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1. Introduction

Continuous and discrete dynamical systems have a number of significant differences mainly
due to the topological fact that in one case the time scale T = R, real numbers, and the
corresponding trajectories are connected while in other case T = Z, integers, they are not.
The correct way of dealing with this duality is to provide separate proofs. All investigations on
the two time scales show that much of the analysis is analogous but, at the same time, usually
additional assumptions are needed in the discrete case in order to overcome the topological
deficiency of lacking connectedness. Thus, we need to establish a theory that allows us to
handle systematically both time scales simultaneously. To create the desired theory requires
to setup a certain structure of T which is to play the role of the time scale generalizing R and Z.
Furthermore, an operation on the space of functions from T to the state space has to be defined
generalizing the differential and difference operations. This work was initiated by Hilger [1]
in the name of “calculus on measure chains or time scales.”

In this paper, we examine the various types of stability-stability, uniform stability,
asymptotic stability, strong stability, restrictive stability, and so forth, for the solutions of linear
dynamic systems on time scales and give two examples.

2. Preliminaries on dynamic systems

We mention without proof several foundational definitions and results in the calculus on
time scales from an excellent introductory text by Bohner and Peterson [2]. A time scale T is
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a nonempty closed subset of R, and the forward jump operator σ : T → T is defined by

σ(t) = inf{s ∈ T : s > t}, (2.1)

(supplemented by inf∅ = supT), while the graininess μ : T → R+ is given by

μ(t) = σ(t) − t. (2.2)

If T has a left-scattered maximum m, then T
κ := T \ {m} and otherwise T

κ := T. A function
f : T → R is called differentiable at t ∈ T

κ, with (delta) derivative fΔ(t) ∈ R if given ε > 0, there
exists a neighborhoodU of t such that, for all s ∈ U,

∣
∣fσ(t) − f(s) − fΔ(t)

[

σ(t) − s
]∣
∣ ≤ ε

∣
∣σ(t) − s

∣
∣, (2.3)

where fσ = f ◦ σ.
Some basic properties of delta derivatives are given in the following [3–5]:

(i) If f is differentiable at t ∈ T
κ, then

fσ(t) = f(t) + μ(t)fΔ(t). (2.4)

(ii) If both f and g are differentiable at t ∈ T
κ, then the product fg is also differentiable

at t ∈ T
κ with

(fg)Δ(t) = fΔ(t)g(t) + fσ(t)gΔ(t) = f(t)gΔ(t) + fΔ(t)gσ(t). (2.5)

A function f : T → R is said to be rd-continuous (denoted by f ∈ Crd(T,R)) if

(i) f is continuous at every right-dense point t ∈ T,

(ii) lims→t−f(s) exists and is finite at every left-dense point t ∈ T.

A function g : T → R is called an antiderivative of f on T if it is differentiable on T and
satisfies gΔ(t) = f(t) for t ∈ T

κ. In this case, we define

∫ t

a

f(s)Δs = g(t) − g(a), (2.6)

where t, a ∈ T.
The norm of an n × n matrix M is defined to be

|M| = max
1≤j≤n

∣
∣Mj

∣
∣, (2.7)

whereMj is the jth column ofM.
Let Mn(R) be the set of all n × n matrices over R. The class of all rd-continuous and

regressive functions A : T → Mn(R) is denoted by

CrdR
(

T,Mn(R)
)

. (2.8)
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Here, a matrix-valued function A is called regressive provided:

I + μ(t)A(t) is invertible ∀t ∈ T, (2.9)

where I is the identity matrix.

Definition 2.1. Let t0 ∈ T. The unique matrix-valued solution of the IVP

YΔ = A(t)Y, Y
(

t0
)

= I, (2.10)

where A ∈ CrdR(T,Mn(R)), is called the matrix exponential function and it is denoted by
eA(t, t0).

3. Stability of linear dynamic systems

We consider the dynamic system

xΔ = F(t, x), x
(

t0
)

= x0, (3.1)

where F ∈ Crd(T × R
n,Rn) with F(t, 0) = 0, and xΔ is the delta derivative of x : T → R

n with
respect to t ∈ T. We assume that the solutions of (3.1) exist and are unique for t ≥ t0, and T is
unbounded above.

We give the definitions about the various types of stability for the solutions of (3.1).

Definition 3.1. The solution x of (3.1) is said to be stable if, for each ε > 0, there exists a δ =
δ(ε) > 0 such that, for any solution x(t) = x(t, t0, x0) of (3.1), the inequality |x0 −x0| < δ implies
|x(t) − x(t)| < ε for all t ≥ t0 ∈ T.

