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1. Introduction and Main Result

Many equations arising in nonlinear population growth models [1], communication systems
[2], and even in ecology [3] can be written as the following differential delay equation:

x′(t) = −αf(x(t − 1)), (1.1)

where f ∈ C(R,R) is odd and α is parameter. Since Jone’s work in [4], there has been a
great deal of research on problems of existence, multiplicity, stability, bifurcation, uniqueness,
density of periodic solutions to (1.1) by applying various approaches. See [2, 4–23]. But
most of those results concern scalar equations (1.1) and generally slowly oscillating periodic
solutions. A periodic solution x(t) of (1.1) is called a “slowly oscillating periodic solution” if
there exist numbers p > 1 and q > p + 1 such that x(t) > 0 for 0 < t < p, x(t) < 0 for p < t < q,
and x(t + q) = x(t) for all t.

In a recent paper [17], Guo and Yu applied variational methods directly to study the
following vector equation:

x′(t) = −f(x(t − r)), (1.2)
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where f ∈ C(Rn,Rn) is odd and r > 0 is a given constant. By using the pseudo index theory
in [24], they established the existence and multiplicity of periodic solutions of (1.2) with f
satisfying the following asymptotically linear conditions both at zero and at infinity:

f(x) = B0x + o(|x|), as |x| −→ 0,

f(x) = B∞x + o(|x|), as |x| −→ ∞,
(1.3)

where B0 and B∞ are symmetric n × n constant matrices. Before Guo and Yu’s work, many
authors generally first use the reduction technique introduced by Kaplan and Yorke in [7] to
reduce the search for periodic solutions of (1.2)with n = 1 and its similar ones to the problem
of finding periodic solutions for a related system of ordinary differential equations. Then
variational method was applied to study the related systems and the existence of periodic
solutions of the equations is obtained.

The previous papers concern mainly autonomous differential delay equations. In this
paper, we use minimax methods directly to study the following nonautonomous differential-
delay equation:

x′(t) = −f(t, x(t − r)), (1.4)

where f ∈ C(R × R
n,Rn) is odd with respect to x and satisfies the following superlinear

conditions both at zero and at infinity

lim
|x|→ 0

∣
∣f(t, x)

∣
∣

|x| = 0, uniformly in t,

lim
|x|→∞

∣
∣f(t, x)

∣
∣

|x| = ∞, uniformly in t.

(1.5)

When (1.2) satisfies (1.3), we can apply the twist condition between the zero and at infinity
for f to establish the existence of periodic solutions of (1.2). Under the superlinear conditions
(1.5), there is no twist condition for f , which brings difficulty to the study of the existence of
periodic solutions of (1.4). But we can use minimaxmethods to consider the problemwithout
twist condition for f .

Throughout this paper, we assume that the following conditions hold.

(H1) f(t, x) ∈ C(R × R
n,Rn) is odd with respect to x and 2r-periodic with respect to t.

(H2) write f = (f1, f2, . . . , fn). There exist constants μ > 2 and R1 > 0 such that

0 < μ

∫xi

0
fi
(

t, x1, . . . , xi−1, yi, xi+1, . . . , xn

)

dyi ≤ xifi(t, x) (1.6)

for all x ∈ R
n with |xi| > R1, for all t ∈ [0, 2r] and i = 1, 2, . . . , n.

(H3) there exist constants c1 > 0, R2 > 0 and 1 < λ < 2 such that

∣
∣fi(t, x)

∣
∣ < c1|xi|λ (1.7)

for all x ∈ R
n with |xi| > R2, for all t ∈ [0, 2r] and i = 1, 2, . . . , n.
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Then our main result can be read as follows.

Theorem 1.1. Suppose that f(t, x) ∈ C(R × R
n,Rn) satisfies (1.5) and the conditions (H1)–(H3)

hold. Then (1.4) possesses a nontrivial 4r-periodic solution.

Remark 1.2. We shall use a minimax theorem in critical point theory in [25] to prove our main
result. The ideas come from [25–27]. Theorem 1.1 will be proved in Section 2.

2. Proof of the Main Result

First of all in this section, we introduce a minimax theorem which will be used in our
discussion. Let E be a Hilbert space with E = E1 ⊕ E2. Let P1, P2 be the projections of E onto
E1 and E2, respectively.

