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This paper is concerned with the existence of multiple positive solutions for the third-order p-
Laplacian dynamic equation (φp(uΔ∇(t)))∇+a(t)f(t, u(t), uΔ(t)) = 0, t ∈ [0, T]

T
with the multipoint

boundary conditions uΔ(0) = uΔ∇(0) = 0, u(T) + B0(
∑m−2

i=1 biu
Δ(ξi)) = 0, where φp(u) = |u|p−2u

with p > 1. Using the fixed point theorem due to Avery and Peterson, we establish the existence
criteria of at least three positive solutions to the problem. As an application, an example is given to
illustrate the result. The interesting points are that not only do we consider third-order p-Laplacian
dynamic equation but also the nonlinear term f is involved with the first-order delta derivative of
the unknown function.
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1. Introduction

The theory of dynamic equations on time scales was introduced by Stefan Hilger in 1988 [1].
This theory has attracted many researchers’ attention and interest since it cannot only unify
differential and difference equations but also provides accurate information of phenomena
that manifest themselves partly in continuous time and partly in discrete time. In addition,
time-scale calculus would allow exploration of a variety of situations in economic, biological,
heat transfer, stock market, and epidemic models [2, 3], and so forth.

Recently, there has been much attention paid to the existence of positive solutions
for second-order nonlinear boundary value problems on time scales; see [4–10] and the
references therein. On the one hand, higher-order nonlinear boundary value problems have
been studied extensively; see [11–14] and the references therein. On the other hand, the
boundary value problems with p-Laplacian operator have also been discussed extensively
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in literature; for example, see [15–17]. However, very little work has been done to the third-
order p-Laplacian dynamic equations on time scales [18, 19].

For convenience, throughout this paper, we denote φp(s) as p-Laplacian operator, that
is, φp(s) = |s|p−2s for p > 1 with φ−1

p = φq and 1/p + 1/q = 1.We also assume that T is a closed
subset of Rwith 0, T ∈ T; an interval (0, T)

T
always means (0, T) ∩T. Other types of intervals

are defined similarly.
For example, Sun and Li [16] studied the two-point boundary value problem:

(
φp

(
uΔ(t)

))Δ
+ h(t)f(uσ(t)) = 0, t ∈ [a, b]

T
,

u(a) − B0

(
uΔ(a)

)
= 0, uΔ(σ(b)) = 0.

(1.1)

They established the existence theory for positive solutions by using various fixed point
theorems [20, 21].

In [15], Su et al. investigated the existence of positive solutions for the following
singular p-Laplacian m-point boundary value problem on time scales:

(
φp

(
uΔ(t)

))∇
+ a1(t)f(u(t)) = 0, t ∈ (0, T)

T
,

u(0) = 0, u(T) −
m−2∑

i=1

ψi(u(ξi)) = 0.
(1.2)

The main techniques are Schauder fixed point theorem and upper and lower solutions
method.

In [19], Han and Kang considered the following third-order p-Laplacian dynamic
equation on time scales:

(
φp

(
uΔΔ(t)

))∇
+ f(t, u(t)) = 0, t ∈ [a, b],

αu
(
ρ(a)

) − βuΔ(ρ(a)
)
= 0, γu(b) + δuΔ(b) = 0, uΔΔ(ρ(a)

)
= 0.

(1.3)

By using fixed point theorems in cones, the existence criteria of multiple positive solutions
are established.

In [10], Zhao and Sun studied the following second-order nonlinear three-point
boundary value problem on time scales:

uΔ∇(t) + q(t)f
(
t, u(t), uΔ(t)

)
= 0, t ∈ (0, T)

T
,

βu(0) − γuΔ(0) = 0, αu
(
η
)
= u(T).