Definition 3.2. The solution x of (3.1) is said to be uniformly stable if, for each ε > 0, there exists
a δ = δ(ε) > 0 such that, for any solution x(t) = x(t, t0, x0) of (3.1), the inequalities t1 ≥ t0 and
|x(t1) − x(t1)| < δ imply |x(t) − x(t)| < ε for all t ≥ t1 ∈ T.

Definition 3.3. The solution x of (3.1) is said to be asymptotically stable if it is stable and there
exists a δ0 > 0 such that |x0 − x0| < δ0 implies |x(t) − x(t)| → 0 as t → ∞.

The following notion of strong stability is due to Ascoli [6].

Definition 3.4. The solution x of (3.1) is said to be strongly stable if, for each ε > 0, there exists a
δ = δ(ε) > 0 such that, for any solution x(t) of (3.1), the inequalities t1 ≥ t0 and |x(t1)−x(t1)| < δ
imply |x(t) − x(t)| < ε for all t ≥ t0 ∈ T.

For the other types of stability, that is, h-stability, we refer to [7].
We note that the stability of any solution of (3.1) is closely related to the stability of the

null solution of the corresponding variational equation. Therefore, we will discuss the stability
of linear dynamic system.

We consider the linear homogeneous dynamic system

xΔ = A(t)x(t), x
(

t0
)

= x0, (3.2)

where A ∈ CrdR(T,Mn(R)).
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It follows that any solution of the linear dynamic system is (uniformly, strongly, asymp-
totically) stable if and only if the same holds for the zero solution of (3.2). We say that (3.2) is
(uniformly, strongly, asymptotically stable) stable if so is the null solution of (3.2). See [8].

Firstly, we show that the stability for solutions of (3.2) is equivalent to the boundedness.

Theorem 3.5. Equation (3.2) is stable if and only if all solutions of (3.2) are bounded for all t ≥ t0 ∈ T.

Proof. Suppose that (3.2) is stable. Since the trivial solution x(t, t0, 0) = 0 is stable, given any
ε > 0, there exists a δ > 0 such that |x0| < δ implies |x(t, t0, x0)| < ε. Note that |x(t, t0, x0)| =
|eA(t, t0)x0| < ε for all t ≥ t0 ∈ T. Now, let x0 be a vector of length δ/2 in the jth direction for
j = 1, 2, . . . , n. Then, |eA(t, t0)x0| = |xj(t)|(δ/2) < ε, where xj(t) is the jth column of eA(t, t0).
Thus, we have

∣
∣eA

(

t, t0
)∣
∣ = max

1≤j≤n

∣
∣xj(t)

∣
∣ <

2ε
δ
. (3.3)

Consequently, for any solution x(t, t0, x0) of (3.2),

∣
∣x
(

t, t0, x0
)∣
∣ =

∣
∣eA

(

t, t0
)

x0
∣
∣ <

2ε
δ

∣
∣x0

∣
∣. (3.4)

It follows that all solutions of (3.2) are bounded.
For the converse, we note that all solutions of (3.2) are bounded if and only if there exists

a positive constantM such that

∣
∣eA

(

t, t0
)∣
∣ ≤ M, t ≥ t0. (3.5)

It follows from x(t) = eA(t, t0)x0 that (3.2) is stable. This completes the proof.

In [9, Theorem 2.1], DaCunha obtained the following characterization of uniform stabil-
ity by means of the operator norm. It is not difficult to prove this result by using the maximum
norm.

Theorem 3.6. Equation (3.2) is uniformly stable if and only if there exists a positive constant γ such
that

∣
∣eA

(

t, t0
)∣
∣ ≤ γ, (3.6)

for all t ≥ t0 with t, t0 ∈ T.

The following is the characterization of strong stability for linear dynamic system (3.2).
Note that its continuous version was presented in [10].

Theorem 3.7. Equation (3.2) is strongly stable if and only if there exists a positive constant M such
that

∣
∣eA

(

t, t0
)∣
∣ ≤ M,

∣
∣e−1A

(

t, t0
)∣
∣ ≤ M, t ≥ t0 ∈ T, (3.7)

where eA(t, t0) is a matrix exponential function of (3.2).



