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1. Introduction

The stability problem of functional equations is originated from a question of Ulam [1]
concerning the stability of group homomorphisms. Hyers [2] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by
Aoki [3] for additive mappings and by Rassias [4] for linear mappings by considering an
unbounded Cauchy difference. The paper of Rassias [4] has provided a lot of influence in the
development of what we call generalized Hyers-Ulam stability or as Hyers-Ulam-Rassias stability
of functional equations. A generalization of the Rassias theorem was obtained by Gavruta [8]
by replacing the unbounded Cauchy difference by a general control function in the spirit of
Rassias” approach (see [2, 5-13]).
Jun and Kim [14] introduced and investigate the following functional equation:

f@x+y)+f(2x-y) =2f(x+y) +2f (x —y) +12f (x), (1.1)

and prove the generalized Hyers-Ulam stability for the functional equation (1.1). Obviously,
the function f(x) = x° satisfies the functional equation (1.1), which is called a cubic functional
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equation. Every solution of the cubic functional equation is said to be a cubic mapping. Jun and
Kim proved that a mapping f between two real vector spaces X and Y is a solution of (1.1) if
and only if there exists a unique mapping C : X x X x X — Y such that f(x) = C(x, x, x) for
all x € X; moreover, C is symmetric for each fixed one variable and is additive for fixed two
variables.

In [15], Park and Bae considered the following quartic functional equation:

fQx+y)+ f(2x-y) =4(f(x+y) + f(x—y)) +24f (x) = 6f (). (1.2)

In fact, they proved that a mapping f between two real vector spaces X and Y is a solution of
(1.2) if and only if there exists a unique symmetric multi-additive mapping B : XxXxXxX —
Y such that f(x) = B(x,x,x,x) for all x (see [7, 11]). It is easy to show that the function
f(x) = x* satisfies the functional equation (1.2), which is called a quartic functional equation.
Every solution of the quartic functional equation is said to be a quartic mapping.

In this paper, we aim to deal with the next functional equation derived from additive,
cubic, and quadric mappings,

T[f(x+2y) + f(x-2y)]

(1.3)
=44[f(x+y) + f(x - y)] +12f (By) - 48f (2y) + 60f (y) — 66f (x).

It is easy to show that the function f(x) = ax + bx® + cx* satisfies the functional equation
(1.3). We establish the general solution and prove the generalized Hyers-Ulam stability for
the functional equation (1.3).

2. An Additive-Cubic-Quartic Functional Equation

Throughout this section, X and Y will be real vector spaces. Before proceeding the proof of
Theorem 2.4 which is the main result in this section, we shall need the following two lemmas.

Lemma 2.1. If an even mapping f : X — Y satisfies (1.3), then f is quartic.

Proof. Putting x = y = 01in (1.3), we get f(0) = 0. Setting x = 0 in (1.3), by the evenness of f,
we obtain

6f(3y) =35f(2y) - 74f (v) (2.1)
for all y € X. Hence (1.3) can be written as
flr+2y) + f(x-2y) =4[f(x+y) + f(x - )] +2f (2y) - 8f (y) - 6f(x) (22)
for all x,y € X. Replacing x by v in (1.3), we obtain

fQBy) =4f(Q2y) +17f(y) (2.3)
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for all y € X. By (2.1) and (2.3), we obtain
f(2y) =16f(y) (24)

for all y € X. According to (2.4), (2.2) can be written as
flx+2y) + f(x-2y) =4f(x+y) +4f (x —y) +24f (y) -6 (%) (2.5)

for all x, y € X. This shows that f is quartic, which completes the proof of the lemma. O
Lemma 2.2. If an odd mapping f : X — Y satisfies (1.3), then f is cubic-additive.

