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1. Introduction and preliminaries

Differential equations with piecewise constant argument, which were firstly considered by
Cooke and Wiener [1], and Shah and Wiener [2], usually describe hybrid dynamical systems
(a combination of continuous and discrete) and so combine properties of both differential and
difference equations. Over the years, great attention has been paid to the study of the existence
of almost-periodic-type solutions of this type of equations. There are many remarkable works
on this field (see [3–10] and references therein). Particularly, the second-order neutral delay-
differential equations with piecewise constant argument of the form

(
x(t) + px(t − 1)

)′′ = qx

(
2
[
t + 1
2

])
+ f(t) (1.1)

have been intensively studied for |p|/= 1 by different methods, where [·] denotes the greatest
integer function, p, q are real nonzero constants, and f(t) is almost periodic. In [6], Li
introduced the concepts of odd-weak solution, even-weak solution, and weak solution of (1.1).
Some theorems about the existence of almost-periodic weak solutions were obtained while
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putting restriction on the function f . Papers [7, 8] concentrated on dealing with the existence
and uniqueness of pseudo-almost-periodic solution by putting some restrictions on the roots of
characteristic equation instead of on the function f . If f(t) is replaced by a nonlinear function
g(t, x(t), x([t])), some results about the existence and uniqueness of almost-periodic solution
or pseudo-almost-periodic solution were obtained in [8–10].

Up to now, there have been no papers concerning the solutions or weak solutions of (1.1)
when p = 1. In this paper, we study this case, namely, the equation

(
x(t) + x(t − 1)

)′′ = qx

(
2
[
t + 1
2

])
+ f(t). (1.2)

In constructing almost-periodic-type solution or weak solution of (1.1) in [6–10], the
condition |p|/= 1 is essential because it guarantees the convergence of the related series. To
investigate such equation as (1.2), we have to give a quite different consideration.

Now we give some definitions. Throughout this paper, Z, R, and C denote the sets of
integers, real, and complex numbers, respectively. The following definitions can be found in
any book, say [11], on almost-periodic functions.

Definition 1.1. (1). A subset P of R is said to be relatively dense in R if there exists a number
p > 0 such that P ∩ [t, t + p]/=∅ for all t ∈ R.

(2). A continuous function f : R→R is called almost periodic (abbreviated as AP(R)) if
the ε-translation set of f

T(f, ε) =
{
τ ∈ R :

∣∣f(t + τ) − f(t)
∣∣ < ε, ∀t ∈ R} (1.3)

is relatively dense for each ε > 0.

Definition 1.2. (1) For a sequence {x(n) : n ∈ Z}, define [x(n), x(n + p)] = {x(n), . . . , x(n + p)}
and call it sequence interval with length p. A subset P of Z is said to be relatively dense in Z if
there exists a positive integer p such that P ∩ [n, n + p]/=∅ for all n ∈ Z.

(2) A bounded sequence x : Z→R (resp., C) is called an almost-periodic sequence
(abbreviated asAPS(R)) (resp., abbreviated as APS(C)) if the ε-translation set of x

T(x, ε) =
{
τ ∈ Z :

∣
∣x(n + τ) − x(n)

∣
∣ < ε, ∀n ∈ Z}

(1.4)

is relatively dense for each ε > 0.
As mentioned in [6], we have the following definitions.

Definition 1.3. A continuous function x : R→R is called an odd-weak solution (resp., even-
weak solution) of (1.2) if the following conditions are satisfied:

(i) x(t) satisfies (1.2) for t ∈ R, t /=n ∈ Z;

(ii) the one-sided derivatives (x(t) + x(t − 1))′ exist at 2n − 1 (resp., 2n), n ∈ Z;

(iii) the one-sided second-order derivatives (x(t) + x(t − 1))′′ exist at 2n (resp., 2n − 1),
n ∈ Z.
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Both odd-weak solution (abbreviated as ow-solution) and even-weak solution (abbre-
viated as ew-solution) of (1.2) are called weak solution (abbreviated as w-solution) of (1.2).
It should be pointed out that if x(t) is an ow-solution (resp., ew-solution) of (1.2), then
(x(t)+x(t−1))′ are continuous at 2n (resp., 2n−1), n ∈ Z; ow-solution of (1.2) is not equivalent
to ew-solution of (1.2); x(t) is a solution of (1.2) if it is an ow-solution as well as an ew-solution
of (1.2).

