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66295 Brno, Czech Republic

2Department of Mathematics, Mendel University of Agriculture and Forestry in Brno, Zemědělská 1,
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1. Introduction

In this paper, we deal with oscillatory properties of solutions of the half-linear second-order
difference equation

Δ
(
rkΦ

(
Δxk

))
+ ckΦ(xk+1) = 0, Φ(x) := |x|p−2x, p > 1, (1.1)

where r, c are real-valued sequences and rk > 0. This equation can be regarded as a discrete
counterpart of the half-linear differential equation

(
r(t)Φ

(
x′))′ + c(t)Φ(x) = 0 (1.2)

which attracted considerable attention in the recent years. We refer to the books in [1, 2] and
the references given therein. The basic qualitative theory of (1.1) has been established in the
series of papers in [3–7] and it is summarized in the books [8, Chapter 3] and [2, Chapter 8].
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It is known that oscillatory properties of (1.1) are very similar to those of the second-order
Sturm-Liouville difference equation (which is a special case of p = 2 in (1.1)):

Δ
(
rkΔxk

)
+ ckxk+1 = 0. (1.3)

In particular, the discrete linear Sturmian theory extends verbatim to (1.1), and hence this equa-
tion can be classified as oscillatory or nonoscillatory. We will recall elements of the oscillation
theory of (1.1) in more detail in the next section.

The basic idea of the discrete linearization technique which we establish in this paper is
motivated by the paper of Elbert and Schneider [9], where the second-order half-linear differ-
ential equation

(
Φ
(
x′))′ +

γp

tp
Φ(x) + 2

(
p − 1
p

)p−1δ(t)
tp

Φ(x) = 0, γp :=
(
p − 1
p

)p

, (1.4)

is viewed as a perturbation of the Euler-type half-linear differential equation

(
Φ
(
x′))′ +

γp

tp
Φ(x) = 0, (1.5)

and oscillatory properties of (1.4) are studied via the linear equation

(
ty′)′ +

δ(t)
t

y = 0 (1.6)

under the assumption that
∫∞
t δ(s)/sds ≥ 0 for large t. In particular, the following statements

are presented in [9].

(i) Let p ≥ 2 and let linear equation (1.6) be nonoscillatory. Then (1.4) is also nonoscillatory.

(ii) Let p ∈ (1, 2] and let half-linear equation (1.4) be nonoscillatory. Then linear equation (1.6)
is also nonoscillatory.

The linearization technique for (1.2) has been further developed in [10–12]; see also references
given therein.

In our paper, we introduce a similar linearization technique for the investigation of os-
cillatory properties of (1.1). This equation is regarded as a perturbation of the nonoscillatory
equation of the same form:

Δ
(
rkΦ

(
Δxk

))
+ c̃kΦ

(
xk+1

)
= 0, (1.7)

and oscillatory properties of solutions of (1.1) are related to those of the linear second-order
difference equation

Δ
(
RkΔyk

)
+ Ckyk+1 = 0, (1.8)

where

Rk =
2
q
rkhkhk+1

∣∣Δhk

∣∣p−2, Ck =
(
ck − c̃k

)
h
p

k+1, (1.9)
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with q = p/(p − 1) being the conjugate number of p, and with a certain distinguished solution
h of (1.7). This enables to apply the deeply developed linear oscillation theory when investi-
gating oscillations of half-linear equation (1.1). As we will see in the next sections, compared
to the continuous case, the linearization technique is technically more difficult in the discrete
case since a nonlinear function which appears in the so-called modified Riccati equation is
considerably more complicated in the discrete case.

The paper is organized as follows. In the next section, we recall basic oscillatory proper-
ties of (1.1), including a quadratization formula for a certain nonlinear function which plays an
important role in subsequent sections of the paper. In Section 3, we present a discrete version
of the above-mentioned result of Elbert and Schneider [9]. In Section 4, we show that under
certain additional restriction on properties of solutions of (1.7) we do not need to distinguish
between the cases p ≥ 2 and p ∈ (1, 2]. The last section of the paper is devoted to an application
of the results of the previous sections of the paper.