Write

Λ =
{

ϕ ∈ C([0, 2r] × E) | ϕ(0, u) = u and P2ϕ(t, u) = P2u −Φ(t, u)
}

, (2.1)

where Φ : [0, 2r] × E → E2 is compact.

Definition 2.1. Let S,Q ⊂ E, and Q be boundary. One calls S and ∂Q link if whenever ϕ ∈ Λ
and ϕ(t, ∂Q) ∩ S = ∅ for all t, then ϕ(t, Q) ∩ S/= ∅.

Definition 2.2. A functional φ ∈ C1(E,R) satisfies (PS) condition, if every sequence that
{xm} ⊂ E, φ′(xm) → 0 and φ(xm) being bounded, possesses a convergent subsequence.

Then [25, Theorem 5.29] can be stated as follows.

TheoremA. Let E be a real Hilbert space with E = E1⊕E2, E2 = E⊥
1 and inner product 〈·, ·〉. Suppose

φ ∈ C1(E,R) satisfies (PS) condition,

(I1) φ(x) = (1/2)〈Ax, x〉+ψ(x), whereA(z) = A1P1x+A2P2x andAi : Ei → Ei is bounded
and selfadjoint, i = 1, 2,

(I2) ψ ′ is compact, and

(I3) there exists a subspace Ẽ ⊂ E and sets S ⊂ E, Q ⊂ Ẽ and constants α > ω such that

(i) S ⊂ E1 and φ|S ≥ α,

(ii) Q is bounded and φ|∂Q ≤ ω,

(iii) S and ∂Q link.

Then φ possesses a critical value c ≥ α.

Let

F(t, x) =
∫x1

0
f1
(

t, y1, x2, . . . , xn

)

dy1 + · · · +
∫xn

0
fn
(

t, x1, . . . , xn−1, yn

)

dyn. (2.2)

Then F(t, 0) = 0 and F ′(t, x) = (f1, f2, . . . , fn), where F ′ denotes the gradient of F with respect
to x. We have the following lemma.
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Lemma 2.3. Under the conditions of Theorem 1.1, the function F satisfies the following.

(i) F(t, x) ∈ C1([0, 2r]×R
n,R) is 2r-periodic with respect to t and F(t, x) ≥ 0 for all (t, x) ∈

[0, 2r] × R
n,

(ii)

lim
|x|→ 0

F(t, x)

|x|2
= 0, uniformly in t, (2.3)

lim
|x|→∞

F(t, x)

|x|2
= ∞, uniformly in t. (2.4)

(iii) There exist constants c2, L > 0, and R > 0 such that for all x = (x1, . . . , xn) ∈ R
n with

|x| > L and |xi| ≥ R, i = 1, 2, . . . , n, and t ∈ [0, 2r]

0 < μF(t, x) ≤ (x, F ′(t, x)
)

, (2.5)
∣
∣F ′(t, x)

∣
∣ ≤ c2|x|λ, (2.6)

where (·, ·) denotes the inner product in R
n.

Proof. The definition of F implies (i) directly. We prove case (ii) and case (iii).
Case (ii). Let

x1 = r sin θ1,

x2 = r sin θ1conθ2,

x3 = r sin θ1 sin θ2conθ3,

· · ·
xn−1 = r sin θ1 sin θ2 sin θ3 · · · sin θn−2 cos θn−1,
xn = r sin θ1 sin θ2 sin θ3 · · · sin θn−2 sin θn−1.

(2.7)

Then |x|2 = r2 and |x| → 0 or |x| → ∞ is equivalent to r → 0 or r → ∞, respectively.
From (1.5) and L’Hospital rules, we have (2.3) by a direct computation.
Case (iii). By (H2), we have a constant L1 =

√
nR1 such that 0 < μF(t, x) ≤ (x, F ′(t, x))

for |x| > L1 with |xi| ≥ R1.
Now we prove |F ′(t, x)| ≤ c2|x|λ for |x| > L2 =

√
nR2 with |xi| ≥ R2, that is,

f2
1 (t, x1) + · · · + f2

n(t, xn) ≤ c22

(

x2
1 + · · · + x2

n

)λ
. (2.8)

Firstly, it follows from |f1(t, x1)| ≤ c1|x1|λ that f2
1 (t, x1) ≤ c21|x1|2λ.