Let p1(λ) = λ3 − (1 + q)λ2 − λ + 1 and p2(λ) = (1 − q/2)λ3 − λ2 − (1 + q/2)λ + 1, then the
following hold.

Lemma 1.4. Assume q /= 0. The roots of polynomials pi(λ) are of modules different from 1, i = 1, 2.

Proof. It is clear that 1 and −1 are not the roots of pi(λ) because q /= 0, i = 1, 2. Denote the three
roots of p1(λ) by λ1, λ2, λ3 ∈ C, without loss of generality, let λ1 = eiθ, λ2 = e−iθ, here θ is a real
constant, thus we obtain λ3 = −1, which is impossible. So, the modules of roots of polynomial
p1(λ) are not 1.

If q = 2, it is obvious that the result holds for p2(λ). If q /= 2, denote the three roots of p2(λ)
by λ′1, λ

′
2, λ

′
3 ∈ C, without loss of generality, let λ′1 = eiθ, λ′2 = e−iθ, here θ is a real constant, then

we have

λ′1λ
′
2 = 1, λ′1λ

′
2λ

′
3 =

−1
(1 − q/2)

,

λ′1 + λ′2 + λ′3 =
1

(1 − q/2)
,

λ′1λ
′
2 + λ′1λ

′
3 + λ′2λ

′
3 = −(1 + q/2)

(1 − q/2)
.

(1.5)

This implies that q = 0 and contradicts the hypothesis. The proof is complete.

The rest of this paper is organized as follows. Section 2 is devoted to the main theorems
and their proofs. In Section 3, some examples are given to explain our results and illuminate
the relationship among solution, ow-solution, and ew-solution.

2. The main results

Let

f
(1)
n =

∫n+1

n

∫s

n

f(σ)dσ ds, f
(2)
n =

∫n−1

n

∫ s

n

f(σ)dσ ds, hn = f
(1)
n + f

(2)
n . (2.1)

To present the main results of this paper, we need the following assumption.
(H) f(t) ∈ AP(R) is such that there exists g(t) ∈ AP(R) such that f(t) = g(t) − g(t − 2),

for all t ∈ R.

Remark 2.1. (1) AP(R) is a translation invariant Banach space. For every g ∈ AP(R), one has
g(· − 2) ∈ AP(R) too. Set f(t) = g(t) − g(t − 2), then f satisfies (H), and therefore there exist a
great number of functions satisfying the assumption (H). (2) Reference [5] uses an assumption
similar to (H) implicitly.

Let E = {{an} ∈ APS(R) : an = ân+2 − ân, for all n ∈ Z, {ân} ∈ APS(R)}. We have the
following lemma.
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Lemma 2.2. Under the assumption (H), one has {f (1)
n }, {f (2)

n }, {hn} ∈ E.

Proof. By (H), there exists g(t) ∈ AP(R) such that f(t) = g(t) − g(t − 2), t ∈ R. Let f̂ (1)
n+2 =

g
(1)
n =

∫n+1
n

∫s
ng(σ)dσ ds and f̂

(2)
n+2 = g

(2)
n =

∫n−1
n

∫s
ng(σ)dσ ds, it is easy to verify that {f (1)

n }, {f (2)
n },

{hn}, {g(1)
n }, {g(2)

n }, {f̂ (1)
n },{f̂ (2)

n } ∈ APS(R), and f
(1)
n = g

(1)
n −g(1)

n−2 = f̂
(1)
n+2−f̂

(1)
n , f (2)

n = g
(2)
n −g(2)

n−2 =
f̂

(2)
n+2 − f̂

(2)
n , for all n ∈ Z, that is, {f (1)

n }, {f (2)
n } ∈ E. Set ĥn+2 = gn = g

(1)
n + g

(2)
n , similarly we can

obtain {ĥn}, {gn} ∈ APS(R), and hn = ĥn+2 − ĥn = gn − gn−2, for all n ∈ Z, that is, {hn} ∈ E.