2. Preliminaries

Oscillatory properties of (1.1) are defined using the concept of the generalized zero which is
defined in the same way as for (1.3) (see, e.g., [8, Chapter 3] or [2, Chapter 7]). A solution x of
(1.1) has a generalized zero in an interval (m,m+1] if xm /= 0 and xmxm+1rm ≤ 0. Since we suppose
that rk > 0 (oscillation theory of (1.1) generally requires only rk /= 0), a generalized zero of x in
(m,m+ 1] is either a “real” zero at k = m+ 1 or the sign change betweenm andm+ 1. Equation
(1.1) is said to be disconjugate in a discrete interval [m,n] if the solution x of (1.1) given by the
initial condition xm = 0, xm+1 /= 0, has no generalized zero in (m,n + 1]. Equation (1.1) is said to
be nonoscillatory if there existsm ∈ N such that it is disconjugate on [m,n] for every n > m, and
it is said to be oscillatory in the opposite case.

If x is a solution of (1.1) such that xk /= 0 in some discrete interval [m,∞), then wk =
rkΦ(Δxk/xk) is a solution of the associated Riccati-type equation

R
[
wk

]
:= Δwk + ck +wk

(
1 − rk

Φ
(
Φ−1(rk

)
+ Φ−1(wk

))
)

= 0. (2.1)

Moreover, if x has no generalized zero in [m,∞), then Φ−1(rk) + Φ−1(wk) > 0, k ∈ [m,∞). If
we suppose that (1.1) is nonoscillatory, among all solutions of (2.1) there exists the so-called
distinguished solution w̃ which has the property that there exists an interval [m,∞) such that
any other solution w of (2.1) for which Φ−1(rk) + Φ−1(wk) > 0, k ∈ [m,∞), satisfies wk > w̃k,
k ∈ [m,∞). Therefore, the distinguished solution of (2.1) is, in a certain sense, minimal solution
of this equation near∞. If w̃ is the distinguished solution of (2.1), then the associated solution
of (1.1) given by the formula

x̃k =
k−1∏

j=m

[
1 + Φ−1

(
w̃j

rj

)]
(2.2)

is said to be the recessive solution of (1.1) (see [13]). Note that in the linear case p = 2 a solution
x̃ of (1.3) is recessive if and only if

∞∑ 1
rkx̃kx̃k+1

= ∞. (2.3)
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Our first statement presents a comparison theorem for distinguished solutions of (2.1)
and (2.4) given below.

Lemma 2.1 (see [13]). Let (1.1) be nonoscillatory and let ck ≥ c̃k for large k. Further, let w̃k, ṽk be
distinguished solutions of the corresponding generalized Riccati equations (2.1) and

R̃
[
vk

]
:= Δvk + c̃k + vk

(
1 − rk

Φ
(
Φ−1(rk

)
+ Φ−1(vk

))
)

= 0, (2.4)

respectively. Then there exists m ∈ Z such that w̃k ≥ ṽk for k ∈ [m,∞). In particular, if ck ≥ 0 and
∑∞r1−q

k
= ∞, then w̃k ≥ 0 for large k.

The next statement relates nonoscillation of (1.1) to the existence of a certain solution of
the Riccati inequality associated with (2.1).

Lemma 2.2 (see [2, Theorem 8.2.7]). Equation (1.1) is nonoscillatory if and only if there exists a
sequencewk satisfying rk +wk > 0 and

R
[
wk

] ≤ 0 (2.5)

for large k.

The next statement is the discrete version of the generalized Leighton-Wintner oscillation
criterion. In this criterion, (1.1) is viewed as a perturbation of (1.7).

Lemma 2.3 (see [13]). Let h be the positive recessive solution of nonoscillatory equation (1.7). If

∞∑(
ck − c̃k

)
h
p

k+1 = ∞, (2.6)

then (1.1) is oscillatory.

The last auxiliary oscillation results of this section are Hille-Nehari (non-)oscillation cri-
teria for linear difference equation (1.3).

