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to the second-order neutral delay dynamic equation [x(t) + p(t)x(τ0(t))]

ΔΔ + q1(t)x(τ1(t)) −
q2(t)x(τ2(t)) = e(t) on a time scale T. To dwell upon the importance of our results, one interesting
example is also included.
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1. Introduction

The theory of time scales, which has recently received a lot of attention, was introduced by
Hilger in his Ph.D. Thesis in 1988 in order to unify continuous and discrete analysis (see
Hilger [1]). Several authors have expounded on various aspects of this new theory; see
the survey paper by Agarwal et al. [2] and references cited therein. A book on the subject
of time scales, by Bohner and Peterson [3], summarizes and organizes much of the time
scale calculus; we refer also to the last book by Bohner and Peterson [4] for advances in
dynamic equations on time scales. For the notation used below we refer to the next section
that provides some basic facts on time scales extracted from Bohner and Peterson [3].

In recent years, there has been much research activity concerning the oscillation of
solutions of various equations on time scales, and we refer the reader to Erbe [5], Saker [6],
and Hassan [7]. And there are some results dealing with the oscillation of the solutions of
second-order delay dynamic equations on time scales [8–22].
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In this work, we will consider the existence of nonoscillatory solutions to the second-
order neutral delay dynamic equation of the form

[
x(t) + p(t)x(τ0(t))

]ΔΔ + q1(t)x(τ1(t)) − q2(t)x(τ2(t)) = e(t) (1.1)

on a time scale T (an arbitrary closed subset of the reals).
The motivation originates from Kulenović and Hadžiomerpahić [23] and Zhu and

Wang [24]. In [23], the authors established some sufficient conditions for the existence of
positive solutions of the delay equation

[
x(t) + p(t)x(t − τ)

]′′ + q1(t)x(t − σ1) − q2(t)x(t − σ2) = e(t). (1.2)

Recently, [24] established the existence of nonoscillatory solutions to the neutral equation

[
x(t) + p(t)x

(
g(t)

)]Δ + f(t, x(h(t))) = 0 (1.3)

on a time scale T.
Neutral equations find numerous applications in natural science and technology. For

instance, they are frequently used for the study of distributed networks containing lossless
transmission lines. So, we try to establish some sufficient conditions for the existence of
equations of (1.1). However, there are few papers to discuss the existence of nonoscillatory
solutions for neutral delay dynamic equations on time scales.

Since we are interested in the nonoscillatory behavior of (1.1), we assume throughout
that the time scale T under consideration satisfies inf T = t0 and sup T = ∞.

As usual, by a solution of (1.1) we mean a continuous function x(t) which is defined
on T and satisfies (1.1) for t ≥ t1 ≥ t0. A solution of (1.1) is said to be eventually positive (or
eventually negative) if there exists c ∈ T such that x(t) > 0 (or x(t) < 0) for all t ≥ c in T.
A solution of (1.1) is said to be nonoscillatory if it is either eventually positive or eventually
negative; otherwise, it is oscillatory.

2. Main Results

In this section, we establish the existence of nonoscillatory solutions to (1.1). For T0, T1 ∈ T,
let [T0,∞)

T
:= {t ∈ T : t ≥ T0} and [T0, T1]T := {t ∈ T : T0 ≤ t ≤ T1}. Further, let C([T0,∞)

T
,R)

denote all continuous functions mapping [T0,∞)
T
into R, and

BC[T0,∞)
T
:=

{

x : x ∈ C([T0,∞)
T
,R), sup

t∈[T0,∞)
T

|x(t)| < ∞
}

. (2.1)

Endowed on BC[T0,∞)
T
with the norm ‖x‖ = supt∈[T0,∞)

T

|x(t)|, (BC[T0,∞)
T
, ‖ · ‖) is a Banach

space (see [24]). LetX ⊆ BC[T0,∞)
T
,we say thatX is uniformly Cauchy if for any given ε > 0,

there exists T1 ∈ [T0,∞)
T
such that for any x ∈ X, |x(t1) − x(t2)| < ε, for all t1, t2 ∈ [T1,∞)

T
.

X is said to be equicontinuous on [a, b]
T
if for any given ε > 0, there exists δ > 0 such

that for any x ∈ X, and t1, t2 ∈ [a, b]
T
with |t1 − t2| < δ, |x(t1) − x(t2)| < ε.
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Also, we need the following auxiliary results.

