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1. Introduction

We consider the second-order half-linear difference equation

Δ(rkΦ(Δxk)) + ckΦ(xk+1) = 0, Φ(x) := |x|p−2x, p > 1, (1.1)

where r, c are real-valued sequences and rk > 0, and we investigate properties of its recessive
solution.

Qualitative theory of (1.1) was established in the series of the papers of R̆ehák [1–5]
and it is summarized in [6, Chapter 3]. It was shown there that the oscillation theory of (1.1)
is very similar to that of the linear equation

Δ(rkΔxk) + ckxk+1 = 0, (1.2)

which is the special case p = 2 in (1.1). We will recall basic facts of the oscillation theory of
(1.1) in the following section.
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The concept of the recessive solution of (1.1) has been introduced in [7]. There are
several attempts in literature to find a summation characterization of this solution, see [8]
and also related references [9, 10], which are based on the asymptotic analysis of solutions of
(1.1). However, this approach requires the sign restriction of the sequence ck and additional
assumptions on the convergence (divergence) of certain infinite series involving sequences r
and c, see Proposition 2.1 in the following section. Here we use a different approach which is
based on estimates for a certain nonlinear function which appears in the Picone-type identity
for (1.1).

The recessive solution of (1.1) is a discrete counterpart of the concept of the principal
solution of the half-linear differential equation

(
r(t)Φ

(
x′))′ + c(t)Φ(x) = 0, (1.3)

which attracted considerable attention in recent years, we refer to the work in [11–15] and
the references given therein.

Let us recall the main result of [11] whose discrete version we are going to prove in
this paper.

Proposition 1.1. Let x̃ be a solution of (1.3) such that x̃′(t)/= 0 for large t.

(i) Let p ∈ (1, 2]. If

I(x̃) :=
∫∞ dt

r(t)x̃2(t)|x̃′(t)|p−2
= ∞, (1.4)

then x̃ is the principal solution of (1.3).

(ii) If p ≥ 2 and I(x̃) < ∞, then x̃ is not the principal solution of (1.3).

The paper is organized as follows. In Section 2 we recall elements of the oscillation
theory of (1.1). Section 3 is devoted to technical statements which we use in the proofs of
our main results which are presented in Section 4. Section 5 contains formulation of open
problems in our research.

2. Preliminaries

Oscillatory properties of (1.1) are defined using the concept of the generalized zero which is
defined in the same way as for (1.2), see, for example, [6, Chapter 3],or [16, Chapter 7]. A
solution x of (1.1) has a generalized zero in an interval (m,m + 1] if xm /= 0 and xmxm+1rm ≤ 0.
Since we suppose that rk > 0 (oscillation theory of (1.1) generally requires only rk /= 0), a
generalized zero of x in (m,m + 1] is either a “real” zero at k = m + 1 or the sign change
between m and m + 1. However, (1.1) is said to be disconjugate in a discrete interval [m,n] if
the solution x of (1.1) given by the initial condition xm = 0, xm+1 /= 0 has no generalized zero
in (m,n + 1]. However, (1.1) is said to be nonoscillatory if there exists m ∈ N such that it is
disconjugate on [m,n] for every n > m and is said to be oscillatory in the opposite case.
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If x is a solution of (1.1) such that xk /= 0 in some discrete interval [m,∞), then wk =
rkΦ(Δxk/xk) is a solution of the associated Riccati type equation

Δwk + ck +wk

(

1 − rk

Φ
(
Φ−1(rk) + Φ−1(wk)

)

)

= 0, (2.1)

where Φ−1(x) = |x|q−2x is the inverse function ofΦ and q = p/(p − 1) is the conjugate number
to p. Moreover, if x has no generalized zero in [m,∞), thenΦ−1(rk)+Φ−1(wk) > 0, k ∈ [m,∞).
If we suppose that (1.1) is nonoscillatory, among all solutions of (2.1) there exists the so-
called distinguished solution w̃ which has the property that there exists an interval [m,∞)
such that any other solution w of (2.1) for which Φ−1(rk) + Φ−1(wk) > 0, k ∈ [m,∞), satisfies
wk > w̃k, k ∈ [m,∞). Therefore, the distinguished solution of (2.1) is, in a certain sense,
minimal solution of this equation near ∞, and sometimes it is called the minimal solution of
(2.1). If w̃ is the distinguished solution of (2.1), then the associated solution of (1.1) given by
the formula

x̃k =
k−1∏

j=m

[

1 + Φ−1
(

w̃j

rj

)]

(2.2)

is said to be the recessive solution of (1.1), see [7]. Note that in the linear case p = 2 a solution
x̃ of (1.2) is recessive if and only if

∞∑ 1
rkx̃kx̃k+1

= ∞. (2.3)

At the end of this section, for the sake of comparison, we recall the main results of
[8, 17], where summation characterizations of recessive solutions of (1.1) are investigated
using the asymptotic analysis of the solution space of (1.1).