Lemma 2.4 (see [14]). Suppose that ck ≥ 0, rk > 0,
∑∞r−1

k
= ∞, and

∑∞ck < ∞. If

lim inf
k→∞

(
k−1∑ 1

rj

)( ∞∑

j=k

cj

)

>
1
4
, (2.7)

then (1.3) is oscillatory. If

lim sup
k→∞

(
k−1∑ 1

rj

)( ∞∑

j=k

cj

)

<
1
4
, (2.8)

then (1.3) is nonoscillatory.
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For the remaining part of this section, we suppose that (1.7) is nonoscillatory and we let
h be its solution such that hk > 0 for large k. Further, put

Gk := rkhkΦ
(
Δhk

)
(2.9)

and define the function

H(k, v) := v + rkhk+1Φ
(
Δhk

) − rk
(
v +Gk

)
h
p

k+1

Φ
(
h
q

k
Φ−1(rk

)
+ Φ−1(v +Gk

)) . (2.10)

Lemma 2.5. Put

vk := h
p

k

(
wk − w̃k

)
, (2.11)

where w̃k = rkΦ(Δhk/hk) is a solution of (2.4) and wk is any sequence satisfying rk +wk /= 0. Then

Δvk +
(
ck − c̃k

)
h
p

k+1 +H
(
k, vk

)
= h

p

k+1R
[
wk

]
. (2.12)

In particular, if wk is a solution of (2.1), then

Δvk +
(
ck − c̃k

)
h
p

k+1 +H
(
k, vk

)
= 0. (2.13)

Moreover,H(k, v) ≥ 0 for v > −rkhk(Φ(Δhk) + h
p−1
k

) with the equality if and only if v = 0.

Proof. By a direct computation and using the fact that w̃k is a solution of (2.4), we obtain

Δvk = h
p

k+1

(
wk+1 − w̃k+1

) − vk

= h
p

k+1

(
wk+1 + c̃k − rkw̃k

Φ
(
Φ−1(rk

)
+ Φ−1(w̃k

))
)
− vk

= h
p

k+1

(
wk+1 + c̃k − rkΦ

(
Δhk

hk+1

))
− vk

= h
p

k+1

(
wk+1 + c̃k

) − rkhk+1Φ
(
Δhk

) − vk.

(2.14)

Next, since vk = h
p

k
wk −Gk, we have

rk
(
vk +Gk

)

Φ
(
h
q

k
Φ−1(rk

)
+ Φ−1(vk +Gk

)) =
rkh

p

k
wk

Φ
(
h
q

k
Φ−1(rk

)
+ Φ−1(hp

k
wk

))

=
rkwk

Φ
(
Φ−1(rk

)
+ Φ−1(wk

)) ,

(2.15)

and hence

Δvk +
(
ck − c̃k

)
h
p

k+1 +H
(
k, vk

)
= h

p

k+1

(

wk+1 + ck −
rk
(
vk +Gk

)

Φ
(
h
q

k
Φ−1(rk

)
+ Φ−1(vk +Gk

))

)

= h
p

k+1R
[
wk

]
.

(2.16)
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If wk is a solution of (2.1), then vk satisfies (2.13). We prove the nonnegativity of the function
H(k, v) for v > −rkhk(Φ(Δhk) + h

p−1
k

) as follows. By a direct computation, we have

Hv

(
k, v

)
= 1 − r

q

k
h
q

k
h
p

k+1
(
h
q

k
Φ−1(rk

)
+ Φ−1(vk +Gk

))p ,

Hvv(k, v) =
qr

q

k
h
q

k
h
p

k+1

∣∣vk +Gk

∣∣q−2

(
h
q

k
Φ−1(rk

)
+ Φ−1(vk +Gk

))p+1 .

(2.17)

HenceHv(k, v) = 0 if and only if v = 0 and the functionH(k, v) is convex with respect to v for
v satisfying h

−q
k
Φ−1(rk) +Φ−1(v+Gk) > 0 which is equivalent to v > −rkhk(Φ(Δhk) +h

p−1
k

). This
proves the last statement of Lemma 2.5.

Lemma 2.6. Let R, G be defined by (1.9) and (2.9), respectively, and suppose that Gk > 0 for k ∈ N.
Then we have the following inequalities for v ≥ 0 and k ∈ N :

(
Rk + v

)
H(k, v) ≥ v2, p ∈ (1, 2],

(
Rk + v

)
H(k, v) ≤ v2, p ≥ 2.