Lemma 2.1 (see [24, Lemma 4]). Suppose thatX ⊆ BC[T0,∞)
T
is bounded and uniformly Cauchy.

Further, suppose that X is equicontinuous on [T0, T1]T for any T1 ∈ [T0,∞)
T
. Then X is relatively

compact.

Lemma 2.2 (see [25, Kranoselskii’s fixed point theorem]). Suppose that Ω is a Banach space
and X is a bounded, convex, and closed subset of Ω. Suppose further that there exist two operators
U,S : X → Ω such that

(i) Ux + Sy ∈ X for all x, y ∈ X;

(ii) U is a contraction mapping;

(iii) S is completely continuous.

ThenU + S has a fixed point in X.

Throughout this section, we will assume in (1.1) that
(H)τi(t) ∈ Crd(T,T), τi(t) ≤ t, limt→∞ τi(t) =∞, i = 0, 1, 2, p(t),qj(t) ∈ Crd(T,R), qj(t) >

0,
∫∞
t0
σ(s)qj(s)Δs < ∞, j = 1, 2, and there exists a function E(t) ∈ C2

rd
(T,R) such that EΔΔ(t) =

e(t), limt→∞E(t) = e0 ∈ R.

Theorem 2.3. Assume that (H) holds and |p(t)| ≤ p < 1/3. Then (1.1) has an eventually positive
solution.

Proof. From the assumption (H), we can choose T0 ∈ T (T0 ≥ 1) large enough and positive
constants M1 and M2 which satisfy the condition

1 < M2 <
1 − p − 2M1

2p
, (2.2)

such that

∫∞

T0

σ(s)q1(s)Δs ≤
(
1 − p

)
(M2 − 1)
M2

, (2.3)

∫∞

T0

σ(s)q2(s)Δs ≤ 1 − p(1 + 2M2) − 2M1

2M2
, (2.4)

∫∞

T0

σ(s)
[
q1(s) + q2(s)

]
Δs ≤ 3

(
1 − p

)

4
, (2.5)

|E(t) − e0| ≤
1 − p

4
, t ≥ T0. (2.6)

Furthermore, from (H) we see that there exists T1 ∈ T with T1 > T0 such that τi(t) ≥
T0, i = 0, 1, 2, for t ∈ [T1,∞]

T
.

Define the Banach space BC[T0,∞)
T
as in (2.1) and let

X = {x ∈ BC[T0,∞)
T
: M1 ≤ x(t) ≤ M2}. (2.7)
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It is easy to verify that X is a bounded, convex, and closed subset of BC[T0,∞)
T
.

Now we define two operators U and S : X → BC[T0,∞)
T
as follows:

(Ux)(t) =
1 − p

4
− p(t)x(τ0(T1)) + E(T1) − e0, t ∈ [T0, T1]T,

(Ux)(t) =
1 − p

4
− p(t)x(τ0(t)) + E(t) − e0, t ∈ [T1,∞)

T
,

(Sx)(t) =
1 − p

2
+ T1

∫∞

T1

[
q1(s)x(τ1(s)) − q2(s)x(τ2(s))

]
Δs, t ∈ [T0, T1]T,

(Sx)(t) =
1 − p

2
+ t

∫∞

t

[
q1(s)x(τ1(s)) − q2(s)x(τ2(s))

]
Δs

+
∫ t

T1

σ(s)
[
q1(s)x(τ1(s)) − q2(s)x(τ2(s))

]
Δs, t ∈ [T1,∞)

T
.

(2.8)

Next, we will show that U and S satisfy the conditions in Lemma 2.2.
(i) We first prove that Ux + Sy ∈ X for any x, y ∈ X. Note that for any x, y ∈ X,M1 ≤

x ≤ M2,M1 ≤ y ≤ M2. For any x, y ∈ X and t ∈ [T1,∞)
T
, in view of (2.3), (2.4) and (2.6), we

have

(Ux)(t) +
(
Sy

)
(t) ≥ 3

(
1 − p

)

4
− 1 − p

4
− pM2 − t

∫∞

t

q2(s)x(τ2(s))Δs −
∫ t

T1

σ(s)q2(s)x(τ2(s))Δs

≥ 1 − p

2
− pM2 −M2

∫∞

T1

σ(s)q2(s)Δs ≥ M1,

(Ux)(t) +
(
Sy

)
(t) ≤ 3

(
1 − p

)

4
+
1 − p

4
+ pM2 + t

∫∞

t

q1(s)x(τ1(s))Δs +
∫ t

T1

σ(s)q1(s)x(τ1(s))Δs

≤ 1 − p + pM2 +M2

∫∞

T1

σ(s)q1(s)Δs ≤ M2.

