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1. Introduction

In this paper, we consider the permanence and the periodic solution for the following discrete
competitive model with M-species and several delays:

xi(n + 1) = xi(n) exp

⎡
⎣ri(n) −

M∑
j=1

m∑
l=0

c
(l)
ij (n)xj(n − l)

⎤
⎦, i = 1, 2, . . . ,M. (1.1)

In model (1.1), xi(n) is the population density of the species i at nth time step (year,
month, day), ri(n) represents the intrinsic growth rate of species i at nth time step, and c

(l)
ij (n)

reflects the interspecific or intraspecific competitive intensity of species j to species i with
time delay l at nth time step.

As a special case of model (1.1), the following discrete model

x(n + 1) = x(n) exp
[
r

(
1 − x(n)

K

)]
(1.2)
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has been investigated as the discrete analogue of the well-known continuous Logistic model
[1–4]:

dx

dt
= rx

(
1 − x

K

)
. (1.3)

And many complex dynamics, such as periodic cycles and chaotic behavior, were found in
model (1.2) [2, 4, 5].

It is well known that the reproduction rate and the carrying capacity are intensively
influenced by the environment; therefore the following model with time varying coefficients

x(n + 1) = x(n) exp
[
r(n)

(
1 − x(n)

K(n)

)]
(1.4)

was developed from model (1.2) and has been studied recently in [6].
An equivalent version of model (1.4) can be written as

x(n + 1) = x(n) exp[r(n) − c(n)x(n)]. (1.5)

Models (1.2), (1.4), and (1.5) are both considering of ecosystems for single-species. As a result
of coupling M equations both described by model (1.5), one can write out the following
model for M-species:

xi(n + 1) = xi(n) exp

⎡
⎣ri(n) −

M∑
j=1

cij(n)xj(n)

⎤
⎦, i = 1, 2, . . . ,M. (1.6)

If {cij(n)}∞n=0 (i, j = 1, 2, . . . ,M) is nonnegative sequences, model (1.6) represents the
competitive ecosystem of Lotka-Volterra type with M-species [7]. When M = 2, model (1.6)
was introduced in [8] and recently has been studied in [9]. The autonomous case of (1.6)
when M = 2 has been studied in [10] and the following permanent result was obtained [10,
Theorem 2].

Lemma 1.1. If r2a11 − r1a21 > 0, r1a22 − r2a12 > 0, then (1.6) is permanent.

It is well known that the effect of time delay plays an important role in population
dynamics [11]; therefore, model (1.1) can be constructed from model (1.6) while considering
the effect of time delays. Obviously, models (1.2), (1.4), and (1.5) are special cases of model
(1.1) for single-species. Model (1.6) is also special case of model (1.1) without delays.
Some aspects of model (1.1) has been discussed in the literature. For example, the global
asymptotical stability of (1.1) with M ≥ 2 and the permanence of (1.1) with M = 2
were investigated in [12]. Necessary and sufficient conditions for the permanence of the
autonomous case of (1.1) with two-species

x(n + 1) = x(n) exp
[
r1 − c11x(n − n1) − c12y(n − n2)

]
,

y(n + 1) = y(n) exp
[
r2 − c21x(n − l1) − c22y(n − l2)

] (1.7)

were obtained in [13].
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In theoretical population dynamics, it is important whether or not all species in
multispecies ecosystem can be permanent [14, 15]. Many permanent or persistent results
have been obtained for continuous biomathematical models that are governed by differential
equation(s). For example, one can refer to [11, 16–21] and references cited therein. However,
permanent results on the delayed discrete-time competitive model of Lotka-Volterra type are
rarely few [13, 22], especially with M-species (M > 2). In this manuscript, first we will obtain
new sufficient conditions for the permanence of (1.1) when M ≥ 2.

The population densities observed in the field are usually oscillatory. What cause such
phenomenon is a purpose to model population interactions [9, 23]. We will further investigate
the existence and stability of the periodic solution for model (1.1) under the assumption that
the coefficients of model (1.1) are all periodic with a common period.