(2.18)

Proof. In this proof, we write explicitly an index by a sequence only if this index is different
from k; that is, no index means the index k. In addition to (2.17), we have

Hvvv(k, 0) =
q

r2h2h2
k+1(Δh)2p−3

[
(q − 2)hk+1 − (2q − 1)Δh

]
. (2.19)

Denote F(k, v) := (Rk + v)H(k, v) − v2. Then we have Fv(k, 0) = 0 = Fvv(k, 0) and

Fvvv(k, 0) = RHvvv(k, 0) + 3Hvv(k, 0)

=
2

rhhk+1(Δh)p−1
[
(q − 2)hk+1 − (2q − 1)Δh

]
+

3q

rhhk+1(Δh)p−2

=
1

rhhk+1(Δh)p−1
[
2(q − 2)(h + Δh) + (2 − q)Δh

]

=
q − 2

rhhk+1(Δh)p−1
[h + h + Δh] =

q − 2

rhhk+1(Δh)p−1
[
h + hk+1

]
.

(2.20)

Consequently,

sgnF(k, v) = sgn (q − 2) (2.21)

in some right neighborhood of v = 0. Further, we have

Fvv(k, v) = 2Hv(k, v) + (R + v)Hvv(k, v) − 2

= − 2rqhqh
p

k+1(
hqΦ−1(r) + Φ−1(v +G)

)p +
qrqhqh

p

k+1(v +G)q−2(R + v)
(
hqΦ−1(r) + Φ−1(v +G)

)p+1

=
rqhqh

p

k+1
(
hqΦ−1(r) + Φ−1(v +G)

)p+1
[ − 2rq−1hq − 2Φ−1(v +G) + q(v +G)q−2(R + v)

]
.

(2.22)
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Denote by A(v) the expression in brackets in the last expression. By a direct computation, we
have

A(v) = (q − 2)Φ−1(v +G) + q(R −G)(v +G)q−2 − 2rq−1hq, (2.23)

hence sgnA(v) = sgnFvv(k, v) = sgn (q−2) for large v, and from the computation of Fvvv(k, 0),
we also have (q − 2)A(v) > 0 in some right neighborhood of v = 0. Since

A′(v) = (q − 2)(v +G)q−3
[
(q − 1)(v +G) + q(R −G)

]
(2.24)

has no positive root (observe that (q − 1)(v + G) + q(R − G) = 0 if and only if v =
−(1/(q − 1))rh(Δh)p−2(hk+1 + h) < 0), this means that (q − 2)A(v) and hence also
(q−2)Fvv(k, v) have a constant sign for v ∈ (0,∞). Therefore, the function F(k, v) is convex for
q ≥ 2 and concave for q ≤ 2, and this together with (2.21) implies the required inequalities.

3. (Non-)oscillation criteria: p ≥ 2 versus p ∈ (1, 2]

In this section, we suppose that (1.7) is nonoscillatory and possesses a positive increasing so-
lution h. We associate with (1.1) the linear Sturm-Liouville second-order difference equation

Δ
(
RkΔyk

)
+ Ckyk+1 = 0, (3.1)

where R and C are given by (1.9), that is,

Rk =
2
q
rkhkhk+1

(
Δhk

)p−2
, Ck =

(
ck − c̃k

)
h
p

k+1. (3.2)

The results of this section can be regarded as a discrete version of the results given in [9].

Theorem 3.1. Let p ≥ 2, ck ≥ c̃k for large k,

∞∑ 1
Rk

= ∞, (3.3)

and suppose that linear equation (3.1) with R, C given by (1.9) is nonoscillatory. Then half-linear
equation (1.1) is also nonoscillatory.