(2.9)

Similarly, we can prove that M1 ≤ (Ux)(t) + (Sy)(t) ≤ M2 for any x, y ∈ X and
t ∈ [T0, T1]T.Hence, Ux + Sy ∈ X for any x, y ∈ X.

(ii)We prove that U is a contraction mapping. Indeed, for x, y ∈ X,we have

∣∣(Ux)(t) − (
Uy

)
(t)

∣∣ =
∣∣p(t)

[
x(τ0(T1)) − y(τ0(T1))

]∣∣ ≤ p sup
t∈[T0,∞)

T

∣∣x(t) − y(t)
∣∣ (2.10)

for t ∈ [T0, T1]T and

∣∣(Ux)(t) − (
Uy

)
(t)

∣∣ =
∣∣p(t)

[
x(τ0(t)) − y(τ0(t))

]∣∣ ≤ p sup
t∈[T0,∞)

T

∣∣x(t) − y(t)
∣∣ (2.11)



Advances in Difference Equations 5

for t ∈ [T1,∞)
T
. Therefore, we have

∥∥Ux −Uy
∥∥ ≤ p

∥∥x − y
∥∥ (2.12)

for any x, y ∈ X.Hence, U is a contraction mapping.
(iii) We will prove that S is a completely continuous mapping. First, by (i) we know

that Smaps X into X.
Second, we consider the continuity of S. Let xn ∈ X and ‖xn − x‖ → 0 as n → ∞, then

x ∈ X and |xn(t) − x(t)| → 0 as n → ∞ for any t ∈ [T0,∞)
T
. Consequently, by (2.5)we have

|(Sxn)(t) − (Sx)(t)|

≤ t

[∫∞

t

q1(s)|xn(τ1(s)) − x(τ1(s))|Δs +
∫∞

t

q2(s)|xn(τ2(s)) − x(τ2(s))|Δs

]

+
∫ t

T1

σ(s)q1(s)|xn(τ1(s)) − x(τ1(s))|Δs

+
∫ t

T1

σ(s)q2(s)|xn(τ2(s)) − x(τ2(s))|Δs

≤ ‖xn − x‖
[∫∞

t

σ(s)
[
q1(s) + q2(s)

]
Δs +

∫ t

T1

σ(s)
[
q1(s) + q2(s)

]
Δs

]

= ‖xn − x‖
∫∞

T1

σ(s)
[
q1(s) + q2(s)

]
Δs ≤ 3

(
1 − p

)

4
‖xn − x‖

(2.13)

for t ∈ [T0,∞)
T
. So, we obtain

‖Sxn − Sx‖ ≤ 3
(
1 − p

)

4
‖xn − x‖ −→ 0, n −→ ∞, (2.14)

which proves that S is continuous on X.
Finally, we prove that SX is relatively compact. It is sufficient to verify that SX satisfies

all conditions in Lemma 2.1. By the definition of X,we see that SX is bounded. For any ε > 0,
take T2 ∈ [T1,∞)

T
so that

∫∞

T2

σ(s)
[
q1(s) + q2(s)

]
Δs < ε. (2.15)
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For any x ∈ X and t1, t2 ∈ [T2,∞)
T
,we have

|(Sx)(t1) − (Sx)(t2)|

≤
∣∣∣∣∣
t1

∫∞

t1

[
q1(s)x(τ1(s)) − q2(s)x(τ2(s))

]
Δs − t2

∫∞

t2

[
q1(s)x(τ1(s)) − q2(s)x(τ2(s))

]
Δs

∣∣∣∣∣

+

∣∣∣∣∣

∫ t1

T1

σ(s)
[
q1(s)x(τ1(s)) − q2(s)x(τ2(s))

]
Δs −

∫ t2

T1

σ(s)
[
q1(s)x(τ1(s)) − q2(s)x(τ2(s))

]
Δs

∣∣∣∣∣

≤ M2

∫∞

t1

σ(s)
[
q1(s) + q2(s)

]
Δs +M2

∫∞

t2

σ(s)
[
q1(s) + q2(s)

]
Δs

+M2

∣∣∣∣∣

∫ t2

t1

σ(s)
[
q1(s) + q2(s)

]
Δs

∣∣∣∣∣
< 3M2ε.

