ(f) = +∞, or

Q
(
z, f(z)

) ≡ (
f(z) + h(z)

)q
, (1.30)

where h(z) is a small meromorphic function relative to f(z).

Finally, we give a result corresponding to Theorem G.

Theorem 1.9. Let c1, c2, . . . , cn be distinct, nonzero complex numbers and suppose that f is a
transcendental meromorphic solution of

∑
λ∈I αλ(z)

(∏n
ν=1f(z + cν)lλ,ν

)

∑
μ∈J βμ(z)

(∏n
ν=1f(z + cν)mμ,ν

) = f
(
p(z)

)
, (1.31)

where p(z) is a polynomial of degree k ≥ 2, I = {λ = (lλ,1, lλ,2, . . . , lλ,n) | lλ,ν ∈ N ∪ {0}, ν =
1, 2, . . . , n} and J = {μ = (mμ,1, mμ,2, . . . , mμ,n) | mμ,ν ∈ N ∪ {0}, ν = 1, 2, . . . , n} are two finite
index sets. Denote

σν = max
λ,μ

{
lλ,ν,mμ,ν

}
(ν = 1, 2, . . . , n), σ =

n∑

ν=1

σν. (1.32)

Moreover, we assume that the coefficients αλ(z)(λ ∈ I) and βμ(z)(μ ∈ J) are small functions relative
to f and that σ ≥ k. Then

T
(
r, f

)
= O

((
log r

)α+ε
)
, (1.33)

where α = logσ/ log k.

2. Main Lemmas

In order to prove our results, we need the following lemmas.

Lemma 2.1 (see [10]). Let f(z) be a meromorphic function. Then for all irreducible rational
functions in f ,

R
(
z, f

)
=

P
(
z, f

)

Q
(
z, f

) =
∑p

i=0 ai(z)fi

∑q

j=0 bj(z)f
j
, (2.1)
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such that the meromorphic coefficients ai(z), bj(z) satisfy

T(r, ai) = S
(
r, f

)
, i = 0, 1, . . . , p,

T
(
r, bj

)
= S

(
r, f

)
, j = 0, 1, . . . , q,

(2.2)

one has

T
(
r, R

(
z, f

))
= max

{
p, q

} · T(r, f) + S
(
r, f

)
. (2.3)

Lemma 2.2 (see [11]). Let f1, f2, . . . , fn be distinct meromorphic functions and

F(z) =
P(z)
Q(z)

=
∑

λ∈I f
lλ,1
1 f

lλ,2
2 · · · flλ,n

n
∑

μ∈J f
mμ,1

1 f
mμ,2

2 · · · fmμ,n

n

. (2.4)

Then

m(r, F) ≤
n∑

ν=1

σνm
(
r, fν

)
+N(r,Q) −N

(

r,
1
Q

)

+O(1),

T(r, F) ≤
n∑

ν=1

σνT
(
r, fν

)
+O(1),

(2.5)

where I = {λ = (lλ,1, lλ,2, . . . , lλ,n) | lλ,ν ∈ N ∪ {0}, ν = 1, 2, . . . , n} and J = {μ =
(mμ,1, mμ,2, . . . , mμ,n) | mμ,ν ∈ N ∪ {0}, ν = 1, 2, . . . , n} are two finite index sets, and σν =
maxλ,μ{lλ,ν,mμ,ν} (ν = 1, 2, . . . , n).

Remark 2.3. If we suppose that αλ(z) = o(T(r, fν)(λ ∈ I)) and βμ(z) = o(T(r, fν)(μ ∈ J)) hold
for all ν ∈ {1, 2, . . . , n}, and denote T(r, αλ) = S(r, f)(λ ∈ I) and T(r, βμ) = S(r, f)(μ ∈ J), then
we have the following estimation by the proof of Lemma 2.2

T

⎛

⎝r,

∑
λ∈I αλ(z)f

lλ,1
1 f

lλ,2
2 · · · flλ,n

n
∑

μ∈J βμ(z)f
mμ,1

1 f
mμ,2

2 · · · fmμ,n

n

⎞

⎠ ≤
n∑

ν=1

σνT
(
r, fν

)
+ S

(
r, f

)
. (2.6)

Lemma 2.4 (see [6]). Let f(z) be a meromorphic function with order ρ = ρ(f), ρ < +∞, and let c
be a fixed nonzero complex number, then for each ε > 0, one has

T
(
r, f(z + c)

)
= T

(
r, f

)
+O

(
rρ−1+ε

)
+O

(
log r

)
. (2.7)
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Lemma 2.5 (see [12]). Let f(z) be a meromorphic function and let φ be given by