Now we show f2
1 (t, x1) + f2

2 (t, x2) ≤ c21(|x1|2λ + |x2|2λ). Let |x1|λ = τ cos θ, |x2|λ = τ sin θ.
By 1 < λ < 2, 1 − sin2θ ≥ (1 − sin2/λ)λ, that is, (cos2/λ + sin2/λ)λ ≥ 1. Then

(

x2
1 + x2

2

)λ
= τ2

(

cos2/λθ + sin2/λθ
)

≥ τ2 = |x1|2λ + |x2|2λ. (2.9)
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By reducing method, we have

(

x2λ
1 + · · · + x2λ

n

)

≤
(

x2
1 + · · · + x2

n

)λ
= |x|2λ. (2.10)

Thus, the inequality |F ′(t, x)| ≤ c2|x|λ for |xi| ≥ R2 holds.
Take L = max{L1, L2} and R = max{R1, R2}. Then (2.5) and (2.6) hold with |x| > L and

|xi| > R.

Below we will construct a variational functional of (1.4) defined on a suitable Hilbert
space such that finding 4r-periodic solutions of (1.4) is equivalent to seeking critical points
of the functional.

Firstly, we make the change of variable

t �−→ π

2r
t = ν−1t. (2.11)

Then (1.4) can be changed to

x′(t) = −νf
(

t, x
(

t − π

2

))

, (2.12)

where f is π-periodic with respect to t. Therefore we only seek 2π-periodic solution of (2.12)
which corresponds to the 4r-periodic solution of (1.4).

We work in the Sobolev spaceH = W1/2,2(S1,R2N). The simplest way to introduce this
space seems as follows. Every function x ∈ L2(S1,Rn) has a Fourier expansion:

x(t) = a0 +
+∞∑

m=1

(am cosmt + bm sinmt), (2.13)

where am, bm are n-vectors. H is the set of such functions that

‖x‖2 = |a0|2 +
+∞∑

m=1

m
(

|am|2 + |bm|2
)

< +∞. (2.14)

With this norm ‖ · ‖, H is a Hilbert space induced by the inner product 〈·, ·〉 defined by

〈

x, y
〉

= 2π
(

a0, a
′
0
)

+ π
∞∑

m=1

m
((

am, a
′
m

)

+
(

bm, b
′
m

))

, (2.15)

where y = a′
0 +
∑+∞

m=1(a
′
m cosmt + b′m sinmt).

We define a functional φ : H → R by

φ(x) =
∫2π

0

1
2

(

x′
(

t +
π

2

)

, x(t)
)

dt + ν

∫2π

0
F(t, x(t))dt. (2.16)
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By Riesz representation theorem, H identifies with its dual space H∗. Then we define
an operator A:H→H∗=H by extending the bilinear form:

〈

Ax, y
〉

=
∫2π

0

(

x′
(

t +
π

2

)

, y(t)
)

dt, ∀x, y ∈ H. (2.17)

It is not difficult to see that A is a bounded linear operator onH and kerA = R
n.

Define a mapping ψ : H → R as

ψ(x) = ν

∫2π

0
F(t, x(t))dt, (2.18)

Then the functional φ can be rewritten as

φ(x) =
1
2
〈Ax, x〉 + ψ(x), ∀x ∈ H. (2.19)

According to a standard argument in [24], one has for any x, y ∈ H,

〈

φ′(x), y
〉

=
∫2π

0

1
2

(

x′
(

t +
π

2

)

− x′
(

t − π

2

)

, y(t)
)

dt + ν

∫2π

0

(

f(t, x(t)), y(t)
)

dt. (2.20)

Moreover according to [28], ψ ′ : H → H is a compact operator defined by

〈

ψ ′(x), y
〉

= ν

∫2π

0

(

f(t, x(t)), y(t)
)

dt. (2.21)

Our aim is to reduce the existence of periodic solutions of (2.12) to the existence of
critical points of φ. For this we introduce a shift operator Γ : H → H defined by

Γx(t) = x
(

t +
π

2

)

. (2.22)

It is easy to compute that Γ is bounded and linear. Moreover Γ is isometric, that is, ‖Γx‖ = ‖x‖
and Γ4 = id, where id denotes the identity mapping on H.