Sung Kyu Choi et al. 5

Proof. Suppose that (3.7) holds. For any given ε > 0, we can choose δ = ε/2M2 such that for
any t1 ≥ t0, |x1| = |x(t1, t0, x0)| < δ. Then, we have

∣
∣x
(

t, t0, x0
)∣
∣ =

∣
∣eA

(

t, t0
)

x0
∣
∣

=
∣
∣eA

(

t, t0
)

e−1A
(

t1, t0
)

x1
∣
∣

≤ ∣
∣eA

(

t, t0
)∣
∣
∣
∣e−1A

(

t1, t0
)∣
∣
∣
∣x1

∣
∣

≤ M2∣∣x1
∣
∣

< ε, t ≥ t0 ∈ T.

(3.8)

Hence, (3.2) is strongly stable.
Conversely, if (3.2) is strongly stable, then we have

∣
∣eA

(

t, t0
)

e−1A
(

t1, t0
)

x1
∣
∣ < ε, t ≥ t0 ∈ T, (3.9)

whenever t1 ≥ t0 and |x1| < δ holds. Since x1 is arbitrary, we have

∣
∣eA

(

t, t0
)

e−1A
(

t1, t0
)∣
∣ < M, (3.10)

where M = 2nε/δ. It is clear that δ, and hence M, is independent of t0 and t1 as well as of t.
Putting t1 = t0 and t = t0, we obtain the result.

Example 3.8 (see [8]). (i) The system xΔ = 0 is strongly stable, but it is not asymptotically stable.

(ii) The system xΔ = αx with −1 < αμ(t) < 0 is asymptotically stable, but it is not strongly
stable.

Restrictive stability in [10] is related to strong stability, and we obtain their equivalence
for (3.2) as a consequence of Theorem 3.7.

Definition 3.9. System (3.2) is said to be restrictively stable if it is stable and its adjoint system

xΔ = −A∗(t)xσ, (3.11)

where A∗ denotes the conjugate transpose of A, is stable.

Remark 3.10. We note that (3.2) is strongly stable if and only if it is restrictively stable.

Definition 3.11. System (3.2) is said to be reducible (or reducible to zero), if there exists
L ∈ C1

rd(T,Mn(R)) which is bounded together with its inverse L−1(t) on Tt0 such that
Lσ−1

(t)A(t)L(t) − Lσ−1
(t)LΔ(t) is a constant (or zero) matrix on Tt0 . Here, Tt0 = [t0,∞) ∩ T,

and the set of all functions L : T → Mn(R) that are differentiable and whose derivative is
rd-continuous is denoted by

C1
rd(T,Mn(R)). (3.12)

Theorem 3.12. System (3.2) is restrictively stable if and only if it is reducible to zero.
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Proof. Let eA(t, t0) be a matrix exponential function of (3.2). Suppose that (3.2) is restrictively
stable. Then, there exists a positive constantM such that

∣
∣eA

(

t, t0
)∣
∣ ≤ M,

∣
∣e−1A

(

t, t0
)∣
∣ ≤ M, t ≥ t0 ∈ T, (3.13)

by means of Theorem 3.7. Consider the transformation x = eA(t, t0)y. Then, it follows that

A(t)eA
(

t, t0
)

y = xΔ = eΔA
(

t, t0
)

y + eA
(

σ(t), t0
)

yΔ. (3.14)

Hence, we obtain

yΔ =
[

e−1A
(

σ(t), t0
)

A(t)eA
(

t, t0
) − e−1A

(

σ(t), t0
)

eΔA(t, t0
)]

y = 0, (3.15)

since e−1A (σ(t), t0)A(t)eA(t, t0) − e−1A (σ(t), t0)eΔA(t, t0) = 0. This implies that (3.2) is reducible to
zero.

For the converse, suppose that there exists L ∈ C1
rd(T,Mn(R)) such that

L−1(σ(t)
)

A(t)L(t) − L−1(σ(t)
)

LΔ(t) = 0. (3.16)

Then, we have LΔ = A(t)L(t). Thus, L(t) is a matrix exponential function of (3.2). Since L(t)
and L−1(t) are bounded for all t ≥ t0 ∈ T, the proof is complete.

Theorem 3.13. If (3.2) is stable and reducible on a time scale T with the constant graininess, then it is
uniformly stable.