Proposition 2.1. Let x be a solution of (1.1).

(i) Suppose that ck < 0, then x is the recessive solution of (1.1) if and only if

∞∑ 1

r
q−1
k xkxk+1

= ∞. (2.4)

(ii) Suppose that ck > 0,
∑∞ r

1−q
k

< ∞, and

∞∑
ckΦ

⎛

⎝
∞∑

j=k+1

r
1−q
j

⎞

⎠ < ∞. (2.5)
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If x is the recessive solution of (1.1), then

∞∑ 1

rkxkxk+1|Δxk|p−2
= ∞. (2.6)

(iii) Suppose that ck > 0,
∑∞ ck < ∞, and

∑∞ r
1−q
k

< ∞. Then x is the recessive solution if
and only if (2.4) holds.

In cases (i) and (iii), the previous proposition gives necessary and sufficient condition
for a solution x to be recessive. The reason why under assumptions in (i) or (iii) it is
possible to formulate such a condition is that there is a substantial difference in asymptotic
behavior of recessive and dominant solutions (i.e., solutions which are linearly independent
of the recessive solution). This difference enables to “separate” the recessive solution from
dominant ones and to formulate for it a necessary and sufficient condition (2.4). We refer to
[8, 17] and also to [9, 10] for more details.

3. Technical Results

Throughout the rest of the paper we suppose that (1.1) is nonoscillatory and h is its solution.
Denote

v∗
k := rkhk(Φ(hk) + Φ(Δhk)), Rk :=

2
q
rkhkhk+1|Δhk|p−2,

Gk := rkhkΦ(Δhk),

(3.1)

and define the function

H(k, v) := v + rkhk+1Φ(Δhk) − rk(v +Gk)|hk+1|p
Φ
(|hk|qΦ−1(rk) + Φ−1(v +Gk)

) . (3.2)

Lemma 3.1. Put

vk := |hk|p(wk − w̃k), (3.3)

where w̃k = rkΦ(Δhk/hk) is a solution of (2.1) andwk is any sequence satisfying rk +wk /= 0. Then
the following statements hold:

(i) wk is a solution of (2.1) if and only if vk is a solution of

Δvk +H(k, vk) = 0; (3.4)

(ii) H(k, v) ≥ 0 for v > −v∗
k with the equality if and only if v = 0;

(iii) rk +wk > 0 if and only if vk + v∗
k > 0;

(iv) let v be a solution of (3.4) and suppose that vm < 0 for some m ∈ N, that is, wm < w̃m,
then vm+1 > 0 if and only if vm + v∗

m < 0.
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Proof. The statements (i), (ii) are consequences of [18, Lemma 2.5].
(iii)We have

rk +wk = rk + |hk|−pvk + w̃k

= rk + |hk|−pvk + rkΦ
(
Δhk

hk

)

= |hk|−p[vk + rkhk(Φ(hk) + Φ(Δhk))]

= |hk|−p
(
vk + v∗

k

)
.

(3.5)

(iv)We have

vm+1 = vm −H(m,vm)

= rmhm+1

[
Φ(hm+1)(vm +Gm)

Φ
(|hm|qΦ−1(rm) + Φ−1(vm +Gm)

) −Φ(Δhm)

]

= rmhm+1

[
Φ(hm+1)wm

Φ
(
Φ−1(rm) + Φ−1(wm)

) −Φ(Δhm)

]

= rmhm+1Φ(hm)

[

Φ
(
hm+1

hm

)
wm

Φ
(
Φ−1(rm) + Φ−1(wm)

) −Φ
(
Δhm

hm

)]

=
rmhm+1Φ(hm)

Φ
(
Φ−1(rm) + Φ−1(wm)

)

×
[

Φ

(
hm+1Φ−1(wm)

hm

)

−Φ
(
Δhm

hm

)

Φ
(
Φ−1(rm) + Φ−1(wm)

)
]

.