(1.4)

They gave sufficient condition for the existence of three positive solutions by using a fixed
point theorem due to Avery and Peterson [22].
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Motivated by [10, 15, 16, 19], in this paper we consider the following third-order p-
Laplacian dynamic equation on time scales:

(
φp

(
uΔ∇(t)

))∇
+ a(t)f

(
t, u(t), uΔ(t)

)
= 0, t ∈ [0, T]

T
(1.5)

subject to the boundary condition

uΔ(0) = uΔ∇(0) = 0, u(T) + B0

(
m−2∑

i=1

biu
Δ(ξi)

)

= 0, (1.6)

where 0 < ξ1 < ξ2 < · · · < ξm−2 < ρ(T), bi ∈ [0,∞) for i = 1, 2, . . . , m − 2. By using fixed point
theorem due to Avery and Peterson [22], we prove that the boundary value problems (1.5)
and (1.6) have at least three positive solutions under suitable assumptions. The interesting
points are that not only do we consider third-order p-Laplacian dynamic equation on time
scales but also the nonlinear term f is involved with the first-order delta derivative of the
unknown function.

Throughout this paper, it is assumed that

(H1) a ∈ Cld([0, T]T,R
+) and f ∈ C([0, T]

T
× R

+ × R,R+), both a and f do not vanish
identically on any closed subinterval of [0, T]

T
, and there exists l ∈ (0, ξ1]T such

that
∫ l
0a(τ)∇τ > 0 hold;

(H2) there exist nonnegative constants B1 and B2 satisfying B1x ≤ B0(x) ≤ B2x for x ∈ R.

2. Preliminary

To prove the main results in this paper, we will employ several lemmas. And the following
lemma is based on the linear BVP:

(
φp

(
uΔ∇(t)

))∇
+ h(t) = 0, t ∈ [0, T]

T
, (2.1)

uΔ(0) = uΔ∇(0) = 0, u(T) + B0

(
m−2∑

i=1

biu
Δ(ξi)

)

= 0. (2.2)

Lemma 2.1. If h ∈ Cld([0, T]T,R
+), then the problems (2.1) and (2.2) have the unique nonnegative

solution:

u(t) =
∫ t

0
(t − s)φq

(

−
∫s

0
h(τ)∇τ

)

∇s +
∫T

0
(T − s)φq

(∫s

0
h(τ)∇τ

)

∇s

− B0

(
m−2∑

i=1

bi

∫ ξi

0
φq

(∫s

0
− h(τ)∇τ

)

∇s

)

.

(2.3)
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Proof. For any h ∈ Cld([0, T]T,R
+), suppose that u is a solution of the BVPs (2.1) and (2.2). By

integrating (2.1) from 0 to t, and combining the boundary condition, it follows that

uΔ∇(t) = φq

(

−
∫ t

0
h(s)∇s

)

, uΔ(t) =
∫ t

0
φq

(

−
∫s

0
h(τ)∇τ

)

∇s,

u(t) − u(0) =
∫ t

0

(∫s

0
φq

(

−
∫ τ

0
h(r)∇r

)

∇τ

)

Δs =
∫ t

0
(t − s)φq

(

−
∫ s

0
h(τ)∇τ

)

∇s.

(2.4)

Using (2.2), we can easily obtain

u(0) =
∫T

0
(T − s)φq

(∫s

0
h(τ)∇τ

)

∇s − B0

(
m−2∑

i=1

bi

∫ ξi

0
φq

(∫ s

0
− h(τ)∇τ

)

∇s

)

. (2.5)

So

u(t) =
∫ t

0
(t − s)φq

(

−
∫s

0
h(τ)∇τ

)

∇s +
∫T

0
(T − s)φq

(∫s

0
h(τ)∇τ

)

∇s

− B0

(
m−2∑

i=1

bi

∫ ξi

0
φq

(∫s

0
− h(τ)∇τ

)

∇s

)

.

(2.6)

Then it is easy to see that

∫ t

0
(t − s)φq

(

−
∫s

0
h(τ)∇τ

)

∇s +
∫T

0
(T − s)φq

(∫ s

0
h(τ)∇τ

)

∇s ≥ 0,

−B0

(
m−2∑

i=1

bi

∫ ξi

0
φq

(∫s

0
− h(τ)∇τ

)

Δs

)

≥ B2

m−2∑

i=1

bi

∫ ξi

0
φq

(∫ s

0
h(τ)∇τ

)

Δs ≥ 0.

(2.7)

So u(t) ≥ 0. On the other hand, it is easy to verify that if u is as in (2.3), then u is a solution of
(2.1) and (2.2). Thus u in (2.3) is the unique solution of (2.1) and (2.2).