Proof. We show that the mappings g : X — Y and h : X — Y, respectively, defined by
g(x) == f(2x) = 8f(x) and h(x) := f(2x) — 2f(x), are additive and cubic, respectively.
Since f is odd, f(0) = 0. Letting x = 0 in (1.3), we obtain

fBy) =4f(2y) -5f(v) (2.6)

for all y € X. Hence (1.3) can be written as

flr+2y) + f(x-2y) =4[f(x+y) + f(x-y)] -6f(x) (2.7)
for all x,y € X. Replacing x, y by x + y and x — y in (2.7), respectively, we get

fBx-y) - f(x-3y) =-6f(x+y)+4f(2x) +4f(2y) (2.8)
for all x,y € X. Replacing x by x + v in (2.7), we obtain

flx+3y) + f(x-y) =4f(x+2y) -6f(x +y) +4f (%) (2.9)
for all x,y € X. Replacing y by —y in (2.9), we get

flx=3y) + f(x+y) =4f(x-2y) -6f(x—y) +4f (%) (2.10)
for all x,y € X. Replacing x by y and by x in (2.9), we get

f@x+y)—flx-y) =4f(2x+y) -6f(x+y) +4f(v) (2.11)
for all x,y € X. Replacing —y by v in (2.11), we get

fBx-y) - f(x+y) =4f(2x-y) -6f(x-y) -4f(y) (2.12)

forall x,y € X.
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Subtracting (2.12) from (2.10), we obtain

fBx-y) - f(x-3y) =4f(2x - y) - 4f (x - 2y) +2f (x +y) —4f (x) = 4f (v)

for all x, y € X. By (2.8) and (2.13), we obtain
f(x=2y) = fQx-y) +2f (x+y) - f(2x) = f(2y) - f(x) = f(y)

forall x,y € X.
Replacing y by —y in (2.14), we get

flx+2y) = f(2x+y) +2f (x —y) - f(2x) + f(2y) - f(x) + f(y)

forall x,y € X.
By (2.14) and (2.15), we obtain

f(x+2y) + f(x-2y)
=f@2x+y)+f(2x-y) +2f(x+y) +2f (x —y) - 2f (2x) - 2f (x)

forall x,y € X.
By (2.7) and (2.16), we have

fQx+y)+f(2x-y) =2f(x+y) +2f(x —y) +2f (2x) - 4f (x)
for all x,y € X. Replacing y by x + v in (2.17), we get
fGx+y)+f(x-y) =2f(2x+y) - 2f(y) + 2f (2x) - 4f (x)
for all x,y € X. Replacing x, y by v, x in (2.18), respectively, we get
fx+3y) - f(x—y) =2f(x+2y) -2f(x) + 2 (2y) - 4f (y)

forall x,y € X.
By (2.18) and (2.19), we obtain

fBx+y) + f(x+3y)
=2f(2x+y) +2f (x +2y) + 2f (2x) + 2f (2y) — 6f (x) = 6f (y)

for all x, y € X. Replacing x, y by x + y, x — y in (2.17), respectively, we get

fBx+y)+ f(x+3y) =2f(2x+2y) —4f (x+y) +2f (2x) + 2f (2y)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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for all x,y € X. Thus it follows from (2.20) and (2.21) that
fQx+y)+ f(x+2y) = f(2x+2y) = 2f (x +y) +3f(x) + 3f (y)
for all x,y € X. Replacing x by x —  in (2.22), we obtain
fx-y)+ f(x+y) =3f(x-y) + f(2x) - 2f(x) +3f ()
for all x,y € X. Replacing x, y by v, x in (2.23), respectively, we get
fQy-x)+f(x+y) =3f(y—x) + f(2y) -2f (y) +3f (x)
for all x,y € X. By (2.23) and (2.24), we obtain
fQx-y)+fQy-x)==2f(x+y)+ f(x)+ f(y) + f2x) + f(2y)
for all x,y € X. Adding (2.22) to (2.25) and using (2.17), we get
f(2x+2y) =8f(x+y) = [f2x) -8f ()] + [f(2y) - 8f (v)]
for all x,y € X. The last equality means that
glx+y) =g(x)+g(y)

for all x, y € X. Thus the mapping g : X — Y is additive.
Replacing x, y by 2x, 2y in (2.17), respectively, we get