The results obtained in this paper are complements to those related with model (1.1).
We give some examples to show that the results here are not enclosed by other earlier works.
The paper is organized as follows. In next section, we give some preliminaries and obtain
the sufficient conditions which guarantee the permanence of model (1.1). In Section 3, we
prove the existence of the positive periodic solution of model (1.1) and obtain the sufficient
conditions for the stability of the periodic solution.

2. Preliminaries and Permanence

Due to the biological backgrounds of model (1.1), throughout this paper we make the
following basic assumptions.

(H1) {ri(n)}∞n=0 and {c(0)ii (n)}∞
n=0 (i = 1, 2, . . . ,M) are sequences bounded from below and

from above by positive constants.

(H2) {c(l)ij (n)}
∞
n=0

(i, j = 1, 2, . . . ,M, l = 1, 2, . . . , m) and {c(0)ij (n)}∞
n=0

(i, j =
1, 2, . . . ,M, i /= j) are nonnegative and bounded sequences.

(H3) The initial values are given by xi(s) = a
(s)
i ≥ 0, xi(0) = a

(0)
i > 0 (i = 1, 2, . . . ,M, s =

−m,−m + 1, . . . ,−1).

Next we give some definitions that will be be used in this paper. We write {x(n)} =
{x1(n), x2(n), . . . , xM(n)} and φ(s) = {a(s)

1 , a
(s)
2 , . . . , a

(s)
M }, s = −m,−m + 1, . . . ,−1, 0.

Definition 2.1. We say that {x(n)} is a solution of (1.1) with initial values (H3) if {x(n)}
satisfies (1.1) for n > 0 and x(n) = φ(n), n = −m,−m + 1, . . . ,−1, 0.

Under assumptions (H1), (H2), and (H3), solutions of model (1.1) are all consisting of
positive sequences; such solution will be called positive solution of (1.1).

Definition 2.2. Model (1.1) is said to be permanent if there are positive constants mi and
Mi (i = 1, 2, . . . ,M) such that

mi ≤ lim inf
n→∞

xi(n) ≤ lim sup
n→∞

xi(n) ≤ Mi, i = 1, 2, . . . ,M (2.1)

for each positive solution {x(n)} of model (1.1).
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Definition 2.3. System (1.1) is strongly persistent if each positive solution {x(n)} of (1.1)
satisfies

lim inf
n→∞

xi(n) > 0, i = 1, 2, . . . ,M. (2.2)

Definition 2.4. If each positive solution {x(n)} of model (1.1) satisfies that ‖x(n)−x(n)‖ → 0
as n → ∞, we say that the solution {x(n)} of (1.1) is globally attractive or globally stable,
where ‖ · ‖ is the maximum norm of the Banach space RM.

From Definitions 2.2 and 2.3, we know that model (1.1) is strongly persistent if model
(1.1) is permanent. For the sake of simplicity, we introduce the following notations for any
sequences {y(n)}∞n=0:

y∗ = lim sup
n→∞

y(n), y∗ = lim inf
n→∞

y(n). (2.3)

Next we will discuss the sufficient conditions which guarantee that system (1.1) with
initial conditions (H3) is permanent. In the following, we denote {x(n)} as the solutions
of system (1.1) with initial conditions (H3). Clearly, {xi(n)}∞n=0 (i = 1, 2, . . . ,M) is positive
sequence.

Lemma 2.5. If {z(k)}∞k=0 satisfies

z(k + 1) ≤ z(k) exp[r(k) − a(k)z(k)], (2.4)

for k ≥ K1, where {a(k)}∞k=0 is a positive sequence bounded from below and from above by positive
constants and K1 is a positive integer, then there exists positive constant A such that

lim sup
k→∞

z(k) ≤ A, (2.5)

and A = exp(r∗ − 1)/a∗.

Proof. The proof of this lemma is similar to that of Lemma 1 in [24]; we omit the details.

Lemma 2.6. If {z(k)}∞k=0 satisfies

z(k + 1) ≥ z(k) exp[r(k) − a(k)z(k)], (2.6)

for k ≥ K2, where {a(k)}∞k=0 and {r(k)}∞k=0 are positive sequences bounded from below and
from above by positive constants, K2 is a positive integer and z(K2) > 0. Further, assume that
lim supk→∞z(k) ≤ A and a∗A/r∗ > 1, then

lim inf
k→∞

z(k) ≥ r∗
a∗ exp

[
r∗
(

1 − a∗

r∗
A

)]
. (2.7)
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Proof. The proof of this lemma is similar to that of Lemma 2 in [24]; we omit the details.

