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1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Zp,Qp, and Cp are, respectively, the
ring of p-adic rational integers, the field of p-adic rational numbers, and the p-adic completion
of the algebraic closure of Qp. The p-adic absolute value in Cp is normalized so that |p|p = 1/p.
When one talks about q-extension, q is variously considered as an indeterminate, a complex
number, q ∈ C or a p-adic number q ∈ Cp. If q ∈ C, one normally assumes that |q| < 1. If q ∈ Cp,
one normally assumes that |1 − q|p < p−1/(p−1) so that qx = exp(x log q) for each x ∈ Zp. We use
the notations

[x]q =
1 − qx

1 − q
, [x]−q =

1 − (−q)x
1 + q

(1.1)

(cf. [1–14]), for all x ∈ Zp. For a fixed odd positive integer d with (p, d) = 1, set

X = Xd = lim
←
n

Z/dpnZ, X1 = Zp,
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X∗ =
⋃

0<a<dp
(a,p)=1

(a + dpZp),

a + dpnZp =
{
x ∈ X | x ≡ a

(
moddpn

)}
,

(1.2)

where a ∈ Z lies in 0 ≤ a < dpn. For any n ∈ N,

μq

(
a + dpnZp

)
=

qa

[dpn]q
(1.3)

is known to be a distribution on X (cf. [1–28]).
We say that f is uniformly differentiable function at a point a ∈ Zp and denote this

property by f ∈ UD(Zp) if the difference quotients

Ff(x, y) =
f(x) − f(y)

x − y
(1.4)

have a limit l = f ′(a) as (x, y) → (a, a) (cf. [25]).
The p-adic q-integral of a function f ∈ UD(Zp)was defined as

Iq(f) =
∫

Zp

f(x)dμq(x) = lim
n→∞

1
[
pn

]
q

pn−1∑

x=0

f(x)qx, (1.5)

I−q(f) =
∫

Zp

f(x)dμ−q(x) = lim
n→∞

1
[
pn

]
q

pn−1∑

x=0

f(x)(−q)x, (1.6)

(cf. [4, 24, 25, 28]), from (1.6), we derive

qI−q
(
f1
)
+ I−q(f) = [2]qf(0), (1.7)

where f1(x) = f(x + 1). If we take f(x) = etx, then we have f1(x) = et(x+1) = etxet. From (1.7),
we obtain that

I−q
(
etx

)
=

[2]q
qet + 1

. (1.8)

In Section 2, we define the multiple twisted q-Euler numbers and polynomials on Zp

and find Witt’s type formula for multiple twisted q-Euler numbers. We also have sums of
consecutive multiple twisted q-Euler numbers. In Section 3, we consider multiple twisted q-
Euler Zeta functions which interpolate new multiple twisted q-Euler polynomials at negative
integers and investigate some characterizations of them. In Section 4, we construct the multiple
twisted Barnes’ type q-Euler polynomials and multiple twisted Barnes’ type q-Euler Zeta
functions which interpolate newmultiple twisted Barnes’ type q-Euler polynomials at negative
integers. In Section 5, we define multiple twisted Dirichlet’s type q-Euler numbers and
polynomials and give Witt’s type formula for them.
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2. Multiple twisted q-Euler numbers and polynomials

In this section, we assume that q ∈ Cp with |1 − q|p < 1. For n ∈ N, by the definition of p-adic
q-integral on Zp, we have

qnI−q
(
fn
)
+ (−1)n−1I−q(f) = [2]q

n−1∑

x=0

(−1)n−1−xqxf(x), (2.1)

where fn(x) = f(x + n). If n is odd positive integer, we have

qnI−q
(
fn
)
+ I−q(f) = [2]q

n−1∑

x=0

(−1)n−1−xqxf(x). (2.2)

Let Tp = ∪n≥1Cpn = limn→∞Cpn = Cp∞ be the locally constant space, where Cpn = {w |
wpn = 1} is the cyclic group of order pn. Forw ∈ Tp, we denote the locally constant function by