Write

E =
{

x ∈ H : Γ2x(t) = −x(t)
}

. (2.23)

Lemma 2.4. Critical points of φ|E over E are critical points of φ onH, where φ|E is the restriction of
φ over E.

Proof. Note that any x ∈ E is 2π-periodic and f is odd with respect to x. It is enough for us to
prove 〈φ′(x), y〉 = 0 for any y ∈ H and x being a critical point of φ in E.
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For any y ∈ H, we have

〈

Γ2φ′(x), y
〉

=
〈

Γ2Ax, y
〉

+
〈

Γ2ψ ′(x), y
〉

=
〈

Ax,Γ−2y
〉

+
〈

ψ ′(x),Γ−2y
〉

=
∫2π

0

(

x′
(

t +
π

2

)

, y(t − π)
)

dt + ν

∫2π

0

(

f(t, x(t)), y(t − π)
)

dt

=
∫2π

0

(

x′
(

t +
π

2
+ π

)

, y(t)
)

dt + ν

∫2π

0

(

f(t + π, x(t + π)), y(t)
)

dt

=
∫2π

0

(

−x′
(

t +
π

2

)

, y(t)
)

dt + ν

∫2π

0

(

f(t,−x(t)), y(t))dt

= −
∫2π

0

(

x′
(

t +
π

2

)

, y(t)
)

dt − ν

∫2π

0

(

f(t, x(t)), y(t)
)

dt

=
〈−φ′(x), y

〉

.

(2.24)

This yields Γ2φ′(x) = −φ′(x), that is, φ′(x) ∈ E.
Suppose that x is a critical point of φ in E. We only need to show that 〈φ′(x), y〉 = 0 for

any y ∈ H. Writing y = y1 ⊕ y2 with y1 ∈ E, y2 ∈ E⊥ and noting φ′(x) ∈ E, one has

〈

φ′(x), y
〉

=
〈

φ′(x), y1
〉

+
〈

φ′(x), y2
〉

= 0. (2.25)

The proof is complete.

Remark 2.5. By Lemma 2.4, we only need to find critical points of φ|E over E. Therefore in the
following φ will be assumed on E.

For x ∈ E, x(t + π) = −x(t) yields that a0 = 0, where a0 is in the Fourier expansion of
x. Thus kerA|E = {0}. Moreover for any x, y ∈ E,

〈

Ax, y
〉

=
∫2π

0

(

x′
(

t +
π

2

)

, y(t)
)

dt = −
∫2π

0

(

x
(

t +
π

2

)

, y′(t)
)

dt

= −
∫2π

0

(

x(t), y′
(

t − π

2

))

dt =
∫2π

0

(

x(t), y′
(

t +
π

2

))

dt

=
〈

x,Ay
〉

.

(2.26)

Hence A is self-adjoint on E.
Let E+ and E− denote the positive definite and negative definite subspace of A in E,

respectively. Then E = E+ ⊕E−. Letting E1 = E+, E2 = E−, we see that (I1) of Theorem A holds.
Since ψ ′ is compact, (I2) of Theorem A holds. Now we establish (I3) of Theorem A by the
following three lemmas.

Lemma 2.6. Under the assumptions of Theorem 1.1, (i) of (I3) holds for φ.

Proof. From the assumptions of Theorem 1.1 and Lemma 2.3, one has

F(t, x) ≤ c3 + c4|x|λ+1, ∀(t, x) ∈ [0, π] × R
n. (2.27)
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By (2.3), for any ε > 0, there is a δ > 0 such that

F(t, x) ≤ ε|x|2, ∀t ∈ [0, π], |x| ≤ δ. (2.28)

Therefore, there is an M = M(ε) > 0 such that

F(t, x) ≤ ε|x|2 +M|x|λ+1, ∀(t, x) ∈ [0, π] × R
n. (2.29)

Since E is compactly embedded in Ls(S1,Rn) for all s ≥ 1 and by (2.29), we have

∫2π

0
F(t, x)dt ≤ ε‖x‖2L2 +M‖x‖λ+1Lλ+1 ≤

(

εc5 +Mc6‖x‖λ−1
)

‖x‖2. (2.30)

Consequently, for x ∈ E1 = E+,

φ(x) ≥ ‖x‖2 − ν
(

εc5 +Mc6‖x‖λ−1
)

‖x‖2. (2.31)

Choose ε = (3νc5)
−1 and ρ so that 3νMc6ρ

λ−1 = 1. Then for any x ∈ ∂Bρ ∩ E1,

φ(x) ≥ 1
3
ρ2. (2.32)

Thus φ satisfies (i) of (I3) with S = ∂Bρ ∩ E1 and α = (1/3)ρ2.