In the following, we denote

Ai =
1

c
(0)
ii∗

exp
(
r∗i − 1

)
, i = 1, 2, . . . ,M. (2.8)

Theorem 2.7. Assume that

ri∗ −
m∑
l=1

c
(l)∗
ii Ai −

M∑
j=1,j /= i

m∑
l=0

c
(l)∗
ij Aj > 0, i = 1, 2, . . . ,M, (2.9)

then model (1.1) is permanent.

Proof. From model (1.1), we have

xi(n + 1) ≤ xi(n) exp
[
ri(n) − c

(0)
ii xi(n)

]
(2.10)

for i = 1 2, . . . ,M. Therefore, by Lemma 2.5 there exists positive constants Ai (i =
1, 2, . . . ,M) such that

lim sup
n→∞

xi(n) ≤ Ai, i = 1, 2, . . . ,M. (2.11)

Hence,

xi(n + 1) ≥ xi(n) exp

⎡
⎣ri(n) −

m∑
l=1

c
(l)
ii (Ai + ε) −

M∑
j=1,j /= i

m∑
l=0

c
(l)
ij

(
Aj + ε

) − c
(0)
ii xi(n)

⎤
⎦ (2.12)

for all large n and ε > 0 (i = 1, 2, . . . ,M). By Lemma 2.6, lim infn→∞xi(n) ≥ Ci (i = 1, 2, . . . ,M)
provided that

c
(0)∗
ii

ri∗ −
∑m

l=1 c
(l)
ii Ai −

∑M
j=1,j /= i

∑m
l=0 c

(l)
ij Aj

1

c
(0)
ii∗

exp
(
r∗i − 1

)
> 1, (2.13)

where Ci (i = 1, 2, . . . ,M) is a positive constant. Note that exp(x − 1) ≥ x for x > 0, then

c
(0)∗
ii

c
(0)
ii∗

exp
(
r∗i − 1

) ≥ r∗i ≥ ri∗ > ri∗ −
m∑
l=1

c
(l)
ii Ai −

M∑
j=1,j /= i

m∑
l=0

c
(l)
ij Aj . (2.14)

That is, (2.13) is satisfied if (2.9) holds. Moreover, if (2.9) holds, then Ci > 0 and Ci ≤ Ai

(i = 1, 2, . . . ,M).
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Figure 1: Permanence of model (2.15): the coefficients are given in Example 2.8.

Next we give an example to show the feasibility of the conditions of Theorem 2.7. This
example also shows that Theorem 2.7 is not enclosed by other related works.

Example 2.8. Let us consider the following competitive model:

x(n + 1) = x(n) exp
[
r1 − c

(0)
11 (n)x(n) − c

(1)
11 (n)x(n − 1) − c

(0)
12 (n)y(n) − c

(1)
12 (n)y(n − 1)

]
,

y(n + 1) = y(n) exp
[
r2 − c

(0)
21 (n)x(n) − c

(1)
21 (n)x(n − 1) − c

(0)
22 (n)y(n) − c

(1)
22 (n)y(n − 1)

]
,

(2.15)

where r1 = 2, r2 = 1, c(0)11 (n) = c
(0)
22 (n) = 2 + 1/n, c(1)11 (n) = c

(0)
12 (n) = c

(1)
12 (n) = c

(0)
21 (n) = c

(1)
21 (n) =

c
(1)
22 (n) = 1/n.

From (2.15), c(1)∗11 = c
(0)∗
12 = c

(1)∗
12 = c

(0)∗
21 = c

(1)∗
21 = c

(1)∗
22 = 0, c(0)∗11 = c

(0)∗
22 = 2, and hence,

(2.9) is satisfied. According to Theorem 2.7, system (2.15) is permanent (see Figure 1).