φw : Zp −→ Cp, x −→ wx, (2.3)

(cf. [5, 7–14, 16, 18]). If we take f(x) = φw(x)etx, then we have

∫

Zp

etxφw(x)dμ−q(x) =
[2]q

qwet + 1
. (2.4)

Now we define the twisted q-Euler numbers Eq
n,w as follows:

Fw(t) =
[2]q

qwet + 1
=

∞∑

n=o
E
q
n,w

tn

n!
. (2.5)

We note that by substituting w = 1, limq→1E
q

n,1 = En are the familiar Euler numbers. Over five
decades ago, Carlitz defined q-extension of Euler numbers (cf. [15]). From (2.4) and (2.5), we
note that Witt’s type formula for a twisted q-Euler number is given by

∫

Zp

xnwxdμ−q(x) = E
q
n,w. (2.6)

for each w ∈ Tp and n ∈ N.
Twisted q-Euler polynomials Eq

n,w(x) are defined by means of the generating function

F
q
w(t, x) =

[2]q
qwet + 1

ext =
∞∑

n=0

E
q
n,w(x)

tn

n!
, (2.7)

where E
q
n,w(0) = E

q
n,w. By using the hth iterative fermionic p-adic q-integral on Zp, we define

multiple twisted q-Euler number as follows:

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
h-times

wx1+···+xh e(x1+x2+···+xh)t dμ−q
(
x1
) · · ·dμ−q

(
xh

)
=

(
[2]q

qwet + 1

)h

=
∞∑

n=0

E
(h,q)
n,w

tn

n!
.

(2.8)

Thus we give Witt’s type formula for multiple twisted q-Euler numbers as follows.
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Theorem 2.1. For each w ∈ Tp and h, n ∈ N,

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
h-times

wx1+···+xh
(
x1 + · · · + xh

)n
dμ−q

(
x1
) · · ·dμ−q

(
xh

)
= E

(h,q)
n,w , (2.9)

where

(
x1 + · · · + xh

)n =
∑

l1+···+lh=n
l1,...,lh≥0

n!
l1! · · · lh!x

l1
1 · · ·xlh

h
. (2.10)

From (2.8) and (2.9), we obtain the following theorem.

Theorem 2.2. For w ∈ Tp and h, k ∈ N,

E
(h,q)
k,w

=
∑

l1+···+lh=k
l1,...,lh≥0

k!
l1! · · · lh!E

q

l1,w
· · ·Eq

lh,w
. (2.11)

From these formulas, we consider multivariate fermionic p-adic q-integral on Zp as
follows:

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
h-times

wx1+···+xh e(x1+···+xh+x)t dμ−q
(
x1
) · · ·dμ−q

(
xh

)
=

(
[2]q

qwet + 1

)
· · ·

(
[2]q

qwet + 1

)
ext

=

(
[2]q

qwet + 1

)h
ext.

(2.12)

Then we can define the multiple twisted q-Euler polynomials E(h,q)
n,w (x) as follows:

F
(h,q)
w (t, x) =

(
[2]q

qwet + 1

)h

ext =
∞∑

n=0

E
(h,q)
n,w (x)

tn

n!
. (2.13)

From (2.12) and (2.13), we note that

∞∑

n=0

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
h-times

wx1+···+xh
(
x1 + · · · + xh + x

)n
dμ−q

(
x1
) · · ·dμ−q

(
xh

) tn

n!
=

∞∑

n=0

E
(h,q)
n,w (x)

tn

n!
. (2.14)

Then by the kth differentiation on both sides of (2.14), we obtain the following.