Proof. The proof is based on Lemma 2.2. Nonoscillation of (3.1) implies the existence of a solu-
tion v of the associated Riccati equation

Δvk + Ck +
v2
k

Rk + vk
= 0 (3.4)

such that Rk + vk > 0 for large k. Moreover, since (3.3) holds and Ck ≥ 0 for large k, by
Lemma 2.1 vk ≥ 0 for large k. By Lemma 2.6, we have (Rk + v)H(k, v) ≤ v2; hence v is also a
solution of the inequality

Δvk + Ck +H
(
k, vk

) ≤ 0. (3.5)

Now, substituting for v = hp(w − w̃), where w̃ = rΦ(Δh/h), we see from Lemma 2.5 that w is
a solution of Riccati inequality (2.5). Moreover, rk +wk = rk +h

−p
k
vk + w̃k > 0 since vk ≥ 0 and h

is a nonoscillatory solution of (1.7); that is, the corresponding solution of the associated Riccati
equation w̃ satisfies rk + w̃k > 0. Therefore, (1.1) is nonoscillatory.
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Theorem 3.2. Let p ∈ (1, 2], ck ≥ c̃k for large k, and let h be the recessive solution of (1.7). If half-
linear equation (1.1) is nonoscillatory, then linear equation (3.1) is also nonoscillatory.

Proof. We proceed similarly as in the previous proof. Nonoscillation of (1.1) implies the ex-
istence of the distinguished solution w of the associated Riccati equation (2.1) such that
wk + rk > 0 for large k. Put again v = hp(w − w̃), where w̃ is the distinguished solution of
(2.4). Then v solves the equation

Δvk + Ck +H
(
k, vk

)
= 0, (3.6)

and by Lemma 2.1, we have wk ≥ w̃k for large k, hence vk ≥ 0, and therefore Rk + vk > 0 for
large k. By Lemma 2.6,

Δvk + Ck +
v2
k

Rk + vk
≤ 0. (3.7)

This means that (3.1) is nonoscillatory by Lemma 2.2.

4. Criteria without restriction on p

Throughout this section, we suppose that Rk, Ck, and Gk are given by (1.9) and (2.9), respec-
tively, and that (1.7) is nonoscillatory.

Theorem 4.1. Let ck ≥ c̃k for large k and let hk > 0 be the recessive solution of (1.7) such that

∞∑(
ck − c̃k

)
h
p

k+1 < ∞. (4.1)

Further, suppose that condition (3.3) holds and

lim
k→∞

rkhkΦ
(
Δhk

)
= ∞. (4.2)

If there exists ε > 0 such that the equation

Δ
(
RkΔyk

)
+ (1 − ε)Ckyk+1 = 0 (4.3)

is oscillatory, then (1.1) is also oscillatory.

Proof. Let ε > 0 be such that (4.3) is oscillatory (i.e., ε < 1). Suppose, by contradiction,
that (1.1) is nonoscillatory, and let xk be its recessive solution. Denote by wk = rkΦ(Δxk/
xk) and w̃k = rkΦ(Δhk/hk) the distinguished solutions of the Riccati equations (2.1) and (2.4),
respectively, and put vk := h

p

k
(wk − w̃k). Since ck ≥ c̃k for large k, it follows from Lemma 2.1

that wk ≥ w̃k, and hence also vk ≥ 0 for large k. According to Lemma 2.5, we have

Δvk = −Ck −H
(
k, vk

)
. (4.4)

Hence vk is nonnegative and nonincreasing for large k, and this means that there exists a limit
of vk such that

0 ≤ lim
k→∞

vk < ∞. (4.5)
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Next, let N ∈ N be sufficiently large, k > N. Summing (4.4) from N to k, we obtain

vN − vk+1 =
k∑

j=N

Cj +
k∑

j=N

H
(
j, vj

)
, (4.6)

and hence

vN ≥
k∑

j=N

Cj +
k∑

j=N

H
(
j, vj

)
. (4.7)

Letting k → ∞ and using condition (4.1), we have

∞∑
H
(
k, vk

)
< ∞. (4.8)

Substituting zk = vk/Gk intoH(k, vk), we obtain

H
(
k,Gkzk

)
= Gkzk + rkhk+1Φ

(
Δhk

) − rk
(
zk + 1

)
h
p

k+1

Φ
(
hk/Δhk + Φ−1(zk + 1

)) =: H̃
(
k, zk

)
. (4.9)

Now, it follows from conditions (4.2) and (4.5) that zk → 0 as k → ∞. Hence we may approx-
imate the function H̃(k, z) by the second-degree Taylor polynomial at the center z = 0 (k is
regarded as a parameter). By a direct computation, we have