(3.6)

Denote by A the expression in brackets, then

sgn A = sgn

[
hm+1Φ−1(wm)

hm
−
(
hm+1

hm
− 1

)(
Φ−1(rm) + Φ−1(wm)

)
]

= sgn

[

Φ−1(rm) + Φ−1(wm) − (hm + Δhm)Φ−1(rm)
hm

]

= sgn
[
Φ−1(wm) −Φ−1(w̃m)

]
= sgn vm = −1.

(3.7)

Consequently,

vm+1 > 0 ⇐⇒ Φ−1(rm) + Φ−1(wm) < 0, (3.8)

that is, the statement holds according to the statement (iii) of this lemma.
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Lemma 3.2. Let v∗, R,G,H be defined by (3.1), (3.2) and suppose that hkΔhk < 0 for large k. Then
one has the following inequalities for large k.

If p ∈ (1, 2], then v∗
k
≤ Rk and

v −H(k, v) ≤ Rkv

Rk + v
for v ∈ (−v∗

k, 0
]
. (3.9)

If p ≥ 2, then v∗
k
≥ Rk and

v −H(k, v) ≥ Rkv

Rk + v
for v ∈ (−Rk, 0]. (3.10)

Proof. We have (with using the Lagrange mean value theorem)

v∗
k = rkhk(Φ(hk) + Φ(Δhk))

= rkhkΦ(hk+1)
[

Φ
(

hk

hk+1

)

−Φ
(

−Δhk

hk+1

)]

= rkhkΦ(hk+1)Φ′(ξ),

(3.11)

where −Δhk/hk+1 ≤ ξ ≤ hk/hk+1 and hence ξ ≥ |Δhk/hk+1|.
Thus, if p ∈ (1, 2],

v∗
k =

(
p − 1

)
rkhkΦ(hk+1)|ξ|p−2 ≤

(
p − 1

)
rkhkΦ(hk+1)

∣
∣
∣
∣
Δhk

hk+1

∣
∣
∣
∣

p−2

=
1

q − 1
rkhkhk+1|Δhk|p−2 ≤ Rk,

(3.12)

and in the case p ≥ 2, we obtain

v∗
k ≥ Rk. (3.13)

Next we proceed similarly as in [18, Lemma 2.6]. Inequalities (3.9), (3.10) can be written in
the equivalent forms:

(Rk + v)H(k, v) ≥ v2, v ∈ (−v∗
k, 0

]
for p ∈ (1, 2], (3.14)

(Rk + v)H(k, v) ≤ v2, v ∈ (−Rk, 0] for p ≥ 2. (3.15)
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Denote F(k, v) := (Rk + v)H(k, v) − v2 and let v > −v∗
k. Then

Hv(k, v) = 1 − r
q

k |hk|q|hk+1|p
(|hk|qΦ−1(rk) + Φ−1(v +Gk)

)p ,

Hvv(k, v) =
qr

q

k |hk|q|hk+1|p|v +Gk|q−2
(|hk|qΦ−1(rk) + Φ−1(v +Gk)

)p+1 ,

Hvvv(k, 0) =
q

r2kh
2
kh

2
k+1(Δhk)

2p−3
[(
q − 2

)
hk+1 −

(
2q − 1

)
Δhk

]
.

(3.16)

Consequently, F(k, 0) = Fv(k, 0) = Fvv(k, 0) = 0 and

Fvvv(k, 0) = RkHvvv(k, 0) + 3Hvv(k, 0)

=
2

rkhkhk+1Φ(Δhk)
[(
q − 2

)
hk+1 −

(
2q − 1

)
Δhk

]
+

3q

rkhkhk+1|Δhk|p−2

=
1

rkhkhk+1Φ(Δhk)
[
2
(
q − 2

)
(hk + Δhk) +

(
2 − q

)
Δhk

]

=
q − 2

rkhkhk+1Φ(Δhk)
[hk + hk + Δhk]

=
q − 2

rkhkhk+1Φ(Δhk)
[hk + hk+1].