Lemma 2.7. Under the assumptions of Theorem 1.1, φ satisfies (ii) of (I3).

Proof. Set e ∈ S = ∂Bρ ∩ E1 and let

Q = {se : 0 ≤ s ≤ 2s1} ⊕ B2s1 ∩ E2, (2.33)

where s1 is free for the moment.
Let Ẽ = E− ⊕ span{e}. Write

K =
{

x ∈ Ẽ : ‖x‖ = 1
}

, λ− = inf
x∈E−,‖x‖=1

∣
∣
〈

Ax−, x−〉∣∣, λ+ = sup
x∈E+,‖x‖=1

|〈Ax+, x+〉|.

(2.34)

Case (1). If ‖x−‖ > γ‖x+‖with γ =
√

λ+/λ−, one has

φ(sx) =
1
2
〈Asx+, sx+〉 + 1

2
〈

Asx−, sx−〉 − ν

∫2π

0
F(t, sx)dt

≤ −1
2
λ−s2

∥
∥x−∥∥2 +

1
2
λ+s2‖x+‖2 ≤ 0.

(2.35)
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Case (2). If ‖x−‖ ≤ γ‖x+‖, we have

1 = ‖x‖2 = ‖x+‖2 + ∥∥x−∥∥2 ≤
(

1 + γ2
)

‖x+‖2. (2.36)

That is

‖x+‖2 ≥ 1
1 + γ2

> 0. (2.37)

Denote K̃ = {x ∈ K : ‖x−‖ ≤ γ‖x+‖}. By appendix, there exists ε1 > 0 such that ∀u ∈ K̃,

meas{t ∈ [0, π] : |u(t)| ≥ ε1} ≥ ε1. (2.38)

Now for x = x+ + x− ∈ K̃, set Ωx = {t ∈ [0, π] : |x(t)| ≥ ε1}. By (2.4), for a constant M0 =
‖A‖/νε31 > 0, there is an L3 > 0 such that

F(t, z) ≥ M0|x|2, ∀|x| ≥ L3 uniformly in t. (2.39)

Choosing s1 ≥ L3/ε1, for s ≥ s1,

F(t, sx(t)) ≥ M0|sx(t)|2 ≥ M0s
2ε21, ∀t ∈ Ωx. (2.40)

For s ≥ s1, we have

φ(sx) =
1
2
s2〈Ax+, x+〉 + 1

2
s2
〈

Ax−, x−〉 − ν

∫2π

0
F(t, sx)dt

≤ 1
2
‖A‖s2 − ν

∫

Ωx

F(t, sx)dt

≤ 1
2
‖A‖s2 −M0s

2ε21meas(Ωx)

≤ 1
2
‖A‖s2 −M0s

2ε31 = −1
2
‖A‖s2 < 0.

(2.41)

Henceforth, φ(sx) ≤ 0 for any x ∈ K and s ≥ s1, that is, φ|∂Q ≤ 0. Then (ii) of (I3) holds.

Lemma 2.8. S and ∂Q link.

Proof. Suppose ϕ ∈ Λ and ϕ(∂Q)∩S = ∅ for all t ∈ [0, π]. Thenwe claim that for each t ∈ [0, π],
there is a w(t) ∈ Q such that φ(t,w(t)) ∈ S, that is,

Pϕ(w(t)) = 0, ‖w(t)‖ = ρ, (2.42)

where P : E → E− is a projection. Define

G : [0, π] ×Q −→ E− × Re (2.43)
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as follows:

G(t, u + se) =
[

(1 − t)u + Pϕ(u + se)
]

+
[

(1 − t)s + t
∥
∥(I − P)ϕ(u + se)

∥
∥ − ρ

]

e. (2.44)

It is easy to see that

G(t, u + se) = u +
(

s − ρ
)

e /= 0, as u + se ∈ ∂Q. (2.45)

However,

G(1, u + se) = Pϕ(u + se) +
[∥
∥(I − P)ϕ(u + se)

∥
∥ − ρ

]

e

G(0, u + se) = u +
(

s − ρ
)

e.
(2.46)

According to topological degree theory in [29], we have

deg(G(1, ·);Q, 0) = deg(G(0, ·);Q, 0)

= deg
(

idE− ;E− ∩ B2s1 , 0
)

deg
(

s − ρ, (0, 2s1), 0
)

= 1
(2.47)

since ρ ∈ (0, 2s1). Therefore S and ∂Q link.