fdx +2y) + f(4x-2y) =2f (2x + 2y) + 2f (2x = 2y) + 2f (4x) — 4 (2x)
for all x, y € X. Since g(2x) = 2g(x) forall x € X,
f(4x) =10f(2x) —16f (x)
for all x, y € X. Hence it follows from (2.17) and (2.28) that

h@x+y) + h@x—y) = [f(2(2x +1)) -2 (2x +9)] + [F2(2x ~¥)) ~2f (2~ )]
= 2[f(2(x +9)) ~2f (x + )]
F20F (x - ) - 2f (x - )] + 12[f(22) ~ 2 (x)]
=2h(x+y) +2h(x - y) + 12h(x)

for all x, y € X. Thus the mapping h: X — Y is cubic.

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)
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On the other hand, we have f(x) = (1/6)h(x) — (1/6)g(x) for all x € X. This means
that f is cubic-additive. This completes the proof of the lemma. O

The following is suggested by an anonymous referee.

Remark 2.3. The functional equation (1.3) is equivalent to the functional equation

11f(x+2y) +11f(x-2y) —44f (x+y) —44f (x —y) + 66f (x)

=12f(3y) - 48f(2y) + 60f ().

(2.31)

The left hand side is even with respect to i and the right hand side is odd by the assumption
of Lemma 2.2. Thus

11f(x+2y) +11f (x - 2y) -44f (x+y) —44f (x —y) +66f (x) = 0. (2.32)

So we conclude that f(x) = A(x) + C(x, x, x), as desired.

Theorem 2.4. If a mapping f : X — Y satisfies (1.3) for all x,y € X, then there exist a unique
additive mapping A : X — Y, a unique mapping C : X x X x X — Y, and a unique symmetric
multi-additive mapping Q : X x X x X x X — Y such that f(x) = A(x) +C(x,x,x) +Q(x, x,x,x)
forall x € X, and that C is symmetric for each fixed one variable and is additive for fixed two variables.

Proof. Let f satisfy (1.3). We decompose f into the even part and the odd part by setting

fol) = 3 (O + Fo0), fol) = 3(F0) = f(=), (233)
for all x € X. By (1.3), we have
1[fe(x+2y) + fe(x - 2y)]
= %[11f(x+2y) +11f (—x - 2y) +11f (x - 2y) + 11 (-x + 2y)]
= S [ G+ 2y) 117 (2= 29)] + 3 [11f (x + (-29)) + 11 (- - (-29))]
= 2[4 (x+y) + f(x~y)) +12f (3y) ~ 48 (2y) + 605 () - 66 ()]

+ 3B (-2 = y) + f(~x - (-9))) + 12 (-3y) ~ 48 (-2y) + 60f (~y) - 66 (-]
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- 4[5 + fx=y) 5 (FCxe) + fx=))

F12[3 (6w + F-an))| - 38 [3 (2 + £ -20)

+60[ 3w + £ -9)] -6 3 + f-)|

= 44[fe(x +y) + fe(x - y)] +12£e(3y) - 48/ (2y) +60fc(y) - 66fc(x)

(2.34)

for all x, y € X. This means that f, satisfies (1.3). Similarly we can show that f, satisfies (1.3).
By Lemmas 2.1 and 2.2, f. and f, are quartic and cubic-additive, respectively. Thus there exist
a unique additive mapping A : X — Y, a unique mapping C : X x X x X — Y, and a unique
symmetric multi-additive mapping Q : X x X x X xX — Y such that f.(x) = Q(x, x, x, x) and
that f,(x) = A(x) +C(x, x, x) for all x € X, and C is symmetric for each fixed one variable and
is additive for fixed two variables. Thus f(x) = A(x) + C(x, x,x) + Q(x, x, x, x) for all x € X,
as desired. O

3. Stability of an Additive-Cubic-Quartic Functional Equation

We now investigate the generalized Hyers-Ulam stability problem of the functional equation
(1.3). From now on, let X be a real vector space and let Y be a Banach space. Now before
taking up the main subject, given f : X — Y, we define the difference operator Dy : X x X —
Y by

Dy(x,y) = 11[f (x+2y) + f(x = 2y)] - 44[f (x + ) + f(x - y)]

(3.1)
—12f(3y) +48f(2y) - 60f (y) + 66f (x)
for all x, y € X. We consider the following functional inequality:
1D (x )| < ¢(x ), (3.2)

for an upper bound ¢ : X x X — [0, 00).