Let X = CΔ
ld
[0, T]

T
be endowed with the norm

‖u‖1 = max

{

sup
t∈[0,T]

T

|u(t)|, sup
t∈[0,T]

Tκ

∣
∣
∣uΔ(t)

∣
∣
∣

}

, u ∈ X. (2.8)

It follows that (X, ‖ · ‖1) is a Banach space. Define the cone P ⊂ X by

P =

{

u ∈ X | u(t) ≥ 0, uΔ(0) ≤ 0, u(T) + B0

(
m−2∑

i=1

biu
Δ(ξi)

)

≤ 0, uΔ∇(t) ≤ 0, t ∈ (0, T)
T

}

.

(2.9)
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Lemma 2.2. If u ∈ P , then there exists a constant K such that

sup
t∈[0,T]

T

|u(t)| ≤ K sup
t∈[0,T]

Tk

∣
∣
∣uΔ(t)

∣
∣
∣. (2.10)

Proof. For u ∈ P , uΔ∇(t) ≤ 0 implies that

u(t) − u(T) ≤ uΔ(T)(t − T) ≤ T sup
t∈[0,T]

T

∣
∣
∣uΔ(t)

∣
∣
∣. (2.11)

In addition, since

u(T) ≤ −B0

(
m−2∑

i=1

biu
Δ(ξi)

)

≤ −B1

m−2∑

i=1

biu
Δ(ξi) ≤ B1

m−2∑

i=1

bi sup
t∈[0,T]

T

∣
∣
∣uΔ(t)

∣
∣
∣, (2.12)

then we have

sup
t∈[0,T]

T

|u(t)| ≤
(

T + B1

m−2∑

i=1

bi

)

sup
t∈[0,T]

T

∣
∣
∣uΔ(t)

∣
∣
∣. (2.13)

Therefore, We can choose K = T + B1
∑m−2

i=1 bi and the proof is complete.

Lemma 2.3. If u ∈ P , then u(t) ≥ ((T − t)/T)supt∈[0,T]
T

|u(t)| for t ∈ [0, T]
T
.

Proof. If u ∈ P , then uΔ(t) is decreasing and uΔ(0) ≤ 0, and thus uΔ(t) ≤ 0 and u(t) are
decreasing. So we have

sup
t∈[0,T]

T

|u(t)| = u(0). (2.14)

By the concavity of u(t), for t ∈ (0, T)
T
, there is

u(T) − u(0)
T − 0

≥ u(T) − u(t)
T − t

,

u(0)(T − t) ≤ u(t)T − tu(T) ≤ u(t)T.
(2.15)

Then we have

u(t) ≥ T − t

T
sup

t∈[0,T]
T

|u(t)|. (2.16)

The proof is complete.
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Let γ and θ be nonnegative continuous convex functionals on P , let α be a nonnegative
continuous concave functional on P , and let ψ be a nonnegative continuous functional on P .
Then for positive real numbers a, b, c, and d, we define the following convex sets:

P
(
γ, d

)
=
{
x ∈ P | γ(x) < d

}
,

P̃
(
γ, α, b, d

)
=
{
x ∈ P | b ≤ α(x), γ(x) ≤ d

}
,

P
(
γ, θ, α, b, c, d

)
=
{
x ∈ P | b ≤ α(x), θ(x) ≤ c, γ(x) ≤ d

}
,

(2.17)

and a closed set

R
(
γ, ψ, a, d

)
=
{
x ∈ P | a ≤ ψ(x), γ(x) ≤ d

}
. (2.18)

The following fixed point theorem due to Avery and Peterson is fundamental in the
proof of our main results.

Lemma 2.4 (see [22]). Let P be a cone in a real Banach space E. Let γ and θ be nonnegative
continuous convex functionals on P , let α be a nonnegative continuous concave functional on P ,
and let ψ be a nonnegative continuous functional on P satisfying ψ(λx) ≤ λψ(x) for 0 ≤ λ ≤ 1, such
that for some positive numbers M and d,

α(x) ≤ ψ(x), ‖x‖ ≤ Mγ(x) (2.19)

for all x ∈ P(γ, d). Suppose that A : P(γ, d) → P(γ, d) is completely continuous and there exist
positive numbers a, b, and c with a < b such that

(S1) {x ∈ P(γ, θ, α, b, c, d) | α(x) > b}/= ∅ and α(Ax) > b for x ∈ P (γ, θ, α, b, c, d);

(S2) α(Ax) > b for x ∈ P̃(γ, α, b, d) with θ(Ax) > c;

(S3) 0/∈R(γ, ψ, a, d) and ψ(Ax) < a for x ∈ R(γ, ψ, a, d) with ψ(x) = a.