φ = fn + an−1fn−1 + · · · + a0, (2.8)

where ai(i = 0, 1, . . . , n − 1) are small meromorphic functions relative to f(z). Then either

φ =
(

f +
an−1
n

)n

, (2.9)

or

T
(
r, f

) ≤ N

(

r,
1
φ

)

+N
(
r, f

)
+ S

(
r, f

)
. (2.10)

Lemma 2.6 (see [9, 13]). Let f(z) be a nonconstant meromorphic function and let P(z, f), Q(z, f)
be two polynomials in f(z) with meromorphic coefficients small relative to f(z). If P(z, f) and
Q(z, f) have no common factors of positive degree in f(z) over the field of small functions relative to
f(z), then

N

(

r,
1

Q
(
z, f

)

)

≤ N

(

r,
P
(
z, f

)

Q
(
z, f

)

)

+ S
(
r, f

)
. (2.11)

Lemma 2.7 (see [14]). Let f be a transcendental meromorphic function, and p(z) = akz
k +

ak−1zk−1 + · · · + a1z + a0, ak /= 0 be a nonconstant polynomial of degree k. Given 0 < δ < |ak|,
denote λ = |ak| + δ and μ = |ak| − δ. Then given ε > 0 and a ∈ C ∪ {∞}, one has

kn
(
μrk, a, f

)
≤ n

(
r, a, f

(
p(z)

)) ≤ kn
(
λrk, a, f

)
,

N
(
μrk, a, f

)
+O

(
log r

) ≤ N
(
r, a, f

(
p(z)

)) ≤ N
(
λrk, a, f

)
+O

(
log r

)
,

(1 − ε)T
(
μrk, f

)
≤ T

(
r, f

(
p(z)

)) ≤ (1 + ε)T
(
λrk, f

)

(2.12)

for all r large enough.

Lemma 2.8 (see [15]). Let φ : [r0,+∞) → (0,+∞) be positive and bounded in every finite interval,
and suppose that φ(μrm) ≤ Aφ(r) + B holds for all r large enough, where μ > 0, m > 1, A > 1 and B
are real constants. Then

φ(r) = O
((
log r

)α)
, (2.13)

where α = logA/ logm.
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3. Proof of Theorems

Proof of Theorem 1.2. We assume that f(z) is a meromorphic solution of finite order of (1.12).
It follows from Lemmas 2.1, 2.2, and 2.4 that for each ε > 0,

max
{
p, q

}
T
(
r, f

)
= T

(
r, R

(
z, f

))
+ S

(
r, f

)

= T

⎛

⎜
⎝r,

∑
λ∈I αλ(z)

(∏n
ν=1f(z + cν)lλ,ν

)

∑
μ∈J βμ(z)

(∏n
ν=1f(z + cν)mμ,ν

)

⎞

⎟
⎠ + S

(
r, f

)

≤
n∑

ν=1

σνT
(
r, f(z + cν)

)
+ S

(
r, f

)
+O(1)

=
n∑

ν=1

σνT
(
r, f(z)

)
+O

(
rρ−1+ε

)
+O

(
log r

)
+ S

(
r, f

)

=

(
n∑

ν=1

σν

)

T
(
r, f(z)

)
+O

(
rρ−1+ε

)
+O

(
log r

)
+ S

(
r, f

)

= σT
(
r, f(z)

)
+O

(
rρ−1+ε

)
+O

(
log r

)
+ S

(
r, f

)
.

(3.1)

This yields the asserted result.

Proof of Theorem 1.7. Suppose f(z) is a transcendental meromorphic solution of (1.19) and the
second alternative of the conclusion is not true. Then according to Lemmas 2.5 and 2.6, we
get

T
(
r, f

) ≤ N

(

r,
1

Q
(
z, f(z)

)

)

+N
(
r, f

)
+ S

(
r, f

)

≤ N

(

r,
P
(
z, f(z)

)

Q
(
z, f(z)

)

)

+N
(
r, f

)
+ S

(
r, f

)

= N

⎛

⎜
⎝r,

∑
λ∈I αλ(z)

(∏n
ν=1f(z + cν)lλ,ν

)

∑
μ∈J βμ(z)

(∏n
ν=1f(z + cν)mμ,ν

)

⎞

⎟
⎠ +N

(
r, f

)
+ S

(
r, f

)

≤ αN
(
r + C, f(z)

)
+N

(
r, f

)
+ S

(
r, f

)
.