Theorem 3.1. Let s € {1,-1} be fixed. Suppose that an even mapping f : X — Y satisfies f(0) =0
and

1Df (x, ) || < ¢(x,y) (3.3)

forall x,y € X. If the upper bound ¢ : X x X — [0, o0) is a function such that

< (3.4)

gzﬁf [qb (27, 27y ) + %(i)(O, 27ix)
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and that lim,, _, ,16°"$(27%"x,27°"x) = 0 for all x,y € X, then the limit

Q(x) = lim 16 £ (2"*"x) (35)

exists for all x € X, and Q : X — Y is a unique quartic mapping satisfying (1.3) and

0

lf)-Quf< 3 167 %d)(Z‘Six,Z"Six) +¢(o,2-six)] (3.6)

i=(s+1)/2

forallx € X.

Proof. Putting x = 0 in (3.3), we obtain
[I-12f (3y) +70f (2y) - 148f (¥) || < $(0. %) (3.7)
for all y € X. On the other hand, replacing y by x in (3.3), we get

- (By) +4f(2y) +17f (W)l < ¢(v. v) (3.8)

for all y € X. By (3.7) and (3.8), we get

1 (29) - 165 )1 < -0, y) +$(0.) 39)

for all y € X. Replacing y by x/2in (3.9), we get

lre-167(3)] < 2o(53) +9(0.) (3.10)

for all x € X. It follows from (3.10) that

|reo-164(3)

n-1
|6 x X x
for all x € X. It follows from (3.11) that
n-1
mai| © x x x
) < 216 : [ﬁ¢(2m+i+1’ 2m+i+1> + (I)(O’ 2m+i+1>]
~ m+n-1 ; 6 x x x
= _216 ﬁ¢ ﬁ,ﬁ +¢ O,F

X

161 (55) - 16" (55)

(3.12)

for all x € X.
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This shows that {16” f(x/2")} is a Cauchy sequence in Y. Since Y is complete, the
sequence {16" f(x/2")} converges. We now define Q : X — Y by

Q(x) = lim 16"f () (3.13)

n— oo

for all x € X. It is clear that (3.6) holds, and Q(-x) = Q(x) for all x € X. By (3.3), we have

IDo(x, )| = lim 16"

Dy(50 2{)” < lim 16"¢(2ﬁn,21n> -0 (3.14)

n— oo

for all x, y € X. Hence by Lemma 2.1, Q is quartic.

It remains to show that Q is unique. Suppose that there exists a quartic mapping Q' :
X — Y which satisfies (1.3) and (3.6). Since Q(2"x) = 16"Q(x) and Q'(2"x) = 16"Q'(x) for
all x € X, we conclude that

[Q(x) - Q'(x)]| = 16

|+16"

Q(3:)-2(5)
Q) - f(5) Q(5) - F(G)| (3.15)

= |6 x x x
< 2_2016n+1 ﬁ¢<2n+i+l ! on+itl ) + 4) (0’ on+i+l >]
i=

for all x € X. By taking n — oo in this inequality, we have Q(x) = Q'(x) for all x € X, which
gives the conclusion for the case s = 1. Let s = —1. Then by (3.9), we have

<16"

‘ He - fe )" =16 (114’(’“ )+ 90, x)> 10

for all x € X. Replacing x by 2x in (3.16) and dividing by 16, we get

4 2
'f§6_§) f (16X) _162<%¢(2x,2x)+¢(0,2x)> (3.17)

for all x € X. By (3.16) and (3.17), we obtain

Jre 162

(l X £>¢(2x 2x) + ¢(0,x) T (j)(O 2x)] (3.18)