(3.17)

Hence, in view of the assumption hkΔhk < 0, sgn Fvvv(k, 0) = − sgn(q − 2). It follows that

sgn F(k, v) = sgn Fvv(k, v) = sgn
(
q − 2

)
(3.18)

in some left neighborhood of v = 0, and the function F is positive, decreasing, and convex for
p ∈ (1, 2], and is negative, increasing, and concave for p > 2 (with respect to v). Hence, both
the inequalities (3.14) and (3.15) are satisfied in some left neighborhood of v = 0. The proof
will be completed by showing that Fvv(k, v) has constant sign on the given intervals. By a
direct computation,

Fvv(k, v) = 2Hv(k, v) + (Rk + v)Hvv(k, v) − 2

= − 2rqk |hk|q|hk+1|p
(|hk|qΦ−1(rk) + Φ−1(v +Gk)

)p +
qr

q

k |hk|q|hk+1|p|v +Gk|q−2(Rk + v)
(|hk|qΦ−1(rk) + Φ−1(v +Gk)

)p+1

=
r
q

k |hk|q|hk+1|p
(|hk|qΦ−1(rk) + Φ−1(v +Gk)

)p+1A(k, v),

(3.19)
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where

A(k, v) := −2|hk|qΦ−1(rk) − 2Φ−1(v +Gk) + q|v +Gk|q−2(Rk + v)

=
(
q − 2

)
Φ−1(v +Gk) + q(Rk −Gk)|v +Gk|q−2 − 2|hk|qΦ−1(rk).

(3.20)

Hence

sgn A(k, v) = sgn Fvv(k, v) for v > −v∗
k, (3.21)

and from (3.18)

sgn A(k, v) = sgn
(
q − 2

)
(3.22)

in some left neighborhood of v = 0.
Moreover, for v < 0

Av(k, v) =
(
q − 2

)
sgn (v +Gk)|v +Gk|q−3

[(
q − 1

)
(v +Gk) + q(Rk −Gk)

]

= −(q − 2
)|v +Gk|q−3

[(
q − 1

)
v −Gk + qRk

]
,

(3.23)

and Av(k, v) = 0 (for v < 0) if and only if

v = ṽk :=
1

q − 1
(
Gk − qRk

)
= − 1

q − 1
rkhk|Δhk|p−2(hk + hk+1). (3.24)

Next we distinguish between the cases p ∈ (1, 2] and p ≥ 2.
If p ∈ (1, 2], then using (3.12),

ṽk ≤ − 1
q − 1

rkhkhk+1|Δhk|p−2 ≤ −v∗
k, (3.25)

hence A(k, v) is decreasing on (−v∗
k, 0) and in view of (3.22) it means that A(k, v) and

consequently from (3.21) also Fvv(k, v) is positive for v ∈ (−v∗
k, 0). Hence, (3.14) holds.

Similarly, if p ≥ 2, then

ṽk ≤ − 1
q − 1

rkhkhk+1|Δhk|p−2 ≤ −Rk, (3.26)

hence A(k, v) is increasing for v ∈ (−Rk, 0) and from (3.22) we have that A(k, v) and hence
also Fvv(k, v) is negative for v ∈ (−Rk, 0). This means that (3.15) is satisfied.
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4. Main Results

Theorem 4.1. Suppose p ∈ (1, 2] and let h be a solution of (1.1) such that hkΔhk < 0 for large k. If

∞∑ 1

rkhkhk+1|Δhk|p−2
= ∞, (4.1)

then h is the recessive solution.

Proof. Denote by w̃k = rkΦ(Δhk/hk) the associated solution of (2.1) and let wk be a solution
of (2.1) generated by another solution (linearly independent of h) of (1.1). Then, it follows
from Lemma 3.1 that vk = |hk|p(wk − w̃k) is a solution of (3.4), that is,

vk+1 = vk −H(k, vk), (4.2)

and suppose that this solution satisfies the condition vN < 0. This means that wN < w̃N and
to prove that h is the recessive solution of (1.1), we need to show that there existsm ≥ N such
that rm +wm ≤ 0, that is, according to Lemma 3.1, vm + v∗

m ≤ 0. Suppose by contradiction that
vk + v∗

k > 0 for k ≥ N. According to Lemma 3.1 (iv), it means that vk < 0 for k ≥ N, that is,
vk ∈ (−v∗

k, 0). Then we have from Lemma 3.2 that vk + Rk > 0 and

vk+1 ≤ Rkvk

Rk + vk
for k ≥ N. (4.3)