(2.16)

Thus, SX is uniformly Cauchy.
The remainder is to consider the equicontinuous on [T0, T2]T for any T2 ∈ [T0,∞)

T
.

Without loss of generality, we set T1 < T2. For any x ∈ X, we have |(Sx)(t1) − (Sx)(t2)| ≡ 0 for
t1, t2 ∈ [T0, T1]T and

|(Sx)(t1) − (Sx)(t2)|

≤
∣∣∣∣∣
t1

∫∞

t1

[
q1(s)x(τ1(s)) − q2(s)x(τ2(s))

]
Δs − t2

∫∞

t2

[
q1(s)x(τ1(s)) − q2(s)x(τ2(s))

]
Δs

∣∣∣∣∣

+

∣∣∣∣∣

∫ t1

T1

σ(s)
[
q1(s)x(τ1(s)) − q2(s)x(τ2(s))

]
Δs −

∫ t2

T1

σ(s)
[
q1(s)x(τ1(s)) − q2(s)x(τ2(s))

]
Δs

∣∣∣∣∣

≤ M2

∣∣∣∣∣

∫ t2

t1

σ(s)
[
q1(s) + q2(s)

]
Δs

∣∣∣∣∣

+

∣∣∣∣∣
(t1 − t2)

∫∞

t1

[
q1(s)x(τ1(s)) − q2(s)x(τ2(s))

]
Δs

∣∣∣∣∣

+

∣∣∣∣∣
t2

∫∞

t1

[
q1(s)x(τ1(s)) − q2(s)x(τ2(s))

]
Δs − t2

∫∞

t2

[
q1(s)x(τ1(s)) − q2(s)x(τ2(s))

]
Δs

∣∣∣∣∣

≤ (M2t2 +M2)

∣∣∣∣∣

∫ t2

t1

σ(s)
[
q1(s) + q2(s)

]
Δs

∣∣∣∣∣

+M2|t1 − t2|
∫∞

t1

σ(s)
[
q1(s) + q2(s)

]
Δs

(2.17)

for t1, t2 ∈ [T1, T2]T.
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Now, we see that for any ε > 0, there exists δ > 0 such that when t1, t2 ∈ [T1, T2]T with
|t1 − t2| < δ,

|(Sx)(t1) − (Sx)(t2)| < ε (2.18)

for all x ∈ X. This means that SX is equicontinuous on [T0, T2]T for any T2 ∈ [T0,∞)
T
.

By means of Lemma 2.1, SX is relatively compact. From the above, we have proved
that S is a completely continuous mapping.

By Lemma 2.2, there exists x ∈ X such that (U + S)x = x. Therefore, we have

x(t) =
3
(
1 − p

)

4
− p(t)x(τ0(t)) + t

∫∞

t

[
q1(s)x(τ1(s)) − q2(s)x(τ2(s))

]
Δs

+
∫ t

T1

σ(s)
[
q1(s)x(τ1(s)) − q2(s)x(τ2(s))

]
Δs + E(t) − e0, t ∈ [T1,∞)

T
,

(2.19)

which implies that x(t) is an eventually positive solution of (1.1). The proof is complete.

Theorem 2.4. Assume that (H) holds and 0 ≤ p(t) ≤ p1 < 1. Then (1.1) has an eventually positive
solution.

Proof. From the assumption (H), we can choose T0 ∈ T (T0 ≥ 1) large enough and positive
constants M3 and M4 which satisfy the condition

1 −M4 < p1 <
1 − 2M3

1 + 2M4
, (2.20)

such that
∫∞

T0

σ(s)q1(s)Δs ≤ p1 +M4 − 1
M4

,

∫∞

T0

σ(s)q2(s)Δs ≤ 1 − p1(1 + 2M4) − 2M3

2M4
,

∫∞

T0

σ(s)
[
q1(s) + q2(s)

]
Δs ≤ 3

(
1 − p1

)

4
,

|E(t) − e0| ≤
1 − p1
4

, t ≥ T0.

(2.21)

Furthermore, from (H) we see that there exists T1 ∈ T with T1 > T0 such that τi(t) ≥
T0, i = 0, 1, 2, for t ∈ [T1,∞]

T
.

Define the Banach space BC[T0,∞)
T
as in (2.1) and let

X = {x ∈ BC[T0,∞)
T
: M3 ≤ x(t) ≤ M4}. (2.22)

It is easy to verify that X is a bounded, convex, and closed subset of BC[T0,∞)
T
.
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Now we define two operators U and S as in Theorem 2.3 with p replaced by p1. The
rest of the proof is similar to that of Theorem 2.3 and hence omitted. The proof is complete.