- 16 114)( 16

for all x € X. It follows from (3.18) that

@) 11_6 <nz:116‘i [%(ﬁ(Zix, 2x) + (0, zix)] > (3.19)
i=0

|7 - L5
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for all x € X. Dividing both sides of (3.19) by 16™ and then replacing x by 2"x, we get

” F@™)  f@m)

1n 1 B
o T < 6216 m—i 11¢<2m+1x 2m+l >+¢<0 2m+l >]

1 m+n-1

76 2 167 %d)(Zix, 2ix) + ¢<o,2ix)]

(3.20)

for all x € X. By taking m — oo in (3.20), {167 f(2"x)} is a Cauchy sequence in Y. Then
Q(x) :=1lim, 167 f(2"x) exists for all x € X. It is easy to see that (3.6) holds for s = -1.
The rest of the proof is similar to the case s = 1. O

Theorem 3.2. Suppose that an odd mapping f : X — Y satisfies

I1Ds (x, y)|| < ¢(x,v) (3.21)

forall x,y € X. If the upper bound ¢ : X x X — [0, o0) is a function such that

S2[o(5 ) o(05)] <= o2

and that lim,, _, ,2"¢(x/2",y/2") = 0 for all x,y € X, then the limit

A(x) = lim 2" [f<2n 1) 8f<2in)] (3.23)

exists forall x € X and A : X — Y is a unique additive mapping satisfying (1.3) and

X x
[1£(2) = 8f(x) - A)|| < 7. Z ¢< 2 zlﬂ) 322 ¢( ' o ) (3.24)
forall x € X.
Proof. Set x = 0in (3.21). Then by the oddness of f, we have

112 (By) —48f (2y) +60f (y) || < $(0, ) (3.25)

for all y € X. Replacing x by 2y in (3.21), we obtain

111 (4y) - 56f (3y) + 114f (2y) - 104f ()| < $(2y, v) (3.26)

for all y € X. Combining (3.25) and (3.26) yields that

17 (4y) =107 (2y) + 165 ()| < 11 Py, y) + ¢(01y) (3.27)
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for all y € X. Putting i := x/2 and g(x) := f(2x) — 8f(x) for all x € X, we get

X

s -25(3)] < 70 3) + 550(0:3) (328)

for all x € X. It follows from (3.28) that

rs()-sol < 55295 ) - nEe(0a) e

for all x € X. Multiplying both sides of (3.29) by 2™ and then replacing x by 27"x, we get

1
Hzm ( m)_2m+"g<2m+n>| "Z <2l+m 2m+l+1> 3§n22mﬂ < W)

i=0

1 m+n-1 ) x x 14m+n 1 x
“51 2 2(5gm) 55 2 24(0.5)
i=m

(3.30)

for all x € X. So {2"g(x/2")} is a Cauchy sequence in Y. Put A(x) := lim,_, 2" g(x/2") for
all x € X. Then we have

2s(5e) -2 (50)

(3.31)
. n-1 X _nn i _
_nh_I:f;oZ 2 g<2n_1> 2g<2n> =0
for all x € X. On the other hand, it is easy to show that
Dy (x,y) = Df(2x,2y) —8Ds(x,y) (3.32)

for all x, y € X. Hence it follows that

2Dy (5530 | ‘,,1520“ [anf<2:f1 231) ‘2"+3Df<z£n’zln>”‘

<2lim [2"-1¢<Zf_1, 231/_1>] +8lim 2ﬂ¢( y) =0

[DaCx, )| = lim

n—oo

(3.33)

for all x, y € X. This means that A satisfies (1.3). Then by Lemma 2.2, x — A(2x) - 8A(x) is
additive. Thus (3.31) implies that A is additive.
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To prove the uniqueness of A, suppose that A’ : X — Y is an additive mapping
satisfying (3.24). Then for every x € X, we have A(27"x) = 27" A(x), and A'(27"x) = 27" A'(x).