Next, consider the equation

uk+1 =
Rkuk

Rk + uk
, (4.4)

and let uk be its solution satisfying uN = vN . However, (4.4) is equivalent to

−Δuk =
u2
k

Rk + uk
, (4.5)

that is,

− Δuk

ukuk+1
=

uk

uk+1(Rk + uk)
=

1
Rk

, (4.6)

where we have substituted for uk+1 from (4.4) in the denominator. Hence

1
uk+1

=
1
uk

+
1
Rk

, (4.7)
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and we obtain

uk =
1

1/uN +
∑k−1

j=N
(
1/Rj

) . (4.8)

Condition (4.1) implies that there exists m ≥ N such that um < 0 and either um+1 > 0 or um+1

is not defined. This means that Rm + um ≤ 0 (from (4.4)). On the other hand, (4.3) together
with (4.4) and the fact that Rkx/(Rk + x) is increasing with respect to x on (−v∗

k
, 0) imply

that vk ≤ uk for k ≥ N. Since vk + Rk > 0 for k ≥ N, we have uk + Rk > 0 for k ≥ N,
a contradiction.

Theorem 4.2. Suppose p ≥ 2 and let h be a solution of (1.1) such that hkΔhk < 0 for large k. If

∞∑ 1

rkhkhk+1|Δhk|p−2
< ∞, (4.9)

then h is not the recessive solution.

Proof. Similarly, as in the proof of Theorem 4.1, denote w̃k = rkΦ(Δhk/hk) and let wk be a
solution of (2.1) generated by another solution (linearly independent of h) of (1.1). Then
vk = |hk|p(wk − w̃k) is a solution of (3.4), that is,

vk+1 = vk −H(k, vk), (4.10)

and suppose that this solution satisfies the condition vN < 0, |vN | being sufficiently small
(will be specified later). Hence wN < w̃N and we have to show that rk + wk > 0 for k ≥ N,
that is, vk + v∗

k > 0 for k ≥ N.
Let uk be a solution of (4.4) and suppose that uN = vN . Hence, similarly as in the proof

of Theorem 4.1, we obtain

uk =
1

1/uN +
∑k−1

j=N
(
1/Rj

) . (4.11)

If |uN | is sufficiently small, then condition (4.9) implies that uk < 0 for k ≥ N and from (4.4),
we have Rk + uk > 0 for k ≥ N. Consequently, from Lemma 3.2 we obtain that v∗

k
≥ Rk and

uk −H(k, uk) ≥ Rkuk

Rk + uk
= uk+1 for k ≥ N. (4.12)

Moreover, since x −H(k, x) is increasing with respect to x on (−Rk, 0), we obtain from (4.12)
that vk ≥ uk for k ≥ N.Hence Rk + vk > 0 for k ≥ N and hence also v∗

k
+ vk > 0 for k ≥ N.

5. Applications and Open Problems

(i)Theorems 4.1 and 4.2, as formulated in the previous section, apply only to positive
decreasing (or negative increasing) solutions of (1.1). The reason is that we have been able to
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prove inequalities (3.9), (3.10) only when G = rhΦ(Δh) < 0. We conjecture that Theorems 4.1
and 4.2 remain to hold for every solution of (1.1) for which Δhk /= 0 for large k. To justify this
conjecture, consider the function

Fk(v) = H(k, v)/v(v −H(k, v)). (5.1)

By an easy computation one can find that inequalities (3.9), (3.10) are equivalent to the
inequalities

Fk(v) ≥ 1
Rk

, p ∈ (1, 2], Fk(v) ≤ 1
Rk

, p ∈ [2,∞). (5.2)

However, if Gk > 0, that is, −Gk < 0, we have

Fk(−Gk) =
1

rkhkhk+1|Δhk|p−2
=

2
qRk

, (5.3)

so inequalities (3.9), (3.10) are no longer valid in this case. Numerical computations together
with a closer examination of the graph of the function F lead to the following conjecture.