Proof. Since (3.2) is reducible, we have

yΔ = By(t), (3.17)

where B = L−1(σ(t))A(t)L(t)−L−1(σ(t))LΔ(t) by the transformation x = L(t)y. Let eA(t, t0) be a
matrix exponential function of (3.2). The stability of (3.2) implies the boundednesss of eA(t, t0).
Let eA(t, t0) = L(t)eB(t, t0), where eB(t, t0) is a matrix exponential function of (3.17). Then, we
have

eB
(

t, t0
)

= L−1(t)eA
(

t, t0
)

, e−1A
(

t, t0
)

= e−1B
(

t, t0
)

L−1(t), (3.18)

and hence the boundedness of eA(t, t0) implies the boundedness of eB(t, t0) since L−1(t) is
bounded. Thus, (3.17) is stable and, in fact, is uniformly stable. Hence, it is clear that

∣
∣eB

(

t, t0
)

e−1B
(

τ, t0
)∣
∣ ≤ M (3.19)

for some positive constantM and all t0 ≤ τ ≤ t ∈ T. Therefore,

∣
∣eA

(

t, t0
)

e−1A
(

τ, t0
)∣
∣ =

∣
∣L(t)eB

(

t, t0
)

e−1B
(

τ, t0
)

L−1(τ)
∣
∣

≤ ∣
∣L(t)

∣
∣
∣
∣eB

(

t, t0
)

e−1B
(

τ, t0
)∣
∣
∣
∣L−1(τ)

∣
∣

≤ N,

(3.20)

for some positive constantN and all t0 ≤ τ ≤ t ∈ T. Consequently, (3.2) is uniformly stable.
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The continuous versions of Theorems 3.12 and 3.13 are presented in (3.9.v) and (3.9.vi)
in [10], respectively.

Remark 3.14. It does not hold in general that every stable linear homogeneous system with
constant coefficient matrix on a time scale T is uniformly stable.

Corollary 3.15. If (3.11) is stable and q(t) = λ1 ⊕ λ2 ⊕ · · · ⊕ λn > 0 with the eigenvalues λi (1 ≤ j ≤ n)
of A(t), then it is restrictively stable.

Proof. It follows from the stability of (3.2) that eA(t, t0) is bounded for all t ≥ t0 ∈ T.
Furthermore, by Liouville’s formula [11], we have

det eA
(

t, t0
)

= eq
(

t, t0
)

det eA
(

t0, t0
) ≥ d > 0, t ∈ T, (3.21)

where d is a positive constant. Thus, from

e−1A
(

t, t0
)

=
adj eA

(

t, t0
)

det eA
(

t, t0
) , (3.22)

it is clear that e−1A (t, t0) is bounded for all t ≥ t0 ∈ T. The proof is complete.

Remark 3.16. Pötzsche et al. [12] proved a necessary and sufficient condition for the exponential
stability of time-variant linear systems on time scales in terms of the eigenvalues of the
systemmatrix. They used a representation formula for the transitionmatrix of Jordan reducible
systems in the regressive case.

Remark 3.17. In summary, the following assertions are all equivalent [13, Theorem 4.2].

(i) System (3.2) is strongly stable.

(ii) There exists a positive constant M such that

∣
∣eA

(

t, t0
)∣
∣ ≤ M,

∣
∣e−1A

(

t, t0
)∣
∣ ≤ M, t ≥ t0 ∈ T. (3.23)

(iii) Adjoint system (3.11) of (3.2) is strongly stable.

(iv) System (3.2) is restrictively stable.

(v) System (3.2) is reducible to zero.

It is widely known that the stability characteristics of a nonautonomous linear system
of differential or difference equations can be characterized completely by a corresponding
autonomous linear system by the Lyapunov transformation. DaCunha and Davis in [14] gave
a definition of the Lyapunov transformation as follows.

Let L ∈ C1
rd(T,Mn(R)). The Lyapunov transformation is an invertible matrix-valued

function L with the property that, for some positive η, ρ ∈ R,

∣
∣L(t)

∣
∣ ≤ ρ , detL(t) ≥ η, (3.24)

for all t ∈ T.
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Remark 3.18. Note that the boundedness of the coefficient matrices is not preserved by the
Lyapunov transformation L in the case of the time scales with right-dense point [13]. This can
be seen by considering the time scale T = R and the Lyapunov transformation:

L(t) =

[

sin(t2) cos(t2)

− cos(t2) sin(t2)

]

. (3.25)

It shows that the coefficient matrices A and B satisfy

B(t) = L−1(σ(t)
)

A(t)L(t) − L−1(σ(t)
)

LΔ(t), (3.26)

where A(t) =
[
1 0
0 1

]

, and B(t) =
[

1 2t
−2t 1

]

.