Theorem 2.5. Assume that (H) holds and −1 < −p2 ≤ p(t) ≤ 0. Then (1.1) has an eventually
positive solution.

Proof. From the assumption (H), we can choose T0 ∈ T (T0 ≥ 1) large enough and positive
constants M5 and M6 which satisfy the condition

2M5 + p2 < 1 < M6, (2.23)

such that

∫∞

T0

σ(s)q1(s)Δs ≤
(
1 − p2

)
(M6 − 1)

M6
,

∫∞

T0

σ(s)q2(s)Δs ≤ 1 − p2 − 2M5

2M6
,

∫∞

T0

σ(s)
[
q1(s) + q2(s)

]
Δs ≤ 3

(
1 − p2

)

4
,

|E(t) − e0| ≤
1 − p2
4

, t ≥ T0.

(2.24)

Furthermore, from (H) we see that there exists T1 ∈ T with T1 > T0 such that τi(t) ≥
T0, i = 0, 1, 2, for t ∈ [T1,∞]

T
.

Define the Banach space BC[T0,∞)
T
as in (2.1) and let

X = {x ∈ BC[T0,∞)
T
: M5 ≤ x(t) ≤ M6}. (2.25)

It is easy to verify that X is a bounded, convex, and closed subset of BC[T0,∞)
T
.

Now we define two operators U and S as in Theorem 2.3 with p replaced by p2. The
rest of the proof is similar to that of Theorem 2.3 and hence omitted. The proof is complete.

We will give the following example to illustrate our main results.

Example 2.6. Consider the second-order delay dynamic equations on time scales

[
x(t) + p(t)x(τ0(t))

]ΔΔ +
1

tασ(t)
x(τ1(t)) − 1

tβσ(t)
x(τ2(t)) =

−(t + σ(t))
t2σ2(t)

, t ∈ [t0,∞)
T
,

(2.26)

where t0 > 0, α > 1, β > 1, τi(t) ∈ Crd(T,T), τi(t) ≤ t, limt→∞τi(t) = ∞, i = 0, 1, 2, |p(t)| ≤
p < 1/3. Then q1(t) = 1/(tασ(t)), q2(t) = 1/(tβσ(t)), e(t) = −(t + σ(t))/(t2σ2(t)). Let E(t) =∫ t
t0
(1/s2)Δs. It is easy to see that the assumption (H) holds. By Theorem 2.3, (2.26) has an

eventually positive solution.
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USA, 2003.

[5] L. Erbe, “Oscillation results for second-order linear equations on a time scale,” Journal of Difference
Equations and Applications, vol. 8, no. 11, pp. 1061–1071, 2002.

[6] S. H. Saker, “Oscillation criteria of second-order half-linear dynamic equations on time scales,” Journal
of Computational and Applied Mathematics, vol. 177, no. 2, pp. 375–387, 2005.

[7] T. S. Hassan, “Oscillation criteria for half-linear dynamic equations on time scales,” Journal of
Mathematical Analysis and Applications, vol. 345, no. 1, pp. 176–185, 2008.

[8] R. P. Agarwal, M. Bohner, and S. H. Saker, “Oscillation of second order delay dynamic equations,”
The Canadian Applied Mathematics Quarterly, vol. 13, no. 1, pp. 1–17, 2005.

[9] B. G. Zhang and Z. Shanliang, “Oscillation of second-order nonlinear delay dynamic equations on
time scales,” Computers & Mathematics with Applications, vol. 49, no. 4, pp. 599–609, 2005.
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[23] M. R. S. Kulenović and S. Hadžiomerspahić, “Existence of nonoscillatory solution of second order
linear neutral delay equation,” Journal of Mathematical Analysis and Applications, vol. 228, no. 2, pp.
436–448, 1998.

[24] Z.-Q. Zhu and Q.-R. Wang, “Existence of nonoscillatory solutions to neutral dynamic equations on
time scales,” Journal of Mathematical Analysis and Applications, vol. 335, no. 2, pp. 751–762, 2007.

[25] Y. S. Chen, “Existence of nonoscillatory solutions of nth order neutral delay differential equations,”
Funkcialaj Ekvacioj, vol. 35, no. 3, pp. 557–570, 1992.


	1. Introduction
	2. Main Results
	Acknowledgments
	References