Lemma 2.3. Suppose that X is a Banach space, L(X) denotes the set of bounded linear operators from
X to X, A ∈ L(X) and ‖A‖ < 1, then Id −A is bounded invertible and

(Id −A)−1 =
∞∑

n=0

An,

∥∥(I −A)−1
∥∥ ≤ 1

(
1 − ‖A‖) ,

(2.2)

where A0 = Id, Id is an identical operator.

The proof of Lemma 2.3 can be found in any book of functional analysis. We remark that
if A is a linear operator and its inverse exists, then A−1 is also a linear operator.

To get w-solutions or solutions of (1.2), we start with its corresponding difference
equations.

Suppose that x(t) is an ow-solution of (1.2), then x(t) satisfies the three conditions in
Definition 1.3. By a process of integrating (1.2) two times in t ∈ [2n− 1, 2n+ 1) as in [6–10], we
can easily get

x(2n + 1) − (1 + q)x(2n) − x(2n − 1) + x(2n − 2) = h2n. (2.3)

Similarly if x(t) is an ew-solution of (1.2), by the process of integrating (1.2) two times
in t ∈ [2n − 2, 2n), we get

(
1 − q

2

)
x(2n) − x(2n − 1) −

(
1 +

q

2

)
x(2n − 2) + x(2n − 3) = h2n−1. (2.4)

These lead to the difference equations

x2n+1 − (1 + q)x2n − x2n−1 + x2n−2 = h2n, (2.5)
(
1 − q

2

)
x2n − x2n−1 −

(
1 +

q

2

)
x2n−2 + x2n−3 = h2n−1. (2.6)

From the analysis above, one sees that if x(t) is an ow-solution (resp., ew-solution) of
(1.2), then one gets (2.5) (resp., (2.6)); if x(t) is a solution of (1.2), then one gets both (2.5) and
(2.6). Conversely, we will show that the w-solutions or solutions of (1.2) are obtained via the
solutions of (2.5) and (2.6). In order to get the solutions of (2.5) and (2.6), we will consider the
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following difference equations:

xn+1 − (1 + q)xn − xn−1 + xn−2 = hn, (2.7)
(
1 − q

2

)
xn − xn−1 −

(
1 +

q

2

)
xn−2 + xn−3 = hn−1. (2.8)

Notice that for any sequences {an}, {bn}, and α, β ∈ R, one has α{an}+β{bn} = {cn : cn =
αan + βbn, n ∈ Z}. Especially, {an} = {bn} ⇔ an = bn, for all n ∈ Z. In virtue of studying (2.7)
and (2.8), we have the following theorem.

Theorem 2.4. Under the assumption (H), (2.7) (resp., (2.8)) has a unique solution {xn} ∈ E (resp.,
{yn} ∈ E).

Proof. As the proof of [7, Theorem 9], define A : X→X by A{xn} = {xn+1}, where X is the
Banach space consisting of all bounded sequences {xn} in C with ‖{xn}‖ = supn∈Z|xn|. Notice
Lemmas 1.4 and 2.3, we know that (2.7) has a unique solution {xn} = p1(A)−1{hn+2} ∈ APS(R).
By the process of proving Lemma 2.2, we have {xn} = p1(A)−1{hn+2} = p1(A)−1{gn+2} −
p1(A)−1{gn} = {x̂n+2} − {x̂n}, that is, xn = x̂n+2 − x̂n, for all n ∈ Z, where {x̂n} = p1(A)−1{gn} ∈
APS(R) (this follows in the same way as [7, Theorem 9]). Therefore, (2.7) has a unique
solution {xn} ∈ E.