Now, we consider the linear dynamic system

zΔ = G(t)z(t), z
(

t0
)

= z0, (3.27)

and its perturbed system

wΔ = G(t)w(t) + F(t)w(t), w
(

t0
)

= w0, (3.28)

where G,F ∈ CrdR(T,Mn(R)).
The following theorem means that the strong stability for the system (3.27) is equivalent

to that of (3.2).

Lemma 3.19 (see [14, Theorem 3.8]). Suppose that L ∈ C1
rd(T,Mn(R)) is invertible for all t ∈ T,

and A ∈ Crd(T,Mn(R)) is regressive. Then, the transformation matrix for the system

ZΔ = G(t)Z(t), Z(τ) = I, (3.29)

where

G(t) = Lσ−1
(t)A(t)L(t) − Lσ−1

(t)LΔ(t), (3.30)

is given by

eG(t, τ) = L−1(t)eA(t, τ)L(τ), (3.31)

for all t, τ ∈ T.

The regressiveness of G(t) in (3.30) is preserved by the Lyapunov transformation in the
following lemma.

Lemma 3.20. Suppose that L ∈ C1
rd(T,Mn(R)) is the transformation matrix for all t ∈ T. Then A is

regressive if and only if G is also regressive.

Proof. We see that for every right-scattered point t ∈ T
κ, the following identity holds:

I + μ(t)G(t) = L−1(σ(t)
)[

I + μ(t)A(t)
]

L(t). (3.32)

This completes the proof.
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Theorem 3.21. Suppose that z(t) = L−1(t)x(t) is a Lyapunov transformation. Then (3.2) is strongly
stable if and only if (3.27) is strongly stable.

Proof. Suppose that (3.2) is strongly stable. Then, there exists a constantM > 0 such that
∣
∣eA

(

t, t0
)∣
∣ ≤ M,

∣
∣e−1A

(

t, t0
)∣
∣ ≤ M, t ≥ t0 ∈ T. (3.33)

By using Lemma 3.19, we have
∣
∣eG

(

t, t0
)∣
∣ =

∣
∣L−1(t)eA

(

t, t0
)

L
(

t0
)∣
∣ ≤ ρ2M = M̂,

∣
∣e−1G

(

t, t0
)∣
∣ =

∣
∣L−1(t0

)

e−1A
(

t, t0
)

L(t)
∣
∣ ≤ ρ2M = M̂, t ≥ t0 ∈ T.

(3.34)

Hence, (3.27) is strongly stable.
The converse holds similarly.

If we assume that the perturbing term F is absolutely integrable, then we obtain the
uniform stability for the perturbed system (3.28)when system (3.2) is strongly stable.

Theorem 3.22. Suppose that z(t) = L−1(t)x(t) is a Lyapunov transformation and there exists a β > 0
such that for all t0 ∈ T:

∫∞

t0

∣
∣F(s)

∣
∣Δs ≤ β. (3.35)

If (3.2) is strongly stable, then (3.28) is uniformly stable.

Proof. It follows from Theorem 3.21 that (3.27) is strongly stable. Then, there exists a positive
constantM such that

∣
∣eG

(

t, t0
)∣
∣ ≤ M,

∣
∣e−1G

(

t, t0
)∣
∣ ≤ M for t ≥ t0 ∈ T. (3.36)

For any t0 and w(t0) = w0, the solution w(t) of (3.28) satisfies

w(t) = eG
(

t, t0
)

w0 +
∫ t

t0

eG
(

t, σ(s)
)

F(s)w(s)Δs. (3.37)

By taking the norms of both sides of (3.37), we have

∣
∣w(t)

∣
∣ ≤ M

∣
∣w0

∣
∣ +M2

∫ t

t0

∣
∣F(s)

∣
∣
∣
∣w(s)

∣
∣Δs, t ≥ t0. (3.38)

In view of Gronwall’s inequality [15], we obtain
∣
∣w(t)

∣
∣ ≤ M

∣
∣w0

∣
∣eM2|F(s)|

(

t, t0
)

=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

M
∣
∣w0

∣
∣ exp

(∫ t

t0

log
(

1 + μ(s)M2|F(s)∣∣)

μ(s)
Δs

)

if μ(t) /= 0,

M
∣
∣w0

∣
∣ exp

(∫ t

t0

M2
∣
∣F(s)

∣
∣Δs

)

if μ(t) = 0

≤ M
∣
∣w0

∣
∣ exp

(∫ t

t0

M2∣∣F(s)
∣
∣Δs

)

≤ M
∣
∣w0

∣
∣ exp

(∫∞

t0

M2∣∣F(s)
∣
∣Δs

)

,

(3.39)
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for all t ≥ t0 ∈ T. Thus
∣
∣w(t)

∣
∣ ≤ d

∣
∣w0

∣
∣, t ≥ t0, (3.40)

where d = MeM
2β. Hence, (3.28) is uniformly stable.