Then A has at least three fixed points x1, x2, x3 ∈ P(γ, d), such that

γ(xi) ≤ d for i = 1, 2, 3, b < α(x1),

a < ψ(x2) with α(x2) < b, ψ(x3) < a.
(2.20)

3. Existence Results

In this section, by using the Avery-Peterson fixed point theorem, we shall give the sufficient
conditions for the existence of at least three positive solutions to the BVPs (1.5) and (1.6).
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Firstly, we define the nonnegative continuous concave functional α, the nonnegative
continuous convex functionals θ, γ , and the nonnegative continuous functional ψ on P ,
respectively, by

γ(u) = sup
t∈[0,T]

Tk

∣
∣
∣uΔ(t)

∣
∣
∣ = max

{∣
∣
∣uΔ(0)

∣
∣
∣,
∣
∣
∣uΔ(T)

∣
∣
∣
}
,

ψ(u) = θ(u) = sup
t∈[0,T]

T

|u(t)| ≤ ‖u‖1,

α(u) = inf
t∈[0,l]

T

|u(t)| = u(l) for u ∈ P.

(3.1)

For notation convenience, we denote

L = Tφq

(∫T

0
a(τ)∇τ

)

, M = B2

m−2∑

i=1

bi

∫ l

0
φq

(∫ s

0
a(τ)∇τ

)

∇s,

N =

(

T2 + TB1

m−2∑

i=1

bi

)

φq

(∫T

0
a(τ)∇τ

)

, ρ =
2T
T − l

.

(3.2)

Now we state and prove our main result.

Theorem 3.1. Let 0 < a < Nb/M ≤ min{Nd(T − l)/2M,dN/L} and suppose that f satisfies the
following conditions:

(A1) f(t, u, v) ≤ φp(d/L) for (t, u, v) ∈ [0, T]
T
× [0, Kd] × [−d, d],

(A2) f(t, u, v) > φp(b/M) for (t, u, v) ∈ [0, l]
T
× [b, ρb] × [−d, d],

(A3) f(t, u, v) < φp(a/N) for (t, u, v) ∈ [0, T]
T
× [0, a] × [−d, d].

Then problems (1.5) and (1.6) have at least three positive solutions u1, u2, and u3 such that

sup
t∈[0,T]

Tk

∣
∣
∣uΔ

i (t)
∣
∣
∣ ≤ d for i = 1, 2, 3, b < inf

t∈[0,l]
T

|u1(t)|, sup
t∈[0,T]

T

|u1(t)| ≤ Kd,

a < sup
t∈[0,T]

T

|u2(t)| with inf
t∈[0,l]

T

|u2(t)| < b, sup
t∈[0,T]

T

|u3(t)| < a.
(3.3)

Proof. Define an integral operator A : P → X by

(Au)(t) =
∫ t

0
(t − s)φq

(∫ s

0
− a(τ)f

(
τ, u(τ), uΔ(τ)

)
∇τ

)

∇s

+
∫T

0
(T − s)φq

(∫ s

0
a(τ)f

(
τ, u(τ), uΔ(τ)

)
∇τ

)

∇s

− B0

(
m−2∑

i=1

bi

∫ ξi

0
φq

(∫ s

0
− a(τ)f

(
τ, u(τ), uΔ(τ)

)
∇τ

)

∇s

)

(3.4)
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for t ∈ [0, T]
T
. It is easy to obtain that A : P → P is a completely continuous operator and

every fixed point of A is a solution of (1.5) and (1.6).
Thus we set out to verify that the operator A satisfies Avery-Peterson fixed point

theorem which will prove the existence of three fixed points of A. Now the proof is divided
into some steps.