H̃(k, 0) = 0, H̃z(k, 0) = 0, H̃zz(k, 0) =
qrkhk

(
Δhk

)p

hk+1
, (4.10)

and hence

H̃(k, z) =
qrkhk

(
Δhk

)p

2hk+1
z2 + o

(
z2
)

as z −→ 0. (4.11)

The term o(z2) is of the form H̃zzz(k, ξ)z3 for some ξ ∈ (0, z). By a direct computation, we have

H̃zzz(k, 0) = qrkhk

(
Δhk

)p

h2
k+1

[
(q − 2)hk+1 − (2q − 1)Δhk

]
, (4.12)

that is,

∣∣H̃zzz(k, 0)
∣∣ ≤ qrkhk

(
Δhk

)p

hk+1

[|q − 2| + (2q − 1)
]
. (4.13)

Since H̃zzz(k, z) is continuous with respect to z near z = 0, there exists a constant M > 0 such
that

∣∣H̃zzz(k, ξ)
∣∣ ≤ Mrkhk

(
Δhk

)p

hk+1
, (4.14)
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and hence (4.11) can be written in the form

H̃(k, z) = qrkhk

(
Δhk

)p

2hk+1
z2
(
1 + o(1)

)
as z −→ 0 (4.15)

and the convergence o(1) → 0 as z → 0 is uniform with respect to k. This means that there
exists N1 such that

(q − ε)rkhk

(
Δhk

)p

2hk+1
z2
k
< H̃

(
k, zk

)
<
(q + ε)rkhk

(
Δhk

)p

2hk+1
z2
k

for k ≥ N1, (4.16)

and consequently

∞ >
∞∑
H
(
k, vk

)
=

∞∑
H̃
(
k, zk

)
>
q − ε

2

∞∑rkhk

(
Δhk

)p

hk+1
z2k

=
q − ε

2

∞∑rkhk

(
Δhk

)p
v2
k

hk+1G
2
k

=
q − ε

2

∞∑ v2
k

rkhkhk+1
(
Δhk

)p−2 .
(4.17)

Taking into account condition (3.3), it follows that vk → 0 as k → ∞. Thus we can apply
Taylor’s formula to the function F̃(k, v) := (Rk + v)H(k, v) at the center v = 0. By a direct
computation (see also the proof of Lemma 2.6), we have (k is regarded again as a parameter)

F̃(k, 0) = 0, F̃v(k, 0) = 0, F̃vv(k, 0) = 2, (4.18)

and hence

F̃(k, v) = v2 + o
(
v2) = v2(1 + o(1)

)
as v −→ 0. (4.19)

Similarly as in the case of H̃(k, z), the convergence o(1) → 0 as v → 0 is uniform with respect
to k because of (4.2) and (2.20). Hence

H(k, v) =
v2

Rk + v

(
1 + o(1)

)
as v −→ 0. (4.20)

Consequently, there exists N2 > N1 such that

(
1 − ε

2

)
v2
k

Rk + vk
< H

(
k, vk

)
<

(
1 +

ε

2

)
v2
k

Rk + vk
for k ≥ N2. (4.21)

Since

Rk =
2
q
Gk

hk+1

Δhk
=

2
q
Gk

(
1 +

hk

Δhk

)
>

2
q
Gk, (4.22)

from conditions (4.2) and (4.22) we have

vk

Rk
−→ 0 as k −→ ∞. (4.23)
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This means that there exists N3 ∈ N such that

1 − ε

1 + (1 − ε)
(
vk/Rk

) <
1 − ε/2

1 + vk/Rk
for k ≥ N3, (4.24)

that is,

1 − ε

Rk + (1 − ε)vk
=

1
Rk/(1 − ε) + vk

<
1 − ε/2
Rk + vk

for k ≥ N3. (4.25)

Consequently, from (4.21) we obtain

v2
k

Rk/(1 − ε) + vk
< H

(
k, vk

)
for k ≥ max

{
N2,N3

}
, (4.26)

and according to Lemma 2.5,

Δvk + Ck +
v2
k

Rk/(1 − ε) + vk
< 0 for k ≥ max

{
N2,N3

}
. (4.27)

The last inequality is the Riccati inequality associated with the equation

Δ
(

Rk

1 − ε
Δyk

)
+ Ckyk+1 = 0, (4.28)

that is, with (4.3). Since Rk/(1 − ε) + vk > 0, it follows from Lemma 2.2 that this equation is
nonoscillatory, which is a contradiction.