Remark 2.9. The permanence of system (2.15) was also investigated in [12]. But our conditions
which guarantee the permanence of (2.15) are different from that of [12, Lemma 5].
Adopting the same notations as [12, Lemma 5], we have r1 = 2, r2 = 1, r̂1 = 2, r̂2 = 1,
and b11 = 2, b12 = 0, b21 = 0, b22 = 2, B11 = 4, B12 = 2, B21 = 2, B22 = 4,
b0

11 = 2 > 0, b0
22 = 2 > 0. But r2b11 − r̂1B21 = −2, r1b22 − r̂2B12 = 2; that is,

the assumptions r2b11 − r̂1B21 > 0 and r1b22 − r̂2B12 > 0 of [12, Lemma 5] are not
satisfied. Therefore, the permanence of system (2.15) cannot be obtained by [12, Lemma 5].
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Remark 2.10. The global asymptotical stability of model (1.1) is studied in [12] under the
assumption that model (1.1) is strongly persistent. But the authors of [12] did not discuss the
strong persistence of model (1.1) with M-species (M > 2). Theorem 2.7 in this paper gives
sufficient conditions which guarantee the strong persistence of model (1.1).

3. Periodic Solution

In this section, we assume that the coefficients of model (1.1) are periodic with common
period ω, that is,

ri(n +ω) = ri(n), c
(l)
ij (n +ω) = c

(l)
ij (n), i, j = 1, 2, . . . ,M, l = 0, 1, 2 . . . , m. (3.1)

The aim of this section is to show the existence of positive periodic solution of model
(1.1) under assumption (3.1) and further find additional conditions for the global stability of
this positive periodic solution.

Theorem 3.1. Let the assumptions of Theorem 2.7 and (3.1) be satisfied; then there exists a positive
periodic solution of model (1.1) with the period ω.

Proof. Model (1.1) is permanent by Theorem 2.7. Therefore, model (1.1) is point dissipative.
It follows from [25, Theorem 4.3] that there exists a positive periodic solution of model (1.1).
Note (3.1), and the coefficients of model (1.1) are all ω-periodic. Therefore, this solution is
ω-periodic.

Example 3.2. Consider the following model:

x(n + 1) = x(n) exp[1.5 − 2x(n) − 0.01(4 − 3 sin(0.1πn))x(n − 1)

−0.01(1 + sin(0.1πn))y(n) − 0.001(4 + 3 cos(0.1πn))y(n − 1)
]
,

y(n + 1) = y(n) exp[0.8 − 0.01(3 + 2 sin(0.1πn))x(n) − 0.001(1 + cos(0.1πn))x(n − 1)

−2y(n) − 0.01(3 − 2 cos(0.1πn))y(n − 1)
]
.

(3.2)

Direct computation shows that the coefficients of model (3.2) satisfy the assumptions
of Theorem 2.7. The coefficients of model (3.2) are all periodic with the common period 20.
Hence, model (3.2) has a positive periodic solution by Theorem 3.1 (see Figures 2 and 3).
Figures 4 and 5 show that the period of the sequences {x(n)} or {y(n)} is 20, respectively.
More precisely, the values of sequence x within a period are 0.7330, 0.7358, 0.7383, 0.7403,
0.7415, 0.7419, 0.7413, 0.7399, 0.7377, 0.7351, 0.7323, 0.7295, 0.7271, 0.7252, 0.7241, 0.7238,
0.7243, 0.7257, 0.7277, and 0.7302, respectively. The values of sequence y within a period
are 0.3869, 0.3846, 0.3821, 0.3796, 0.3775, 0.3759, 0.3750, 0.3749, 0.3756, 0.3770, 0.3790, 0.3813,
0.3838, 0.3862, 0.3882, 0.3898, 0.3907, 0.3908, 0.3902, and 0.3889, respectively.

Next, we study the global stability of the positive periodic solution obtained in
Theorem 3.1.
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Figure 2: Periodic solution of model (3.2): the coefficients are given in Example 3.2.
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Figure 3: Periodic solution of model (3.2): on the phase plane, the coefficients are given in Example 3.2.