Now it remains to verify that φ satisfies (PS)-condition.

Lemma 2.9. Under the assumptions of Theorem 1.1, φ satisfies (PS)-condition.

Proof. Suppose that

∣
∣φ(xm)

∣
∣ ≤ M′, φ′(xm) −→ 0, as m −→ ∞. (2.48)

We first show that {xm} is bounded. If {xm} is not bounded, then by passing to a subsequence
if necessary, let ‖xm‖ → +∞ as m → +∞.

By (2.4), there exists a constantM′′ > 0 such that F(t, x) > c7|x|2 as |x| > M′′ . By (2.5),
one has

2φ(xm) −
〈

φ′(xm), xm

〉

=
∫2π

0

((

xm, νF
′(t, xm)

) − 2νF(t, xm)
)

dt

≥
∫2π

0
ν
(

μ − 2
)

F(t, xm)dt

≥ c7ν
(

μ − 2
)
∫2π

0
|xm|2dt.

(2.49)

This yields

∫2π
0 |xm|2dt
‖xm‖ −→ 0 as m −→ ∞. (2.50)
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Write κ = 1/2(λ − 1). By (2.6), there is a constant c9 > 0 such that

∣
∣F ′(t, x)

∣
∣
κ ≤ cκ2 |x|λκ + c8, ∀(t, x) ∈ [0, π] × R

n. (2.51)

Therefore,

∫2π

0

∣
∣F ′(t, xm)

∣
∣
k
dt ≤

∫2π

0

(

cκ2 |xm|λκ + c8
)

dt

≤ c9

(∫2π

0
‖xm‖2dt

)1/2(∫2π

0
‖xm‖2(κλ−1)dt

)1/2

+ c10

≤ c11

(∫2π

0
‖xm‖2dt

)1/2

‖xm‖κλ−1 + c12.

(2.52)

This inequality and (2.50) imply that

⎛

⎜
⎝

(∫2π
0 |F ′(t, xm)|κdt

)1/κ

‖xm‖κ

⎞

⎟
⎠

1/κ

≤
c11
(∫2π

0 ‖xm‖2dt
)1/2

‖xm‖1/2
‖xm‖κλ−1
‖xm‖κ−1/2

+
c12

‖xm‖κ
−→ 0 (2.53)

asm → ∞, since κ > 1.
Denote xm = x+

m + x−
m ∈ E+ ⊕ E−. We have

〈

φ′(xm), x−
m

〉

=
〈

Ax−
m, x

−
m

〉 −
∫2π

0

(

x−
m, F

′(t, xm)
)

dt

≥ 〈Ax−
m, x

−
m

〉 −
∫2π

0

∣
∣x−

m

∣
∣
∣
∣F ′(t, xm)

∣
∣dt

≥ 〈Ax−
m, x

−
m

〉 −
(∫2π

0

∣
∣F ′(t, xm)

∣
∣
κ
dt

)1/κ

Cκ

∥
∥x−

m

∥
∥,

(2.54)

where Cκ > 0 is a constant independent of m.
By the above inequality, one has

〈Ax−
m, x

−
m〉

‖xm‖‖x−
m‖

≤
∥
∥φ′(xm)

∥
∥‖x−

m‖
‖xm‖‖x−

m‖
+

(∫2π
0 |F ′(t, xm)|κdt

)1/κ

‖xm‖
Cκ‖x−

m‖
‖x−

m‖
−→ 0 (2.55)

asm → ∞. This yields

‖x−
m‖

‖xm‖ −→ 0 as m −→ ∞. (2.56)
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Similarly, we have

‖x+
m‖

‖xm‖ −→ 0 as m −→ ∞. (2.57)