Hence it follows that
Alz) - 2(3)] < im2|A(z) - 5(3)
#(50)~sGo)ll < 157 9 i)

1&../x x
Zznﬂ < 2n+1+1>:ﬁ§21¢<5’2iﬁ> 33221 < 21+1>

|A(x) = A'(x)]| = lim 2"

+ lim 2"

n— oo

(3.34)

for all x € X. This shows that A(x) = A'(x) for all x € X. O
Theorem 3.3. Suppose that an odd mapping f : X — Y satisfies

15 (x )1l < ¢ () (3.35)

forall x,y € X. If the upper bound ¢ : X x X — [0, 00) is a function such that

i b(55)* Z8¢( 37 ) <o (3:36)

=1

and that
lim 8"¢< éy )=0 (3.37)
forall x,y € X, then the limit
X
C(x) = lim 8" [f(zn 1) 2f(ﬁ)] (3.38)

exists for all x € X, and C : X — Y is a unique cubic mapping satisfying (1.3), and

£ 2x) - 2f (x) - C<x>||<281 (555) Zw( ) (3:39)

forall x € X.

Proof. 1t is easy to show that f satisfies (3.27). Setting h(x) = f(2x) — 2f(x) and then putting
y = x/21in (3.27), we obtain

Jror-su(3)] < oo 3)+ S03) 60
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for all x € X. It follows from (3.40) that

LOREE I R P B

for all x € X. Replacing x by x/2™ in (3.41) and then multiplying both sides of (3.41) by 8,
we get

n-1 n-1
(o) -5 < 5 (e e ) + 55070 (0 )

(3.42)
1 min- 1 g x 14min- 1
11 4 ¢<21 21+1> 33 Z 8¢< 21+1>
=m

i=

for all x € X. Since the right hand side of the inequality (3.42) tends to 0 as m — oo, the
sequence {8"h(x/2")} is Cauchy. Now we define

C(x) := 11m8"h< ) (3.43)

n—oo

for all x € X. Then we have

IC@2x) -8C(x)] = lim

8”h< > 8"+1h( -

‘ =0 (3.44)

forall x € X. Let
Dy(x,y) = Df(2x,2y) - 2Ds(x,y) (3.45)

for all x, y € X. Then we have

De(x )| = lim

5D, )| = Jim |

on’ gn n— oo

n-1 Yy
8 Df<2n1 2n1>

< lim 8(59 (55 5or) ) + fim2(8" (55 30)) =0

for all x,y € X. Since C is an odd mapping, C satisfies (2.6). By (3.44), we conclude that
C(3x) = 27C(x) for all x € X. Then C is cubic.

D555 ) 20 (3 30)

8'D; (37 51)

|

| (3.46)

= lim8 +2

n—oo
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We have to show that C is unique. Suppose that there exists another cubic mapping

C': X — Y which satisfies (1.3) and (3.39). Since C(2"x) = 8"C(x) and C'(2"x) = 8"C'(x) for
all x € X, we have

|C(x)-C'(x)] = hm 8"||C

2)-C()l

<(
< fims'|lc(5) -n(z)] + s n(z) - < (3]
% (3.47)
ll pry ('b< n+i’ 2ni+1> 3328n+l ( 2n+z+1>

=%§:8¢<; 2i1> 3281 < 2z+1)

for all x € X. By letting n — oo in the above inequality, we get C(x) = C'(x) for all x € X,
which gives the conclusion. O

Theorem 3.4. Suppose that an odd mapping f : X — Y satisfies

IDf (x, ) || < ¢(x,y) (3.48)

forall x,y € X. If the upper bound ¢ : X x X — [0, o0) is a function such that

i <2, 2,+1> ZS¢< 2,+1> (349)

=1

and that lim, _, ,8"(x/2",y/2") = 0 for all x,y € X, then there exist a unique cubic mapping
C: X — Y, and a unique additive mapping A : X — Y such that

170 -C - Al < 3 (2 +8)0(5 o ) + sy 2 (2 +8)p(0.55 ) 350

i=0 i=0

forall x € X.