By virtue of α(u) = inft∈[0,l]
T
|u(t)|, γ(u) = supt∈[0,T]

Tk
|uΔ(t)|, ψ(u) = supt∈[0,T]

T

|u(t)| and
Lemma 2.2 we know that there exists a constant M such that

α(u) ≤ ψ(u), ‖u‖1 ≤ Mγ(u) for u ∈ P
(
γ, d

)
. (3.5)

We first show that (A1) implies that

A : P(γ, d) −→ P(γ, d). (3.6)

In fact, for u ∈ P(γ, d), γ(u) = supt∈[0,T]
T

|uΔ(t)| ≤ d, by Lemma 2.2, there is
supt∈[0,T]

T

|u(t)| ≤ Kd. It follows from (A1) that

γ(A(u)) = sup
t∈[0,T]

T

∣
∣
∣(Au)Δ(t)

∣
∣
∣ = sup

t∈[0,T]
T

∣
∣
∣
∣
∣

∫ t

0
φq

(∫s

0
a(τ)f

(
τ, u(τ), uΔ(τ)

)
∇τ

)

∇s

∣
∣
∣
∣
∣

≤
∫T

0
φq

(∫T

0
a(τ)f

(
τ, u(τ), uΔ(τ)

)
∇τ

)

∇s

≤ Td

L
φq

(∫T

0
a(τ)∇τ

)

= d.

(3.7)

Thus (3.6) holds.
Next we show that condition (S1) in Lemma 2.4 holds. Let u(t) = 2b(T − t)/(T − l).

Then it is easy to see that u(t) ≥ 0, u(T) +B0(
∑m−2

i=1 biu
Δ(ξi)) ≤ 0, uΔ(0) ≤ 0, and uΔ∇(t) ≤ 0 for

t ∈ [0, T]
T
, so u ∈ P . Also, we have

γ(u) = sup
t∈[0,T]

Tk

∣
∣
∣uΔ(t)

∣
∣
∣ =

2b
T − l

≤ d,

θ(u) = sup
t∈[0,T]

T

|u(t)| = 2bT
T − l

≤ ρb,

α(u) = inf
t∈[0,l]

T

|u(t)| = 2b > b.

(3.8)

So u ∈ P(γ, θ, α, b, ρb, d). Hence {u ∈ P(γ, θ, α, b, ρb, d) | α(u) > b}/= ∅.
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If u ∈ P(γ, θ, α, b, ρb, d), then b ≤ u(t) ≤ ρb, |uΔ(t)| ≤ d for 0 ≤ t ≤ l. It follows from
condition (A2) that

α(Au) = inf
t∈[0,l]

T

|(Au)(t)| = (Au)(l)

=
∫ l

0
(l − s)φq

(∫s

0
− a(τ)f

(
τ, u(τ), uΔ(τ)

)
∇τ

)

∇s

+
∫T

0
(T − s)φq

(∫s

0
a(τ)f

(
τ, u(τ), uΔ(τ)

)
∇τ

)

∇s

− B0

(
m−2∑

i=1

bi

∫ ξi

0
φq

(∫ s

0
− a(τ)f

(
τ, u(τ), uΔ(τ)

)
∇τ

)

∇s

)

≥ −B0

(
m−2∑

i=1

bi

∫ ξi

0
φq

(∫s

0
− a(τ)f

(
τ, u(τ), uΔ(τ)

)
∇τ

)

∇s

)

≥ B2

m−2∑

i=1

bi

∫ l

0
φq

(∫s

0
a(τ)f

(
τ, u(τ), uΔ(τ)

)
∇τ

)

∇s

>
b

M
B2

m−2∑

i=1

bi

∫ l

0
φq

(∫s

0
a(τ)∇τ

)

∇s = b.

(3.9)

Therefore we have

α(Au) > b for u ∈ P
(
γ, θ, α, b, ρb, d

)
. (3.10)

That is, condition (S1) in Lemma 2.4 is satisfied.
We now prove that (S2) in Lemma 2.4 holds. In fact, since α(Au) = Au(l), θ(Au) =

supt∈[0,T]
T

|Au(t)|, then with Lemma 2.3 it follows that

α(Au) ≥ T − l

T
θ(Au) >

T − l

T
ρb ≥ b (3.11)

for u ∈ P̃(γ, α, b, d)with θ(Au) > ρb. Hence condition (S2) in Lemma 2.4 is satisfied.
Finally, we assert that (S3) in Lemma 2.4 also holds.
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Observe that ψ(0) = 0 < a, so 0/∈R(γ, ψ, a, d). Suppose u ∈ R(γ, ψ, a, d) with ψ(u) = a.
Then, by hypothesis (A3)we have