Thus it follows from (2.56) and (2.57) that

1 =
‖xm‖
‖xm‖ ≤ ‖x+

m‖ + ‖x−
m‖

‖xm‖ −→ 0 as m −→ ∞, (2.58)

which is a contradiction. Hence {xm} is bounded.
Belowwe show that {xm} has a convergent subsequence. Notice that kerA|E = {0} and

ψ ′ : H → H is compact. Since {xm} is bounded, we may suppose that

ψ ′(xm) −→ y as m −→ ∞. (2.59)

Since A has continuous inverse A−1 in E, it follows from

Axm = φ′(xm) + ψ ′(xm) (2.60)

that

xm = A−1(φ′(xm) + ψ ′(xm)
) −→ A−1y as m −→ ∞. (2.61)

Henceforth {xm} has a convergent subsequence.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. It is obviously that Theorem 1.1 holds from Lemmas 2.3, 2.4, 2.6, 2.7, 2.8,
and 2.9 and Theorem A.

Appendix

The purpose of this appendix is to prove the following lemma. The main idea of the proof
comes from [26].

Lemma A.1. There exists ε1 > 0 such that, for all u ∈ K̃,

meas{t ∈ [0, π] : |u(t)| ≥ ε1} ≥ ε1. (A.1)

Proof. If (A.1) is not true, ∀k > 0, there exists uk ∈ K̃ such that

meas
{

t ∈ [0, π] : |u(t)| ≥ 1
k

}

≤ 1
k
. (A.2)
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Write uk = u−
k+u

+
k ∈ Ẽ. Notice that dimspan{e} < ∞ and ‖u+

k‖ ≤ 1. In the sense of subsequence,
we have

u+
k −→ u+

0 ∈ span{e} as k −→ +∞. (A.3)

Then (2.37) implies that

∥
∥u+

0

∥
∥
2 ≥ 1

1 + γ2
> 0. (A.4)

Note that ‖u−
k
‖ ≤ 1, in the sense of subsequence u−

k
⇀ u−

0 ∈ E− as k → +∞. Thus in the
sense of subsequence,

uk ⇀ u0 = u−
0 + u+

0 as k −→ +∞. (A.5)

This means that uk → u0 in L2, that is,

∫π

0
|uk − u0|2dt −→ 0 as k −→ +∞. (A.6)

By (A.4) we know that ‖u0‖ > 0. Therefore,
∫π

0 |u0|2dt > 0. Then there exist δ1 > 0, δ2 > 0 such
that

meas{t ∈ [0, π] : |u0(t)| ≥ δ1} ≥ δ2. (A.7)

Otherwise, for all n > 0, we must have

meas
{

t ∈ [0, π] : |u0(t)| ≥ 1
n

}

= 0, (A.8)

that is, meas{t ∈ [0, π] : |u0(t)| ≤ 1/n} = 1, 0 <
∫π

0 |u0|2dt < 1/n2 → 0 as n → +∞. We get a
contradiction. Thus (A.7) holds. Let Ω0 = {t ∈ [0, π] : |u0(t)| ≥ δ1}, Ωk = {t ∈ [0, π] : |u0(t)| ≤
1/k}, and Ω⊥

k
= [0, π] \Ωk. By (A.2), we have

meas(Ωk ∩Ω0) = meas
(

Ω0 −Ω0 ∩Ω⊥
k

)

≥ meas(Ω0) −meas
(

Ω0 ∩Ω⊥
k

)

≥ δ2 − 1
k
. (A.9)

Let k be large enough such that δ2 − 1/k ≥ (1/2)δ2 and δ1 − 1/k ≥ (1/2)δ1. Then we have

|uk − u0|2 ≥
(

δ1 − 1
k

)2

≥
(
1
2
δ1

)2

, ∀t ∈ Ωk ∩Ω0. (A.10)
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This implies that

∫π

0
|uk − u0|2dt ≥

∫

Ωk∩Ω0

|uk − u0|2dt ≥
(
1
2
δ1

)2

·meas(Ωk ∩Ω0)

≥
(
1
2
δ1

)2

·
(

δ2 − 1
k

)

≥
(
1
2
δ1

)2(1
2
δ2

)

> 0.

(A.11)

This is a contradiction to (A.6). Therefore the lemma is true and (A.1) holds.
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