Theorem 4.2. Let ck ≥ c̃k for large k and let hk > 0 be a solution of (1.7) such that conditions (3.3),
(4.1), and

lim inf
k→∞

rkhkΦ
(
Δhk

)
> 0 (4.29)

are satisfied. If there exists ε > 0 such that the equation

Δ
(
RkΔyk

)
+ (1 + ε)Ckyk+1 = 0 (4.30)

is nonoscillatory, then (1.1) is also nonoscillatory.

Proof. It follows from nonoscillation of (4.30), that is,

Δ
(

Rk

1 + ε
Δyk

)
+ Ckyk+1 = 0, (4.31)

that there exists a solution vk of the associated Riccati equation

Δvk + Ck +
v2
k

Rk/(1 + ε) + vk
= 0 (4.32)
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such that Rk/(1 + ε) + vk > 0. This means that vk is nonincreasing since Ck ≥ 0 for large k.
Moreover, since

∑∞(1/Rk) = ∞, it follows from Lemma 2.1 that vk ≥ 0. Hence condition (4.5)
holds. Summing (4.32) from N to k (let N ∈ N be sufficiently large, k > N), we obtain

vN − vk+1 =
k∑

j=N

Cj +
k∑

j=N

v2
j

Rj/(1 + ε) + vj
, (4.33)

and hence

vN ≥
k∑

j=N

Cj +
k∑

j=N

v2
j

Rj/(1 + ε) + vj
. (4.34)

Letting k → ∞ and using (4.1), we have

∞∑ v2
k

Rk/(1 + ε) + vk
< ∞. (4.35)

This, together with conditions (3.3) and (4.5), implies that vk → 0 as k → ∞. Hence by the
Taylor formula for the function F̃(k, v) := (Rk + v)H(k, v) at the center v = 0 (see the com-
putations in the proof of Theorem 4.1 and observe that (4.29) is still sufficient for the uniform
convergence o(1) → 0 as v → 0 in (4.19)), we have

(
1 − ε

2

)
v2
k

Rk + vk
< H

(
k, vk

)
<

(
1 +

ε

2

)
v2
k

Rk + vk
for large k, (4.36)

and we can show similarly as in the proof of Theorem 4.1 (note that (4.29) implies that (4.23)
holds in view of (4.22)) that

(
1 +

ε

2

)
v2
k

Rk + vk
<

v2
k

Rk/(1 + ε) + vk
for large k. (4.37)

Consequently, from (4.32),

Δvk + Ck +H
(
k, vk

)
< 0, (4.38)

which according to Lemma 2.5 means that

wk+1 + ck − rkwk

Φ
(
Φ−1(rk

)
+ Φ−1(wk

)) < 0, (4.39)

where wk = h
−p
k
vk + w̃k and w̃k = rkΦ(Δhk/hk) is a solution of the Riccati equation associated

with (1.7), hence rk + w̃k > 0. Since vk ≥ 0 for large k, we have rk + wk = rk + h
−p
k
vk + w̃k > 0

and nonoscillation of (1.1) follows from Lemma 2.2.
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5. Remarks and applications

We start this section with a discussion of the continuous counterparts of the results presented
in the previous sections. In [15] and the subsequent papers [10, 16, 17], (1.2) is viewed as a
perturbation of another half-linear differential equation of the same form

(
r(t)Φ

(
x′))′ + c̃(t)Φ(x) = 0 (5.1)

and it is supposed that this equation possesses a positive solution h such that h′(t)/= 0 for large
t. Denote G(t) := r(t)h(t)Φ(h′(t)) and consider the differential equation

v′ +
(
c(t) − c̃(t)

)
hp(t) + (p − 1)r1−q(t)h−q(t)H(t, v) = 0, (5.2)

where

H(t, v) :=
∣
∣v +G(t)

∣
∣q − qvΦ−1(G(t)

) − ∣
∣G(t)