Similarly, (2.8) has a unique solution {yn} = p2(A)−1{hn+2} ∈ APS(R) and {yn} =
p2(A)−1{hn+2} = p2(A)−1{gn+2} − p2(A)−1{gn} = {ŷn+2} − {ŷn}, that is, yn = ŷn+2 − ŷn, for all n ∈
Z, where {ŷn} = p2(A)−1{gn} ∈ APS(R). Therefore, (2.8) has a unique solution {yn} ∈ E. This
completes the proof.

Remark 2.5. (i) In Theorem 2.4, since {x̂n} = p1(A)−1{gn} and {ŷn} = p2(A)−1{gn}, we can easily
get

x̂2n+3 − (1 + q)x̂2n+2 − x̂2n+1 + x̂2n = g2n, (2.9)
(
1 − q

2

)
ŷ2n − ŷ2n−1 −

(
1 +

q

2

)
ŷ2n−2 + ŷ2n−3 = g2n−3. (2.10)

It must be stressed that (2.9) and (2.10) are important, since they can guarantee the continuity
of the w-solutions or solutions of (1.2) constructed in Theorems 2.6, 2.7, and 2.8.

(ii) Let F1 = {{an} : {an} ∈ E with {ân} ∈ APS(R) satisfying (2.9) }, and F2 = {{bn} :
{bn} ∈ E with {b̂n} ∈ APS(R) satisfying (2.10) }. Notice the fact that the solution of (2.7)
(resp., (2.8)) must be a solution of (2.5) (resp., (2.6)), it is false conversely. So, suppose the
assumption (H) holds, it follows from Theorem 2.4 that (2.5) (resp., (2.6)) has solution {xn} ∈
F1 (resp., {yn} ∈ F2). Moreover, such solutions may not be unique. See Example 3.1 at the end
of this paper.

In the following, we focus on seeking the almost-periodic w-solutions or solutions of
(1.2) via the almost-periodic sequence solutions of (2.5) and (2.6). As mentioned above, it is
due to p = 1 that, to get almost-periodic w-solutions or solutions of (1.2), we have to use a
way quite different from [6–10]. Our main idea is to construct solutions or w-solutions of (1.2)
piecewise. It seems that this is a new technique.
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Without loss of generality, suppose that {xn} ∈ F1 (resp., {yn} ∈ F2) is an arbitrary
solution of (2.5) (resp., (2.6)). To prove the following theorems, we need to introduce some
notations firstly:

ω2n = x2n+1 −
q

2
x2n − x2n−1 − f

(1)
2n

= x̂2n+3 −
q

2
x̂2n+2 − x̂2n+1 − g

(1)
2n −

(
x̂2n+1 −

q

2
x̂2n − x̂2n−1 − g

(1)
2n−2

)

= ω̂2n+2 − ω̂2n;

ω2n−1 =
(
1 − q

2

)
y2n − y2n−2 − f

(1)
2n−1

=
(
1 − q

2

)
ŷ2n+2 − ŷ2n − g

(1)
2n−1 −

((
1 − q

2

)
ŷ2n − ŷ2n−2 − g

(1)
2n−3

)

= ω̂2n+1 − ω̂2n−1,

(2.11)

where ω̂2n = x̂2n+1 − qx̂2n/2 − x̂2n−1 − g
(1)
2n−2 and ω̂2n−1 = (1 − q/2)ŷ2n − ŷ2n−2 − g

(1)
2n−3. It can be

easily verified that {ω2n}, {ω2n−1}, {ω̂2n}, {ω̂2n−1} ∈ APS(R).
For the existence of the almost-periodic ow-solution of (1.2), we have the following.

Theorem 2.6. Under the assumption (H), (1.2) has an ow-solution x(t) ∈ AP(R) such that x(n) =
xn, for all n ∈ Z.