Conjecture 5.1. Let hk, hk+1 > 0, Δhk /= 0, and R∗
k

:= (q − 1)rkhkhk+1|Δhk|p−2. Then for v ∈
(−v∗

k,∞) one has

Fk(v) ≥ 1
R∗

k

for p ∈ (1, 2], Fk(v) ≤ 1
R∗

k

for p ∈ [2,∞). (5.4)

To explain this conjecture in more details, consider the case p ∈ (1, 2], the case p ≥ 2
can be treated analogically. We have (we skip the index k, only indices different from k are
written explicitly)

F(∞) := lim
v→∞

F(v) = 1
rhk+1[Φ(hk+1) −Φ(Δh)]

=
1

rΦ(h)hk+1[Φ(hk+1/h) −Φ(Δh/h)]

=

(
q − 1

)|ξ|2−p
rΦ(h)hk+1

,

(5.5)

where Δh/h ≤ ξ ≤ hk+1/h. If Δh > 0, the direct substitution yields

F(∞) ≥
(
q − 1

)

rhhk+1|Δh|p−2
≥ 1

(
q − 1

)
rhhk+1|Δh|p−2

=
1
R∗ . (5.6)
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If Δh < 0, then |Δh| < h and we proceed as follows. For p ∈ (1, 2], the function Φ is concave
for nonnegative arguments, so for x, y ≥ 0, we have the inequality

Φ
(
x + y

2

)

≥ 1
2
[
Φ(x) + Φ

(
y
)]
. (5.7)

We substitute x = hk+1/h, y = −Δh/h, then x + y = 1, that is, 22−p ≥ Φ(x) + Φ(y). Hence we
have

F(∞) =
1

rhk+1Φ(h)[Φ(hk+1/h) −Φ(Δh/h)]

≥ 1
22−prhk+1Φ(h)

=
|h|2−p

22−prhk+1h
.

(5.8)

Hence

F(∞) ≥ |h|2−p
22−prhk+1h

≥ |Δh|2−p
22−prhk+1h

. (5.9)

Next we prove that (q − 1) ≥ 22−p for p ∈ (1, 2]. Denote t = q − 1 = 1/(p − 1), then we
need to prove the inequality g(t) := t − 2 · 2−1/t ≥ 0 for t ∈ [1,∞). A standard investigation of
the graph of the function t → 2 · 2−1/t shows that the required inequality really holds, so we
have

F(∞) ≥ 1
(
q − 1

)
rhk+1h|Δh|p−2

=
1
R∗ . (5.10)

By a similar computation we find that

F(0) = lim
v→ 0

F(v) = 1
R

≤ 1
R∗ , v∗ ≤ R∗,

F(−v∗+) = lim
v→−v∗+

F(v) = 1
v∗ ≥ 1

R∗
k

, F′(−v∗+) < 0,

F′(−G) < 0 if G < 0, F′(−G) > 0 if G > 0,

F′(0) < 0 if G < 0, F′(0) > 0 if G > 0.

(5.11)

These computations lead to the conjecture that F attains its global minimum at a point in
(−v∗,−G) if G > 0 and at a point in (−G,∞) if G < 0. Numerical computations suggest that
this minimum is 1/(crhhk+1|Δh|p−2), where 1 ≤ c ≤ q − 1.

Having proved inequalities (5.4), Theorems 4.1 and 4.2 could be proved for any
positive h with Δh/= 0 in the same way as in the previous section, it is only sufficient to
replace R = (2/q)rhhk+1|Δh|p−2 by R∗ = (q − 1)rhhk+1|Δh|p−2.
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(ii) A typical example of (1.1) to which Theorems 4.1 and 4.2 apply is (1.1)with

∞∑
r
1−q
k

< ∞, ck > 0,
∞∑
ck = ∞, (5.12)

since under these assumption all positive solutions of (1.1) are decreasing, see [19]. However,
one can apply indirectly Theorems 4.1 and 4.2 also to (1.1) with

∞∑
r
1−q
k

= ∞, ck > 0 (5.13)

(and
∑∞ ck < ∞, otherwise (1.1) would be oscillatory, see [16, Theorem 8.2.14] ), even if all

positive solutions of (1.1) are increasing in this case. The method which enables to overcome
this difficulty is the so-called reciprocity principle, which can be explained as follows.

Suppose that ck /= 0 in (1.1) and let uk := rkΦ(Δxk). Then by a direct computation one
can verify that u solves the so-called reciprocal equation:

Δ
(

1
Φ−1(ck)

Φ−1(Δuk)
)

+ r
1−q
k+1Φ

−1(uk+1) = 0. (5.14)

Moreover, if ck does not change its sign for large k, (1.1) is nonoscillatory if and only if (5.14) is
nonoscillatory, see [9]. The following statement relates recessive solutions of (1.1) and (5.14).
A similar statement can be found in [9], but our proof differs from that given in [9].