(3.2)

Thus, we have

T
(
r, f

) −N
(
r, f

) ≤ αN
(
r + C, f(z)

)
+ S

(
r, f

)
, (3.3)
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Now assuming the order ρ(f) < +∞, then we have S(r, f(z + cν)) = S(r, f) and

T
(
r, f(z + cν)

) −N
(
r, f(z + cν)

) ≤ αN
(
r + C, f(z + cν)

)
+ S

(
r, f

)
. (3.4)

for all ν = 1, 2, . . . , n. By using Lemmas 2.1 and 2.2, we conclude that

σT
(
r, f

)
= T

⎛

⎜
⎝r,

∑
λ∈I αλ(z)

(∏n
ν=1f(z + cν)lλ,ν

)

∑
μ∈J βμ(z)

(∏n
ν=1f(z + cν)mμ,ν

)

⎞

⎟
⎠ + S

(
r, f

)

≤
n∑

ν=1

σνT
(
r, f(z + cν)

)
+ S

(
r, f

)

=
n∑

ν=1

σν

(
T
(
r, f(z + cν)

) −N
(
r, f(z + cν)

))
+

n∑

ν=1

σνN
(
r, f(z + cν)

)
+ S

(
r, f

)

≤
n∑

ν=1

σναN
(
r + C, f(z + cν)

)
+ αN

(
r + C, f(z)

)
+ S

(
r, f

)

≤
n∑

ν=1

σναN
(
r + 2C, f(z)

)
+ αN

(
r + C, f(z)

)
+ S

(
r, f

)

≤
(

n∑

ν=1

σν

)

αN
(
r + 2C, f(z)

)
+ αN

(
r + 2C, f(z)

)
+ S

(
r, f

)

= (σ + 1)αN
(
r + 2C, f(z)

)
+ S

(
r, f

)
.

(3.5)

It follows from this that

T
(
r, f

) −N
(
r, f

) ≤ σ + 1
σ

αN
(
r + 2C, f

) −N
(
r, f

)
+ S

(
r, f

)
. (3.6)

We prove the following inequality by induction:

T
(
r, f

) −N
(
r, f

) ≤ σ +m

σ
αN

(
r + 2mC, f

) −mN
(
r, f

)
+ S

(
r, f

)
. (3.7)

The case m = 1 has been proved. We assume that above inequality holds when m = k. Next,
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we prove that inequality (3.7) holds for m = k + 1. We have

σT
(
r, f

) ≤
n∑

ν=1

σν

(
T
(
r, f(z + cν)

) −N
(
r, f(z + cν)

))
+ αN

(
r + C, f(z)

)
+ S

(
r, f

)

≤
n∑

ν=1

σν

(
σ + k

σ
αN

(
r + 2kC, f(z + cν)

) − kN
(
r, f(z + cν)

)
)

+ αN
(
r + C, f(z)

)
+ S

(
r, f

)

≤
n∑

ν=1

σν

(
σ + k

σ
αN

(
r + 2kC + C, f(z)

) − kN
(
r − C, f(z)

)
)

+ αN
(
r + C, f(z)

)
+ S

(
r, f

)

≤
(

n∑

ν=1

σν

)(
σ + k

σ
αN

(
r + 2kC + C, f(z)

) − kN
(
r − C, f(z)

)
)

+ αN
(
r + 2kC + C, f(z)

)
+ S

(
r, f

)

= (σ + k + 1)αN
(
r + 2kC + C, f(z)

) − σkN
(
r − C, f(z)

)
+ S

(
r, f

)
.

(3.8)

Noting that T(r, f(z)) ≤ T(r + C, f(z)), thus we have

σT
(
r, f(z)

) ≤ σT
(
r + C, f(z)

)

≤ (σ + k + 1)αN
(
r + 2kC + 2C, f(z)

) − σkN
(
r, f(z)

)
+ S

(
r, f

) (3.9)

and so

T
(
r, f(z)

) ≤ σ + k + 1
σ

αN
(
r + 2(k + 1)C, f(z)

) − kN
(
r, f(z)

)
+ S

(
r, f

)
. (3.10)

This implies that

T
(
r, f(z)

) −N
(
r, f(z)

) ≤ σ + k + 1
σ

αN
(
r + 2(k + 1)C, f(z)

) − (k + 1)N
(
r, f(z)

)
+ S

(
r, f

)
.