Proof. Under the assumption (H), define x(t) as

x(t) =

⎧
⎨

⎩

x1(t), t ∈ [2n, 2n + 1)∀n ∈ Z,

x2(t), t ∈ [2n − 1, 2n)∀n ∈ Z,
(2.12)

where

x1(t) = ω̂2n+2 + qx̂2n+2

(
t − 2n − 1

2

)
+
∫ t

t−1

∫ s

2n
g(σ)dσ ds, t ∈ [2n, 2n + 1), ∀n ∈ Z,

x2(t) = x2n + x2n−1 + ω̂2n+2(t − 2n) − ω̂2n(t + 1 − 2n) +
q

2
x̂2n+2(t − 2n)2 − q

2
x̂2n(t + 1 − 2n)2

+
∫ t

2n

∫s

2n
g(σ)dσ ds −

∫ t−1

2n−2

∫ s

2n−2
g(σ)dσ ds, t ∈ [2n − 1, 2n), ∀n ∈ Z.

(2.13)

From (2.9), it follows that x(t) is continuous on R and x(n) = x1(n) = x2(n) = xn, n ∈ Z.
Moreover, for t ∈ [2n, 2n+1), n ∈ Z, one has x(t)+x(t−1) = x1(t)+x2(t−1); for t ∈ [2n−1, 2n),
n ∈ Z, one has x(t) + x(t − 1) = x2(t) + x1(t − 1). By simple calculation, for t ∈ [2n − 1, 2n + 1),
n ∈ Z, we have

x(t) + x(t − 1) = x2n + x2n−1 +ω2n(t − 2n) +
q

2
x2n(t − 2n)2 +

∫ t

2n

∫s

2n
f(σ)dσ ds. (2.14)

Note that (x(t) + x(t − 1))′ = ω2n + qx2n(t − 2n) +
∫ t
2nf(s)ds, this implies that the one-sided

derivatives (x(t) + x(t − 1))′ exist at 2n − 1, n ∈ Z. Since (x(t) + x(t − 1))′′ = qx2n + f(t) =
qx(2[(t + 1)/2]) + f(t), the second-order derivatives (x(t) + x(t − 1))′′ are continuous at 2n,
n ∈ Z. Therefore, x(t) is an ow-solution of (1.2) such that x(n) = xn, n ∈ Z. Furthermore, it is
easy to check that x(t) is almost periodic, we omit the details. The proof is complete.
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For the existence of the almost-periodic ew-solution of (1.2), we have the following.

Theorem 2.7. Under the assumption (H), (1.2) has an ew-solution y(t) ∈ AP(R) such that y(n) =
yn, for all n ∈ Z.

Proof. Under the assumption (H), define y(t) as

y(t) =

⎧
⎨

⎩

y1(t), t ∈ [2n − 2, 2n − 1)∀n ∈ Z,

y2(t), t ∈ [2n − 1, 2n)∀n ∈ Z,
(2.15)

where

y1(t) = y2n−1 + y2n−2 + ω̂2n+1(t − 2n + 1) − ω̂2n−1(t + 2 − 2n) +
q

2
ŷ2n(t − 2n + 1)2

− q

2
ŷ2n(t + 2 − 2n)2 +

∫ t

2n−1

∫s

2n−1
g(σ)dσ ds −

∫ t−1

2n−3

∫s

2n−3
g(σ)dσ ds, t ∈ [2n − 2, 2n − 1),

y2(t) = ω̂2n+1 +
q

2
ŷ2n+2(t − 2n + 1)2 − q

2
ŷ2n(t − 2n)2 +

∫ t

t−1

∫s

2n−1
g(σ)dσ ds, t ∈ [2n − 1, 2n).

(2.16)

From (2.10), it follows that y(t) is continuous onR and y(n) = y1(n) = y2(n) = yn, n ∈ Z.
The rest of the proof is similar to that of Theorem 2.6, we omit the details.

For the existence of almost-periodic solution of (1.2), we have the following.

Theorem 2.8. Under the assumption (H), if {xn} ∈ F1 ∩F2 is the common solution of (2.5) and (2.6),
then (1.2) has a solution x(t) ∈ AP(R) such that x(n) = xn, n ∈ Z. If {yn} replaces {xn}, the
conclusion is still true.