Proof. By Theorems 3.2 and 3.3, there exist an additive mapping A, : X — Y and a cubic
mapping C, : X — Y such that

1 & . .
@) -2£() - Coto)] < 1—28@(%/ 23;) : gz&ﬁ(a )
i=0 i
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for all x € X. Combining two equations in (3.51) yields that

|70 - feo + zau

éi(zwsr) <x zil) +%g<2i+8i>¢<0,%>

i=0
(3.52)

for all x € X. So we get (3.50) by letting A(x) = —(1/6)Ao(x) and C(x) = (1/6)C,(x) for all
xeX.

To prove the uniqueness of A and C, let A;,C; : X — Y be other additive and cubic
mappings satisfying (3.50). Let A’ = A - A;, C' = C - C;. Then

[A'(x) = C' )| < [| £ (x) = Ax) = C) || + || £ (x) = Ar(x) = Ca ()|

. o (3.53)
sz[%%(zwsl)cp(; i1>+%§(2‘+81)¢<0/2%>]

for all x € X. Since

lim {

Ms

81+n¢<21+n 21+n+1 ) + ZSHn(i)( 7/ itn+l ) } =0,

i=1

I
—

(3.54)
- 1+n X - 1+n
nlgl(}o{gz ’ ¢<21+n 21+n+1 > + ;2 ' ¢< 21+n+1 > } =0
for all x € X. Hence (3.53) implies that
n ! ! X
() -c (@) =

for all x € X. Since C'(x/2") = (1/8")C'(x), by (3.55), we obtain that A'(x) = 0 for all x € X.
Again by (3.55), we have C'(x) =0 for all x € X. O

Now we prove the generalized Hyers-Ulam stability of the functional equation (1.3).

Theorem 3.5. Suppose that a mapping f : X — Y satisfies f(0) = 0 and ||Ds(x,y)|| < ¢(x,y) for
all x,y € X. If the upper bound ¢ : X x X — [0, o0) is a function such that

g{&' [¢<2£2i+1> +¢<0,%>] 16¢<2525>} <o (3.56)
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and that lim,, , ,8"¢(x/2",y/2") = 0 for all x,y € X, then there exist a unique additive mapping

A X — Y, a unique cubic mapping C : X — Y, and a unique quartic mapping Q : X — Y such
that

[| f(x) = A(x) = C(x) - Q(x) ||
Sl ) o] S 2) (02

i=0
(3.57)

forall x € X.

Proof. Let fo.(x) = (1/2)(f(x) + f(=x)) for all x € X. Then f.(0) =0, fo(—x) = f.(x) and

IDs.(x )l < 5 wwnn+¢e )] (3.58)

for all x, y € X. Hence in view of Theorem 3.1, there exists a unique quartic mapping Q : X —
Y satisfying (3.6). Let fo(x) = (1/2)(f(x) — f(=x)) for all x € X. Then f,(0) = 0, fo(-x) =
~fo(x), and || Dy, (x, y)|| < (1/2)[¢p(x,y) + ¢(-x,~y)] for all x,y € X. From Theorem 3.4, it
follows that there exist a unique cubic mapping C : X — Y and a unique additive mapping
A : X — Y satisfying (3.44). Now it is obvious that (3.57) holds for all x € X and the proof
of the theorem is complete. O

Corollary 3.6. Let p > 4 and let 0 be a positive real number. Suppose that a mapping f : X — Y
satisfies f(0) = 0 and

1D Ge, )1l < OCllxIP + [|y[1") (3.59)

forall x,y € X. Then there exist a unique additive mapping A : X — Y, a unique cubic mapping
C: X — Y, and a unique quartic mapping Q : X — Y satisfying

I £(x) = A(x) - C(x) - Q)|
= {% [% (1 ' %> "9 x72P’ 1 —121—p i —123-p] * g(ﬁ - 1) }Gllxll” G50

forall x € X.

Proof. It follows from Theorem 3.5 by taking ¢(x, y) = 0(||x[| + ||y||P) for all x, y € X. O

Theorem 3.7. Suppose that an odd mapping f : X — Y satisfies

IDs(x )| < ¢ (x,y) (3.61)
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forall x,y € X. If the upper bound ¢ : X x X — [0, o0) is a function such that

21 [¢( x, 271 )+¢(0,2"—1x)] <o

and that lim,, _, o, (1/2")$(2"x,2"y) = 0 for all x,y € X, then the limit

Ax) = lim zl [ f(2"+1x> -8 f(2"x)]

exists forall x € X, and A : X — Y is a unique additive mapping satisfying (1.3) and

|| (2x) - 8f (x) - A()]| < %izl (2x,27x) + ;éw 1¢(0 27x)

21

forall x € X.