Theorem 2.3. For each w ∈ Tp and k, h ∈ N,

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
h-times

wx1+···+xh
(
x1 + · · · + xh + x

)k
dμ−q

(
x1
) · · ·dμ−q

(
xh

)
= E

(h,q)
k,w

(x). (2.15)
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Note that

(x1 + · · · + xh + x)n =
∑

l1+···+lh=n
l1,...,lh≥0

n!
l1! · · · lh!x

l1
1 · xl2

2 · · · (xh + x)lh . (2.16)

Then we see that
∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
h-times

wx1+···+xh
(
x1 + · · · + xh + x

)k
dμ−q

(
x1
) · · ·dμ−q

(
xh

)

=
∑

l1+···+lh=k
l1,...,lh≥0

k!
l1! · · · lh!

∫

Zp

wx1xl1
1 dμ−q

(
x1
) · · ·

∫

Zp

wxh−1xlh−1
h−1dμ−q

(
xh−1

) ∫

Zp

(
x + xh

)lhdμ−q
(
xh

)

=
∑

l1+···+lh=k
l1,...,lh≥0

k!
l1! · · · lh!E

q

l1,w
· · ·Eq

lh−1,w
E
q

lh,w
(x).

(2.17)

From (2.15) and (2.17), we obtain the sums of powers of consecutive q-Euler numbers as
follows.

Theorem 2.4. For each w ∈ Tp and k, h ∈ N,

E
(h,q)
k,w

(x) =
∑

l1+···+lh=k
l1,...,lh≥0

k!
l1! · · · lh!E

q

l1,w
· · ·Eq

lh−1,w
· Eq

lh,w
(x). (2.18)

3. Multiple twisted q-Euler Zeta functions

For q ∈ C with |q| < 1 and w ∈ Tp, the multiple twisted q-Euler numbers can be considered as
follows:

Fh
w(t) =

(
[2]q

qwet + 1

)h

=
∞∑

n=0

E
(h,q)
n,w

tn

n!
,

∣∣t + log(qw)
∣∣ < π. (3.1)

From (3.1), we notethat

∞∑

n=0

E
(h,q)
n,w

tn

n!
= Fh

w(t) =

(
[2]q

qwet + 1

)h

= [2]hq

(
[2]q

qwet + 1

)
· · ·

(
[2]q

qwet + 1

)

= [2]hq
∞∑

n1=0

(−1)n1qn1wn1en1t · · ·
∞∑

nh=0

(−1)nhqnhwnhenht

= [2]hq
∑

n1,...,nh=0

(−1)n1+···+nhqn1+···+nhwn1+···+nhe(n1+···+nh)t.

(3.2)



6 Advances in Difference Equations

By the kth differentiation on both sides of (3.2) at t = 0, we obtain that

E
(h,q)
k,w

= [2]hq
∑

n1+···+nh /= 0
n1,...,nh≥0

(−1)n1+···+nh qn1+···+nhwn1+···+nh
(
n1 + · · · + nh

)k
. (3.3)

From (3.3), we derive multiple twisted q-Euler Zeta function as follows:

ζ
(h,q)
w (s) = [2]hq

∑

n1+···+nh /= 0
n1,...,nh≥0

(−1)n1+···+nh qn1+···+nh wn1+···+nh

(
n1 + · · · + nh

)s (3.4)

for all s ∈ C. We also obtain the following theorem in which multiple twisted q-Euler Zeta
functions interpolate multiple twisted q-Euler polynomials.

Theorem 3.1. For w ∈ Tp and k, h ∈ N,

ζ
(h,q)
w (−k) = E

(h,q)
k,w

. (3.5)

4. Multiple twisted Barnes’ type q-Euler polynomials

In this section, we consider the generating function of multiple twisted q-Euler polynomials:

Fh
w(t, x) =

( [2]q
qwet + 1

)h

ext =
∞∑

n=0

E
(h,q)
n,w (x)

tn

n!
,

∣∣t + log(qw)
∣∣ < π, Re(x) > 0.