Proof. Since {xn} ∈ F1 ∩ F2 and {x̂n} ∈ APS(R) are solutions of (2.5) and (2.9) respectively,
and they are also solutions of (2.6) and (2.10), respectively, it follows from Theorems 2.6 and
2.7 that, by simple calculation, the almost-periodic ow-solution x(t) constructed as the proof
of Theorem 2.6 with x(n) = xn, n ∈ Z, is the same as the almost-periodic ew-solution y(t)
constructed as the proof of Theorem 2.7 with y(n) = xn, n ∈ Z. This implies x(t) is an almost-
periodic solution of (1.2) such that x(n) = xn, n ∈ Z. If {yn} replaces {xn}, the proof is similar,
we omit the details.

Remark 2.9. As mentioned above, an ow-solution of (1.2) is not equivalent to an ew-solution of
(1.2), and a solution of (1.2) is an ow-solution of (1.2) as well as an ew-solution of (1.2). See
the examples in Section 3.

The following theorem is usually used for judging whether or not a w-solution of (1.2)
is a solution of (1.2).

Theorem 2.10. Suppose that x(t) is a solution of (1.2), then

(
1 − q

2

)
x(2n + 2) −

(
2 +

3q
2

)
x(2n) + x(2n − 2) = h2n + h2n+1. (2.17)
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Proof. If x(t) is a solution of (1.2), then {x(n)} must be common solution of (2.5) and (2.6).
Moreover, (2.6) is equivalent to

(
1 − q

2

)
x2n+2 − x2n+1 −

(
1 +

q

2

)
x2n + x2n−1 = h2n+1. (2.18)

Substituting x(n) into both the above equation and (2.5), then add the resulting equations to
get the result.

3. Some examples

In this section, we first explain how to get almost periodic w-solutions and solutions of (1.2)
specifically. And then, we present two examples: in Example 3.1, we aim mainly to obtain the
almost-periodic solution, and in Example 3.2, we obtain the almost-periodic ow-solution and
ew-solution. Consequently, the relationship among ow-solution, ew-solution, and solution is
shown. Besides, Example 3.1 also illuminates that the solutions in F1 (resp., F2) of (2.5) (resp.,
(2.6)) may not be unique.

Under the assumption (H), it follows from the proof of Theorem 2.6 (resp., 2.7) that we
can get almost-periodic ow-solution (resp., ew-solution) of (1.2) by the following three steps.

(i) Calculate f
(1)
n , f (2)

n , hn, g
(1)
n , g(2)

n , gn,
∫ t
t−1

∫s
ng(σ)dσ ds, t ∈ [n, n + 1), n ∈ Z, and

∫ t
n

∫s
ng(σ)dσ ds − ∫ t−1

n−2
∫s
n−2g(σ)dσ ds, t ∈ [n − 1, n), n ∈ Z.

(ii) Seek the solution {xn} ∈ F1 (resp., {yn} ∈ F2) of (2.5) (resp., (2.6)). Calculate ω2n and
ω̂2n (resp., ω2n+1 and ω̂2n+1).

(iii) By the proof of Theorem 2.6 (resp., 2.7), we get the almost-periodic ow-solution x(t)
(resp., ew-solution y(t)) such that x(n) = xn, (resp., y(n) = yn), n ∈ Z.

On the other hand, it follows from the proof of Theorem 2.8 that we can get the almost-
periodic solution by the following steps.

(i) Seek the solution {xn} in F1 ∩ F2 which is the common solution of (2.5) and (2.6).
Calculate ω2n, ω̂2n, ω2n+1, and ω̂2n+1.

(ii) Find the almost periodic ow-solution x(t) such that x(n) = xn, n ∈ Z or ew-solution
y(t) such that y(n) = xn, n ∈ Z by the above methods. From Theorem 2.8, we know
they are the same, that is, it must be the almost periodic solution.