Theorem 3.3. Let the assumptions of Theorem 3.1 be satisfied; further, assume that

λi = max

⎧
⎨
⎩

∣∣∣∣∣∣
1 −

M∑
j=1

c
(0)∗
ij x∗

i

∣∣∣∣∣∣
,

∣∣∣∣∣∣
1 −

M∑
j=1

c
(0)
ij∗xi∗

∣∣∣∣∣∣

⎫
⎬
⎭ +

M∑
j=1

m∑
l=1

c
(l)∗
ij x∗

j < 1, (3.3)

i = 1, 2, . . . ,M, then for every positive solution {x(n)} of model (1.1), one has

lim
n→∞

|xi(n) − xi(n)| = 0, i = 1, 2, . . . ,M, (3.4)

where {x(n)} is the positive periodic solution obtained in Theorem 3.1.
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Figure 4: Periodic oscillating of species x: the coefficients are given in Example 3.2.
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Figure 5: Periodic oscillating of species y: the coefficients are given in Example 3.2.

Proof. Let

xi(n) = xi(n) exp(ui(n)), i = 1, 2, . . . ,M, (3.5)

where xi(n) (i = 1, 2, . . . ,M) is the positive periodic solution of model (1.1). Model (1.1) can
be rewritten as

ui(n + 1) = ui(n) −
M∑
j=1

m∑
l=0

c
(l)
ij (n)xj(n − l)

(
exp(ui(n − l) − 1)

)
. (3.6)
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Therefore,

ui(n + 1) = ui(n)

⎛
⎝1 −

M∑
j=1

c
(0)
ij (n)xj(n) exp(θi(n)ui(n))

⎞
⎠

−
M∑
j=1

m∑
l=1

c
(l)
ij (n)xj(n − l) exp(νi(n − l)ui(n − l)),

(3.7)

where θi(n), νi(n − l) ∈ [0, 1], i = 1, 2, . . . ,M, l = 1, 2, . . . , m.
In view of (3.3), we can choose ε > 0 such that

λεi = max

⎧
⎨
⎩

∣∣∣∣∣∣
1 −

M∑
j=1

c
(0)∗
ij

(
x∗
i + ε

)
∣∣∣∣∣∣
,

∣∣∣∣∣∣
1 −

M∑
j=1

c
(0)
ij∗ (xi∗ − ε)

∣∣∣∣∣∣

⎫
⎬
⎭

+
M∑
j=1

m∑
l=1

c
(l)∗
ij

(
x∗
j + ε

)
< 1, i = 1, 2, . . . ,M.

(3.8)

And from Theorem 2.7, there exists a positive integer n0 such that

xi∗ − ε ≤ xi(n − l) ≤ x∗
i + ε, xi∗ − ε ≤ xi(n − l) ≤ x∗

i + ε (3.9)

for n ≥ n0 and ε given as above (i = 1, 2, . . . ,M, l = 1, 2, . . . , m).
Notice that xi(n) exp(θi(n)ui(n)) lies between xi(n) and xi(n), and xi(n − l) exp(νi(n −

l)ui(n − l)) lies between xi(n − l) and xi(n − l) (i = 1, 2, . . . ,M, l = 1, 2, . . . , m), from (3.7), we
have

|ui(n + 1)| ≤ max

⎧
⎨
⎩

∣∣∣∣∣∣
1 −

M∑
j=1

c
(0)∗
ij x∗

i

∣∣∣∣∣∣
,

∣∣∣∣∣∣
1 −

M∑
j=1

c
(0)
ij∗xi∗

∣∣∣∣∣∣

⎫
⎬
⎭|ui(n)|

+
M∑
j=1

m∑
l=1

c
(l)∗
ij x∗

i |ui(n − l)|, i = 1, 2, . . . ,M

(3.10)

for n ≥ n0 and i = 1, 2, . . . ,M.
Denote

λ = max
1≤i≤M

{
λεi
}
. (3.11)

We have λ < 1. Notice that ε is arbitrarily given; from (3.10), we get

max
1≤i≤M

{|ui(n + 1)|} ≤ λmax
1≤i≤M

{|ui(n)|, |ui(n − 1)|, . . . , |ui(n −m)|}, n ≥ n0. (3.12)
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Therefore,

max
1≤i≤M

{|ui(n)|} ≤ λn−n0 max
1≤i≤M

{|ui(n0)|, |ui(n0 − 1)|, . . . , |ui(n0 −m)|}. (3.13)

That is,

lim
n→∞

ui(n) = 0, i = 1, 2, . . . ,M, (3.14)

and (3.4) follows consequently.
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