4. Examples

In this section, we give two examples about the various types of stability for solutions of linear
dynamic systems on time scales in [16].

Example 4.1. To illustrate Theorem 3.7, we consider the linear dynamic system

xΔ = A(t)x =

⎛

⎜
⎝

−e−t
2 + e−t

0

0 0

⎞

⎟
⎠x, x

(

t0
)

= x0, t ≥ t0 ∈ T, (4.1)

where A(t) =
( −e−t/(2+e−t) 0

0 0

)

. If μ(t) < 2et + 1 for all t ∈ T, then (4.1) is strongly stable.

Remark 4.2. We give some remarks about Example 4.1.

(1) If T = R, then eA(t, 0) of linear differential system xΔ = x′ = A(t)x is given by

eA(t, 0) =

⎛

⎜
⎝

2 + e−t

3
0

0 1

⎞

⎟
⎠ , t ∈ R. (4.2)

(2) If T = hZ with the positive constant h < 2et + 1 for all t ∈ hZ, then eA(t, 0) of linear
difference system

xΔ =
x(t + h) − x(t)

h
= A(t)x (4.3)

is given by

eA(t, 0) =

⎛

⎜
⎝

t−h∏

τ=0

(

1 − e−τ

2 + e−τ
h

)

0

0 1

⎞

⎟
⎠ , t ∈ hZ. (4.4)

(3) If T = qN0 with the constant q > 1, then eA(t, 1) of q-difference system

xΔ =
x(qt) − x(t)
(q − 1)t

= A(t)x (4.5)

is given by

eA(t, 1) =

⎛

⎜
⎝

∏

τ∈T∩(0,t)

(

1 +
(1 − q)τe−τ

2 + e−τ

)

0

0 1

⎞

⎟
⎠ , t ∈ qN0 . (4.6)
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(4) If T = P1,1 = ∪∞
k=0[2k, 2k + 1] and p(t) = −e−t/(2 + e−t), then eA(t, 0) of linear dynamic

system

xΔ =

⎧

⎨

⎩

x′ = A(t)x(t) if t ∈ [2k, 2k + 1),

Δx(t) = A(t)x(t) if t = 2k + 1
(4.7)

is given by

eA(t, 0) =

(

ep(t, 0) 0

0 1

)

, t ∈ T = P1,1. (4.8)

Example 4.3. We consider the linear dynamic system

xΔ = A(t)x =

(

0 0
0 −2

)

x, x(t0) = x0, t ≥ t0 ∈ T, (4.9)

where A(t) =
(
0 0
0 −2

)

. If μ(t)/= 1/2 for all t ∈ T, then the matrix exponential function eA(t, t0) of
(4.9) is given by

eA
(

t, t0
)

=

(

1 0
0 e−2

(

t, t0
)

)

, t ≥ t0 ∈ T. (4.10)

We see that the generalized exponential function e−2(t, 0) is given by

e−2(t, 0) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−2t, t ∈ R,

(1 − 2h)t/h, t ∈ hZ,
∏

τ∈qN0∩[0,t)

(

1 + (1 − q)2τ
)

, t ∈ qN0 ,

( − e2
)k
e−2t, t ∈

∞⋃

k=0

[2k, 2k + 1],

(4.11)

respectively. Thus, we obtain the following results for (4.9) and e−2(t, t0).

(1) If T = R, then (4.9) is uniformly stable but not strongly stable.

(2) If T = Z, then (4.9) is strongly stable but not asymptotically stable.

(3) If T = hZ with 0 < h < 1 and h/= 1/2, then (4.9) is neither asymptotically stable nor
strongly stable. However, e−2(t, t0) goes to zero as t → ∞.

(4) If T = hZ with h > 1, then (4.9) is neither asymptotically stable nor strongly stable.

(5) If T = qN0 with q > 3/2, then (4.9) is unbounded and e−2(t, t0) is oscillatory.

(6) If T = ∪∞
k=0[2k, 2k + 1], then (4.9) is bounded and e−2(t, t0) goes to zero as t → ∞.
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