Proof. The proof is similar to the proof of Theorem 3.2.

17

(3.62)

(3.63)

(3.64)

O

Employing a similar way to the proof of Theorem 3.3, we get the following theorem.

Theorem 3.8. Suppose that an odd mapping f : X — Y satisfies

IDs(x )l < ¢(xy)

forall x,y € X. If the upper bound ¢ : X x X — [0, o0) is a function such that

i;d)(Z’x 27x) + i% (0,27x) <o

i=1

and that lim,, _, o, (1/8")$(2"x,2"y) = 0 for all x,y € X, then the limit
— 1; 1 n+1 n
Clx) = }gr;oS—n[f(z x) -2f(2 x)]

exists for all x € X, and C : X — Y is a unique cubic mapping satisfying (1.3), and

-2 -con = S ho(en ) 25 do(07 )
i=1

i=1
forall x € X.

Theorem 3.9. Suppose that an odd mapping f : X — Y satisfies

1D Ce )1l < ¢ (x )

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)
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forall x,y € X. If the upper bound ¢ : X x X — [0, o0) is a function such that
Lo (i il i i-1
2547(2 x,2 x) +302 ¢(o,2 x> <o (3.70)

and that lim,, _, o, (1/2")$(2"x,2"y) = 0 for all x,y € X, then there exist a unique additive mapping
A: X — Y, and a unique cubic mapping C : X — Y such that

6o -a-cool < 553+ ) (403 2") 555+ 5) (1027)

(3.71)
forall x € X.
Proof. The proof is similar to the proof of Theorem 3.4. O
Theorem 3.10. Suppose that f : X — Y satisfies f(0) = 0 and
1D Ces )1l < ¢ (e, ) (372)
forall x,y € X. If the upper bound ¢ : X x X — [0, 00) is a function such that
<[ 1 i, i1 i-1 1 iy 0t
§{§[¢<2x,2 x) +$(0,2 x)]+@gb<2x,2x>}<oo (3.73)

and that lim,, _, . (1/2")$(2"x,2"y) = 0 for all x, y € X, then there exist a unique additive mapping
A : X — Y, a unique cubic mapping C : X — Y, and a unique quartic mapping Q : X — Y such
that

| f(x) - A(x) - C(x) - Q)| < 61—6 [i (21 + 81> <¢<2ix, 271x) + 1?4¢<0, zilx)>]

i=1

(3.74)
1& 16 i ni ;
+ 5%@ =9 (2x,2x) + ¢(0,2 x>]
forall x € X.
Proof. The proof is similar to the proof of Theorem 3.5. O

Corollary 3.11. Let 0 < p < 1 and let 0 be a positive real number. Suppose that f : X — Y satisfies
f(0) =0and

1D (x, )| < OClxl” + [|wI”) (3.75)
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forall x,y € X. Then there exist a unique additive mapping A : X — Y, a unique cubic mapping
C: X — Y, and a unique quartic mapping Q : X — Y satisfying

| f(x) = A(x) - C(x) - Q)|

ollx|l” [ 1 ( 17 )( 1 1 > 23 (3.76)
<——{=(1+ + -2 )+ —-
22 |3\ 3x2¢/\1-2v1 " 1-203 4(1-20%)

forall x € X.

Corollary 3.12. Let € be a positive real number. Suppose that a mapping f : X — Y satisfies f(0) =
0 and ||Ds(x,y)|| < € forall x,y € X. Then there exist a unique additive mapping A : X — Y, a
unique cubic mapping C : X — Y, and a unique quartic mapping Q : X — Y such that

34782

3.77
114345 °€ (377)

| f(x) = A(x) - C(x) - Q)| <

forall x € X.
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