(4.1)

We note that

∞∑

n=0

E
(h,q)
n,w (x)

tn

n!
= Fh

w(t, x)= [2]hq
∑

n1,...,nh=0

(−1)n1+···+nh qn1+···+nh wn1+···+nh e(n1+···+nh+x)t. (4.2)

By the kth differentiation on both sides of (4.2) at t = 0, we obtain that

E
(h,q)
k,w

(x)= [2]hq
∑

n1,...,nh=0

(−1)n1+···+nh qn1+···+nh wn1+···+nh(n1 + · · · + nh + x)k. (4.3)

Thus we can consider multiple twisted Hurwitz’s type q-Euler Zeta function as follows:

ζ
(h,q)
w (s, x) = [2]hq

∑

n1+···+nh /= 0
n1,...,nh≥0

(−1)n1+···+nh qn1+···+nh wn1+···+nh

(
n1 + · · · + nh + x

)s (4.4)

for all s ∈ C and Re(x) > 0. We note that ζ(h,q)w (s, x) is analytic function in the whole complex
s-plane and ζ

(h,q)
w (s, 0) = ζ

(h,q)
w (s). We also remark that if w = 1 and h = 1, then ζ

(1,q)
1 (s, x) =

ζq(s, x) is Hurwitz’s type q-Euler Zeta function (see [7, 27]). The following theorem means
that multiple twisted q-Euler Zeta functions interpolate multiple twisted q-Euler polynomials
at negative integers.
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Theorem 4.1. For w ∈ Tp, k, h ∈ N, s ∈ C, and Re(x) > 0,

ζ
(h,q)
w (−k, x) = E

(h,q)
k,w

(x). (4.5)

Let us consider

Fh
w

(
a1, . . . , ah | t, x) =

(
[2]q

qwea1t + 1

)
· · ·

(
[2]q

qweaht + 1

)
ext

= [2]hq
∞∑

n1,...,nh=0

(−1)n1+···+nhqn1+···+nhwn1+···+nhe(a1n1+···+ahnh+x)t

=
∞∑

n=0

E
(h,q)
n,w

(
a1, . . . , ah | x) t

n

n!
,

(4.6)

where a1, . . . , ah ∈ C and max1≤i≤k{| log(q + ait)|} < π . Then E
(h,q)
n,w (a1, . . . , ah | x) will be called

multiple twisted Barnes’ type q-Euler polynomials. We note that

E
(h,q)
n,w (1, 1, . . . , 1 | x) = E

(h,q)
n,w (x). (4.7)

By the kth differentiation of both sides of (4.6), we obtain the following theorem.

Theorem 4.2. For each w ∈ Tp, a1, . . . , ah ∈ C, k, h ∈ N, and Re(x) > 0,

E
(h,q)
k,w

(
a1, . . . , ah | x)= [2]hq

∑

n1+···+nh /= 0
n1,...,nh≥0

(−1)n1+···+nhqn1+···+nhwn1+···+nh
(
a1n1 + · · · + ahnh + x

)k
,

(4.8)

where

(
a1n1 + · · · + ahnh + x

)k =
∑

l1+···+lh=k
l1,...,lh≥0

k!
l1! · · · lh!a

l1
1 · · ·alh−1

h−1n
l1
1 · · ·nlh−1

h−1
(
ahnh + x

)lh . (4.9)

From (4.8), we consider multiple twisted Barnes’ type q-Euler Zeta function defined as
follows: for each w ∈ Tp, a1, . . . , ah ∈ C, k, h ∈ N, and Re(x) > 0,

ζ
(h,q)
k,w

(
a1, . . . , ah | s, x)= [2]hq

∑

n1+···+nh /= 0
n1,...,nh≥0

(−1)n1+···+nhqn1+···+nhwn1+···+nh

(
a1n1 + · · · + ahnh + x

)s . (4.10)

We note that ζ(h,q)
k,w

(a1, . . . , ah | s, x) is analytic function in the whole complex s-plane. We
also see that multiple twisted Barnes’ type q-Euler Zeta functions interpolate multiple twisted
Barnes’ type q-Euler polynomials at negative integers as follows.