The following example shows that a solution of (1.2) is an ow-solution of (1.2) as well as
an ew-solution of (1.2), and the solutions in F1 (resp., F2) of (2.5) (resp., (2.6))may not unique.

Example 3.1. Let q = 2, f(t) = cos(πt/2), and g(t) = cos(πt/2)/2, then f(t), g(t) ∈ AP(R), and
f(t) = g(t)−g(t−2), for all t ∈ R, that is, f(t) satisfy the assumption (H). By simple calculation,
we can obtain f

(1)
n = (2/π)2(sin(πn/2) + cos(πn/2)) − 2 sin(πn/2)/π , g(1)

n = f
(1)
n /2, f (2)

n =
(2/π)2(cos(πn/2) − sin(πn/2)) + 2 sin(πn/2)/π , g(2)

n = f
(2)
n /2, and g2n = h2n/2 = (−1)n4/π2,

g2n+1 = h2n+1/2 = 0, for all n ∈ Z.
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(i) We construct the almost-periodic solution of (1.2) as the proof of Theorem 2.8.
Let

xn =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(−1)k−14
3π2

, n = 2k, k ∈ Z,

(−1)k4
3π2

, n = 2k + 1, k ∈ Z,

x̂n =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(−1)k2
3π2

, n = 2k, k ∈ Z,

(−1)k−12
3π2

, n = 2k + 1, k ∈ Z,

(3.1)

then {xn} ∈ F1 ∩ F2 is the common solution of (2.5) and (2.6). Calculate ω̂2n, ω̂2n+1, ω2n, ω2n−1
by the formulas mentioned above, we obtain ω̂2n = ω2n = 0, ω̂2n+1 = (−1)n+1(3π − 4)/3π2,
ω2n−1 = (−1)n+1(6π−8)/3π2.Obviously, {ωn} ∈ E and {ω̂n} ∈ APS(R). Define the ow-solution
and the ew-solution as the proofs of Theorems 2.6 and 2.7, respectively, it follows from the
proof of Theorem 2.8 that they are the same, so it must be a solution, that is, an ow-solution as
well as an ew-solution. Specifically, it can be expressed as

x(t) =

{
x1(t), t ∈ [2n − 2, 2n − 1)∀n ∈ Z,

x2(t), t ∈ [2n − 1, 2n)∀n ∈ Z,
(3.2)

where

x1(t) = (−1)n 2
3π2

(2t − 4n + 3) − 2
π2

cos
π

2
t +

2
π2

sin
π

2
t, t ∈ [2n − 2, 2n − 1) ∀n ∈ Z,

x2(t) = (−1)n 4
3π2

+ (−1)n+1 2
3π2

((t − 2n)2 + (t − 2n + 1)2) − 2
π2

cos
π

2
t +

2
π2

sin
π

2
t,

t ∈ [2n − 1, 2n) ∀n ∈ Z.

(3.3)

It is easy to check that x(t) is an almost-periodic solution of (1.2) such that x(n) = xn,
n ∈ Z.

(ii) We show that {xn} ∈ F1 (resp., F2) is not unique solution of (2.5) (resp., (2.6)).
Let

x1
n =

⎧
⎪⎨

⎪⎩

0, n = 2k, k ∈ Z,

(−1)k4
π2

, n = 2k + 1, k ∈ Z,

x̂1
n =

⎧
⎪⎨

⎪⎩

0, n = 2k, k ∈ Z,

(−1)k−12
π2

, n = 2k + 1, k ∈ Z.

(3.4)

Obviously, {x1
n} ∈ F1 is another solution of (2.5).
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Let {y1
n} = {0} and

ŷ1
n =

⎧
⎨

⎩

0, n = 2k, k ∈ Z,

c, n = 2k + 1, k ∈ Z,
(3.5)

where c is an arbitrary constant, then it is clear that {y1
n} ∈ F2 is another solution of (2.6).

The following example shows that ow-solutions and ew-solutions of (1.2) are not
equivalent.