(3.11)

It follows from (3.7) that

N
(
r, f(z)

) ≤ σ +m

σm
αN

(
r + 2mC, f

)
+ S

(
r, f

)
. (3.12)

Let m be large enough such that

1
γ
:=

σ +m

σm
α =

(
1
m

+
1
σ

)

α < 1. (3.13)
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Since

N
(
r, f(z)

) ≤ 1
γ
N
(
r + 2mC, f(z)

)
+ S

(
r, f

)
, (3.14)

we have for any s ∈ N,

N
(
r, f(z)

) ≤ 1
γs

N
(
r + 2smC, f

)
+ S

(
r + (s − 1)mC, f

)
(3.15)

thus for each ε > 0,

γsN
(
r, f(z)

) ≤ N
(
r + 2smC, f

)
+ S

(
r + (s − 1)mC, f

)

≤ (1 + ε)T
(
r + 2smC, f(z)

)
,

(3.16)

for r + 2smC large enough holds. We now fix r = r0, and let r0 + 2smC = t, thus

γ (t−r0)/2mCN
(
r0, f(z)

) ≤ (1 + ε)T
(
t, f

)
,

log T
(
t, f

)

log t
+
log(1 + ε)

log t
≥ t log γ

2mC log t
− r0 log γ
2mC log t

+
logN

(
r0, f

)

log t
.

(3.17)

Finally, let t → ∞, andwe conclude that the order ρ(f) = ∞. Therefore, we get a contradiction
and the assertion follows.

Proof of Theorem 1.9. We assume f(z) is a transcendental meromorphic solution of (1.31).
Denoting again C = max{|c1|, |c2|, . . . , |cn|}. According to the last assertion of Lemmas 2.7
and 2.2, we get that

(1 − ε)T
(
μrk, f

)
≤ T

(
r, f

(
p(z)

))

= T

⎛

⎜
⎝r,

∑
λ∈I αλ(z)

(∏n
ν=1f(z + cν)lλ,ν

)

∑
μ∈J βμ(z)

(∏n
ν=1f(z + cν)mμ,ν

)

⎞

⎟
⎠

≤
n∑

ν=1

σνT
(
r, f(z + cν)

)
+ S

(
r, f

)

≤
n∑

ν=1

σνT
(
r + C, f(z)

)
+ S

(
r, f

)

=

(
n∑

ν=1

σν

)

T
(
r + C, f(z)

)
+ S

(
r, f

)

= σT
(
r + C, f(z)

)
+ S

(
r, f

)
.

(3.18)
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Since T(r + C, f) ≤ T(βr, f) holds for r large enough for β > 1, we may assume r to be large
enough to satisfy

(1 − ε)T
(
μrk, f

)
≤ σ(1 + ε)T

(
βr, f

)
(3.19)

outside a possible exceptional set of finite linear measure. By the standard idea of removing
the exceptional set (see [4, page 5]), we know that whenever γ > 1,

(1 − ε)T
(
μrk, f

)
≤ σ(1 + ε)T

(
γβr, f

)
(3.20)

holds for all r large enough. Denote t = γβr, thus inequality (3.20)may be written in the form

T

(
μ

(
γβ

)k t
k, f

)

≤ σ(1 + ε)
1 − ε

T
(
t, f

)
. (3.21)

By Lemma 2.8, we have

T
(
r, f

)
= O

((
log r

)s)
, (3.22)

where

s =
log(σ(1 + ε)/(1 − ε))

log k
=

logσ
log k

+ o(1). (3.23)

Denoting now α = logσ/ log k, thus we obtain the required form. Theorem 1.9 is proved.
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equations,” Nonlinearity, vol. 13, no. 3, pp. 889–905, 2000.

[6] Y.-M. Chiang and S.-J. Feng, “On the Nevanlinna characteristic of f(z + η) and difference equations
in the complex plane,” Ramanujan Journal, vol. 16, no. 1, pp. 105–129, 2008.



Advances in Difference Equations 15

[7] J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, and K. Tohge, “Complex difference equations of
Malmquist type,” Computational Methods and Function Theory, vol. 1, no. 1, pp. 27–39, 2001.

[8] Z.-B. Huang and Z.-X. Chen, “Meromorphic solutions of some complex difference equations,”
Advances in Difference Equations, vol. 2009, Article ID 982681, 10 pages, 2009.

[9] I. Laine, J. Rieppo, and H. Silvennoinen, “Remarks on complex difference equations,” Computational
Methods and Function Theory, vol. 5, no. 1, pp. 77–88, 2005.

[10] A. Z. Mohon’ko, “The Nevanlinna characteristics of certain meromorphic functions,” Teorija Funkciı̆,
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