Theorem 5.2. Suppose that (1.1) is nonoscillatory and (5.12) or (5.13) holds. If a solution h of (1.1)
is recessive, then ũ := rΦ(Δh) is the recessive solution of (5.14).

Proof. First suppose that (5.13) holds and let w̃ = rΦ(Δh/h) be the distinguished solution of
(2.1). Assumption (5.13) implies that w̃k > 0 for large k, see [7]. The solution v of the Riccati
equation

vk+1 + r
1−q
k+1 −

c
1−q
k

vk

Φ−1(c−1
k

+ Φ(vk)
) = 0 (5.15)

associated with (5.14) is given by v = (c1−qΦ−1(Δu))/Φ−1(u) and we have the following
relationship between solutions of (5.15) and (2.1) (no index means again the index k):

v =
c1−qΦ−1(Δu)

Φ−1(u)
=

c1−qΦ−1(−cΦ(xk+1))
Φ−1(rΦ(Δx))

= − xk+1

Φ−1(r)Δx
= − x + Δx

Φ−1(r)Δx

= − 1 + Δx/x

Φ−1(r)(Δx/x)
= −1 + Φ−1(w)/Φ−1(r)

Φ−1(w)
= −Φ

−1(r) + Φ−1(w)
Φ−1(r)Φ−1(w)

.

(5.16)
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Since the function

x −→ −Φ
−1(r) + Φ−1(x)
Φ−1(r)Φ−1(x)

(5.17)

is increasing for x ∈ R\{0}, the inequality 0 < w̃k < wk for large k and for any solutionw/= w̃
of (2.1) implies the inequality 0 > vk > ṽk, where

ṽ =
c1−qΦ−1(Δũk)

Φ−1(ũk)
= −Φ

−1(r) + Φ−1(w̃)
Φ−1(r)Φ−1(w̃)

, (5.18)

and v is any other solution of (5.15). Consequently, ṽ is the distinguished solution of (5.15)
and hence ũ is the recessive solution of (5.14).

Now suppose that (5.12) holds. Then all solutions w of (2.1) satisfying rk +wk > 0 for
large k are negative (see [19]), that is, 0 > wk > w̃k. Then using the same argument as in the
first part of the proof we have 0 < ṽk < vk for large k for any solution v of (5.15), that is, ũ is
the recessive solution of (5.14).

(iii) In [18], we posed the question whether the sequence hk := k(p−1)/p is the recessive
solution of the difference equation

Δ(Φ(Δxk)) + ckΦ(xk+1) = 0, ck := −Δ(Φ(Δhk))
Φ(hk+1)

. (5.19)

Now we can give the affirmative answer to this question for p ≥ 2. It is shown in [18] that

uk := Φ(Δhk) =
(
p − 1
p

)p−1
k−(p−1)/p

[

1 +
p − 1
2pk

+ o
(
k−1

)]

,

ck =
γp

(k + 1)p
[
1 +O

(
k−1)] , γp :=

(
p − 1
p

)p

,

(5.20)

both as k → ∞. The sequence u is a solution of the equation

Δ
(
c
1−q
k Φ−1(Δuk)

)
+ Φ−1(uk+1) = 0, (5.21)

which is reciprocal to (5.19) and yk = hk+1 = (k + 1)(p−1)/p is a solution of the equation

Δ
(
Φ
(
Δyk

))
+ ck+1Φ

(
yk+1

)
= 0, (5.22)

which is reciprocal to (5.21) and differs from (5.19) only by the shift k → k+1 in the sequence
c. Since

∞∑(
c
1−q
k

)1−p
=

∞∑
ck < ∞, (5.23)
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assumption (5.12) is satisfied (with q, c1−q, and 1 instead of p, r, and c, resp.), hence positive
solutions of (5.21) are decreasing, that is, Theorems 4.1 and 4.2 apply to this case. By a direct
computation, we have

c
1−q
k ukuk+1|Δuk|q−2 ∼ k−p(1−q)k−2(p−1)/pk(−2p+1)(q−2)/p = k. (5.24)

This means, by Theorem 4.1, that if q ∈ (1, 2], then u is the recessive solution of (5.21)
and hence yk = hk+1 is the recessive solution of (5.22). Consequently, hk = k(p−1)/p is the
recessive solution of (5.19) if p ≥ 2.
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