Example 3.2. As [6], let f(t) = (−1)n(t−2n+1), t ∈ [2n−2, 2n), for all n ∈ Z, then f(t) ∈ AP(R),
setting g(t) = f(t)/2, then g(t) ∈ AP(R) and f(t) = g(t) − g(t − 2), for all t ∈ R, that is, the
assumption (H) holds. By simple calculation, we can obtain f

(1)
2n = f

(2)
2n = (−1)n1/3, f (1)

2n−1 =
(−1)n1/6, f (2)

2n−1 = (−1)n+11/6, g(1)
2n = g

(2)
2n = (−1)n1/6, g(1)

2n−1 = (−1)n1/12, g(2)
2n−1 = (−1)n+11/12,

g2n = h2n/2 = (−1)n1/3, h2n−1 = g2n−1 = 0.
(i) We construct the almost-periodic ow-solution of (1.2) as the proof of Theorem 2.6.
Let

xn =

⎧
⎪⎨

⎪⎩

0, n = 2k, k ∈ Z,

(−1)k1
3

, n = 2k + 1, k ∈ Z,

x̂n =

⎧
⎪⎨

⎪⎩

0, n = 2k, k ∈ Z,

(−1)k+11
6

, n = 2k + 1, k ∈ Z,

(3.6)

then {xn} ∈ F1 is the solution of (2.5). Calculate ω̂2n, ω2n as the formulas mentioned above, we
obtain ω2n = (−1)n1/3, ω̂2n = (−1)n−11/6. Obviously, {ω2n}, {ω̂2n} ∈ APS(R).

Define the ow-solution x(t) as

x(t) =

⎧
⎨

⎩

x1(t), t ∈ [2n, 2n + 1)∀n ∈ Z,

x2(t), t ∈ [2n − 1, 2n)∀n ∈ Z,
(3.7)

where

x1(t) = (−1)n 1
6
+ (−1)n 1

12
(2t − 4n − 1)

(
2 − (t − 2n)2 + (t − 2n)

)
, t ∈ [2n, 2n + 1),

x2(t) = (−1)n 7
12

(t − 2n) + (−1)n 1
4
(t − 2n)2, t ∈ [2n − 1, 2n).

(3.8)

It is easy to check that x(t) is an almost-periodic ow-solution of (1.2). Since {x2n} is not solution
of (2.17), it follows from Theorem 2.10 that x(t) is not solution of (1.2) and consequently, x(t)
is not an ew-solution of (1.2).

(ii) Similarly to (i), by Theorem 2.7, we construct the almost-periodic ew-solution of
(1.2).

Let {yn} = {0} and

ŷn =

⎧
⎨

⎩

0, n = 2k, k ∈ Z,

c, n = 2k + 1, k ∈ Z,
(3.9)
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where c is an arbitrary constant, then {yn} ∈ F2 is the solution of (2.6). Calculate ω̂2n+1, ω2n+1 as
the formulas mentioned above, we obtain ω2n−1 = (−1)n+11/6, ω̂2n+1 = (−1)n+11/12. Obviously,
{ω2n−1}, {ω̂2n−1} ∈ APS(R).

Define the ew-solution y(t) as

y(t) =

⎧
⎨

⎩

y1(t), t ∈ [2n − 2, 2n − 1) ∀n ∈ Z,

y2(t), t ∈ [2n − 1, 2n) ∀n ∈ Z,
(3.10)

where

y1(t) = (−1)n 1
12

(2t − 4n + 3)
(
(t − 2n)2 + 3(t − 2n) + 2

)
, t ∈ [2n − 2, 2n − 1),

y2(t) = (−1)n 1
4
(
(t − 2n)2 + t − 2n

)
, t ∈ [2n − 1, 2n).

(3.11)

It is easy to verify that y(t) is an almost-periodic ew-solution of (1.2). Since {y2n} is not solution
of (2.17), it follows from Theorem 2.10 that y(t) is not solution of (1.2) and consequently, y(t)
is not an ow-solution of (1.2).
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