Theorem 4.3. For each w ∈ Tp, a1, . . . , ah ∈ C, k, h ∈ N, and Re (x) > 0,

ζ
(h,q)
k,w

(
a1, . . . , ah | −k, x) = E

(h,q)
k,w

(
a1, . . . , ah | x). (4.11)



8 Advances in Difference Equations

5. Multiple twisted Dirichlet’s type q-Euler numbers and polynomials

Let χ be a Dirichlet’s character with conductor d(= odd) ∈ N and w ∈ Tp. If we take f(x) =
χ(x)φw(x)etx, then we have fd(x) = f(x + d) = χ(x)wdetdwxetx. From (2.2), we derive

∫

X

χ(x)wxetxdμ−q(x) =
[2]q

∑d−1
i=0 (−1)d−1−iqiχ(i)wieti

qdwdetd + 1
. (5.1)

In view of (5.1), we can define twisted Dirichlet’s type q-Euler numbers as follows:

F
q
w,χ(t) =

[2]q
∑d−1

i=0 (−1)d−1−iqiχ(i)wieti

qdwdetd + 1
=

∞∑

n=0

E
q
n,χ,w

tn

n!
,
∣∣t + log(qw)

∣∣ <
π

d
, (5.2)

(cf. [17, 19, 21, 22]). From (5.1) and (5.2), we can giveWitt’s type formula for twisted Dirichlet’s
type q-Euler numbers as follows.

Theorem 5.1. Let χ be a Dirichlet’s character with conductor d(= odd) ∈ N. For each w ∈ Tp,
n ∈ N ∪ {0}, we have

∫

X

χ(x)wxetxdμ−q(x) = E
q
n,χ,w. (5.3)

We note that if w = 1, then E
q

n,χ,1 = E
q
n,χ is the generalized q-Euler numbers attached to χ

(see [18, 26]). From (5.2), we also see that

F
q
w,χ(t)= [2]q

d−1∑

i=0

(−1)d−1−iqiχ(i)wieti
∞∑

l=0

qldwldeldt(−1)l

= [2]q
∞∑

n=0

(−1)nqnwnχ(n)ent.

(5.4)

By (5.2) and (5.4), we obtain that

E
q

k,χ,w
=

dk

dtk
F
q
w,χ(t) |t=0= [2]q

∞∑

n=0

(−1)nqnwnχ(n)nk. (5.5)

From (5.5), we can define the lqw,χ-function as follows:

l
q
χ,w(s) = [2]q

∞∑

n=0

(−1)nqnwnχ(n)
ns

(5.6)

for all s ∈ C. We note that lqχ,w(s) is analytic function in the whole complex s-plane. From (5.5)
and (5.6), we can derive the following result.

Theorem 5.2. Let χ be a Dirichlet’s character with conductor d(= odd) ∈ N. For each w ∈ Tp,
n ∈ N ∪ {0}, we have

l
q
w,χ(−n) = E

q
n,χ,w. (5.7)
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Now, in view of (5.1), we can define multiple twisted Dirichlet’s type q-Euler numbers
by means of the generating function as follows:

F
(h,q)
w,χ (t) =

(
[2]q

∑d−1
i=0 (−1)d−1−iqiχ(i)wieti

qdwdetd + 1

)h
=
(∫

X

χ(x)wxetxdμ−q(x)
)h

=
∞∑

n=0

E
(h,q)
n,χ,w

tn

n!
,

(5.8)

where |t + log(qw)| < π/d. We note that if w = 1, then E
q

n,χ,1 is a multiple generalized q-Euler
number (see [22]).