ψ(A(u)) = sup
t∈[0,T]

T

|(Au)(t)| = (Au)(0)

=
∫T

0
(T − s)φq

(∫ s

0
a(τ)f

(
τ, u(τ), uΔ(τ)

)
∇τ

)

∇s

− B0

(
m−2∑

i=1

bi

∫ ξi

0
φq

(∫ s

0
− a(τ)f

(
τ, u(τ), uΔ(τ)

)
∇τ

)

∇s

)

<

∫T

0
Tφq

(∫s

0
a(τ)f

(
τ, u(τ), uΔ(τ)

)
∇τ

)

∇s

+ B1

m−2∑

i=1

bi

∫T

0
φq

(∫ s

0
a(τ)f

(
τ, u(τ), uΔ(τ)

)
∇τ

)

∇s

≤ T2a

N
φq

(∫T

0
a(τ)∇τ

)

+
TB1a

N

m−2∑

i=1

biφq

(∫T

0
a(τ)∇τ

)

=

(

T2 + TB1

m−2∑

i=1

bi

)
a

N
φq

(∫T

0
a(τ)∇τ

)

= a.

(3.12)

Thus condition (S3) in Lemma 2.4 holds.
Therefore an application of Lemma 2.4 implies that the BVPs (1.5) and (1.6) have at

least three positive solutions u1, u2, and u3 such that (3.3) holds.

4. Example

In this section, we present an example to explain our result.
Let T = {0}⋃{1/2n, n ∈ N0}, a(t) ≡ 1, p = 3, and m = 4, ξ1 = 1/4, ξ2 = 1/2, b1 = b2 = 1,

B0(x) = 2x. We consider the following boundary value problem:

(∣
∣
∣uΔ∇(t)

∣
∣
∣uΔ∇(t)

)∇
+ f

(
t, u(t), uΔ(t)

)
= 0, t ∈ [0, 1]

T,

uΔ(0) = uΔ∇(0) = 0, u(1) + 2
(

uΔ 1
4
+ uΔ 1

2

)

= 0,

(4.1)



Advances in Difference Equations 11

where

f(t, u, v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
103

t +
1
5
× u12 +

1
7

(
v

2.4 × 107

)2

, u ≤ 2,

1
103

t +
1
5
× 212 +

1
7

(
v

2.4 × 107

)2

, u > 2.

(4.2)

Choosing a = 1/2, b = 2, l = 1/4, d = 2.4 × 106, direct calculation shows that

ρ =
8
3
, K = 5, L = 1, M =

4 +
√
2

56
, N = 5. (4.3)

Consequently, f(t, u, v) satisfies

(i) f(t, u, v) < 822 < φ3(d/L) = 5.76 × 1012 for (t, u, v) ∈ [0, 1]
T
× [0, 1.2 × 107] × [−2.4 ×

106, 2.4 × 106];

(ii) f(t, u, v) = 4096/5 > φ3(b/M) = 128(9 − 4
√
2) for (t, u, v) ∈ [0, 1/4]

T
× [2, 16/3] ×

[−2.4 × 106, 2.4 × 106];

(iii) f(t, u, v) ≤ 4/1000 < φ3(a/N) = 1/100 for (t, u, v) ∈ [0, 1]
T
× [0, 1/2] × [−2.4 ×

106, 2.4 × 106].

Then all conditions of Theorem 3.1 hold. Thus with Theorem 3.1, the BVP (4.1) has at least
three positive solutions u1, u2, and u3 such that

sup
t∈[0,1]

Tκ

∣
∣
∣uΔ

i (t)
∣
∣
∣ ≤ 2.4 × 106 for i = 1, 2, 3, 2 < inf

t∈[0,1/4]
T

|u1(t)|, sup
t∈[0,1]

T

|u1(t)| ≤ 1.2 × 107,

1
2
< sup

t∈[0,1]
T

|u2(t)| with inf
t∈[0,1/4]

T

|u2(t)| < 2, sup
t∈[0,1]

T

|u3(t)| < 1
2
.

(4.4)
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