By using the same method used in (2.8) and (2.9),

∞∑

n=0

∫

X

· · ·
∫

X︸ ︷︷ ︸
h-times

χ
(
x1 + · · · + xh

)
wx1+···+xh

(
x1 + · · · + xh

)n
dμ−q

(
x1
) · · ·dμ−q

(
xh

) tn

n!
=

∞∑

n=0

E
(h,q)
n,w

tn

n!
.

(5.9)

From (5.9), we can give Witt’s type formula for multiple twisted Dirichlet’s type q-Euler
numbers.

Theorem 5.3. Let χ be a Dirichlet’s character with conductor d(= odd) ∈ N. For eachw ∈ Tp, h ∈ N,
and n ∈ N ∪ {0}, we have

∫

X

· · ·
∫

X︸ ︷︷ ︸
h-times

χ
(
x1 + · · · + xh

)
wx1+···+xh

(
x1 + · · · + xh

)n
dμ−q

(
x1
) · · ·dμ−q

(
xh

)
= E

(h,q)
n,χ,w, (5.10)

where χ(x1 + · · · + xh) = χ(x1) · · ·χ(xh) and

(
x1 + · · · + xh

)n =
∑

l1+···+lh=n
l1,...,lh≥0

n!
l1! · · · lh!x

l1
1 · · ·xlh

h
. (5.11)

From (5.10), we also obtain the sums of powers of consecutive multiple twisted
Dirichlet’s type q-Euler numbers as follows.

Theorem 5.4. Let χ be a Dirichlet’s character with conductor d(= odd) ∈ N. For eachw ∈ Tp, h ∈ N,
and n ∈ N ∪ {0}, we have

E
(h,q)
k,χ,w

=
∑

l1+···+lh=k
l1 ,...,lh≥0

k!
l1! · · · lh!E

q

l1,χ,w
· · ·Eq

lh,χ,w
. (5.12)

Finally, we consider multiple twisted Dirichlet’s type q-Euler polynomials defined by
means of the generating functions as follows:

F
q
w,χ(t, x) =

(
[2]q

∑d−1
i=0 (−1)d−1−iqiχ(i)wieti

qdwdetd + 1

)h

ext =
∞∑

n=0

E
(h,q)
n,χ,w(x)

tn

n!
, (5.13)
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where |t + log(qw)| < π/d and Re(x) > 0. From (5.13), we note that

∞∑

n=0

∫

X

· · ·
∫

X︸ ︷︷ ︸
h-times

χ
(
x1+· · ·+xh

)
wx1+···+xh

(
x1+· · · + xh + x

)n
dμ−q

(
x1
) · · ·dμ−q

(
xh

) tn

n!
=

∞∑

n=0

E
(h,q)
n,χ,w(x)

tn

n!
.

(5.14)

Clearly, we obtain the following two theorems.

Theorem 5.5. Let χ be a Dirichlet’s character with conductor d(= odd) ∈ N. For eachw ∈ Tp, h ∈ N,
n ∈ N ∪ {0}, and Re(x) > 0, we have
∫

X

· · ·
∫

X︸ ︷︷ ︸
h-times

χ
(
x1 + · · · + xh

)
wx1+···+xh(x1 + · · · + xh + x)ndμ−q

(
x1
) · · ·dμ−q

(
xh

)
= E

(h,q)
n,χ,w(x), (5.15)

where

(
x1 + · · · + xh + x

)n =
∑

l1+···+lh=n
l1,...,lh≥0

n!
l1! · · · lh!x

l1
1 · · · (xh + x

)lh . (5.16)

Theorem 5.6. Let χ be a Dirichlet’s character with conductor d(= odd) ∈ N. For eachw ∈ Tp, h ∈ N,
n ∈ N ∪ {0}, and Re(x) > 0, we have

E
(h,q)
k,χ,w

(x) =
∑

l1+···+lh=k
l1,...,lh≥0

k!
l1! · · · lh!E

q

l1,χ,w
· · ·Eq

lh−1,χ,w
· Eq

lh,χ,w
(x). (5.17)
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