∣
∣q. (5.3)

By a direct computation, similar to that given in the proof of Lemma 2.5, one can show that
this equation has a solution defined on some interval [T,∞) if and only if the Riccati equation
associated with (1.2)

w′ + c(t) + (p − 1)r1−q(t)|w|q = 0 (5.4)

has a solution on [T,∞). These solutions are related by the formula v = hp(w−wh), wherewh =
rΦ(h′/h). The function H in (5.3) is the continuous counterpart of the function H given by
(2.10). We have the following estimates for the functionH(t, v)which are proved, for example,
in [18, 19] (we present here these estimates in a modified form with respect to [18]):

H(t, v) ≤ q

2
∣∣G(t)

∣∣q−2v2, p ≥ 2,

H(t, v) ≥ q

2
∣∣G(t)

∣∣q−2v2, p ∈ (1, 2]
(5.5)

for every v ∈ R. Moreover (see [19]), for every M ≥ 0, there exist constants K1 = K1(M),
K2 = K2(M) such that

K1
∣
∣G(t)

∣
∣q−2v2 ≤ H(t, v) ≤ K2

∣
∣G(t)

∣
∣q−2v2 (5.6)

for |v| ≤ M and any p > 1. These estimates enable to approximate the function (p −
1)r1−qh−qH(t, v) in (5.2) by the function

Kr1−qh−q|G|q−2v2 =
K

rh2
∣∣h′∣∣p−2

v2, (5.7)

where K is a real constant, and after this approximation, (5.2) becomes the classical Riccati
equation corresponding to a linear Sturm-Liouville differential equation. This linear equation
is then used to study oscillatory properties of (1.2).
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In our paper, we follow a similar idea in the discrete case. The essential difference with
respect to the continuous case is that the function H given by (2.10) is substantially more
complicated than its continuous counterpart (5.3); in particular, we were able to formulate
inequalities for the function H in Lemma 2.6 only under more restrictive assumptions than
in the continuous case. This is also the reason why assumptions of (non-)oscillation criteria
formulated in Section 3 are more restrictive than those of oscillation criteria for (1.2) given in
[10, 16].

Nowwe comment in more detail on assumptions of Theorems 4.1 and 4.2 of the previous
section. Assumption (4.1) is natural since if the sum of this series is ∞, (1.1) is oscillatory by
Lemma 2.3. Assumptions (3.3) and (4.2) are technical and we needed them to show that the
solution v of (3.6) satisfies vk → 0 as k → ∞. Assumptions (3.3) and (4.2) can be replaced by a
formally less restrictive assumption that

∞∑
H(k, α) = ∞ (5.8)

for every α > 0, but it may be difficult to verify this assumption in particular cases. Concerning
assumptions of Theorem 4.2, we also needed them to prove that vk → 0+ as k → ∞.

We conclude the paper with a statement illustrating application of Theorem 4.2 of the
previous section.

Theorem 5.1. Consider the perturbed Euler-type difference equation

ΔΦ
(
Δxk

)
+
[

γp

(k + 1)p
+ dk

]
Φ
(
xk+1

)
= 0, γp :=

(
p − 1
p

)p

, (5.9)

and suppose that

lim
k→∞

dk(k + 1)p+1 = ∞ (5.10)

and that

∞∑
dk(k + 1)p−1 < ∞. (5.11)

Then (5.9) is nonoscillatory provided

lim sup
k→∞

log k
∞∑

j=k

dj(j + 1)p−1 <
1
2

(
p − 1
p

)p−1
. (5.12)

Proof. Consider the sequence hk := k(p−1)/p and let c̃k := −ΔΦ(Δhk)/Φ(hk+1). We have

Δhk = (k + 1)(p−1)/p − k(p−1)/p = k(p−1)/p
[(

k + 1
k

)(p−1)/p
− 1

]

= k(p−1)/p
[
1 +

p − 1
pk

− p − 1
2p2k2

+O
(
k−3) − 1

]

=
p − 1
p

k−1/p
[
1 − 1

2pk
+O

(
k−2)

]

(5.13)
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as k → ∞; hence

Φ
(
Δhk

)
=
(
p − 1
p

)p−1
k−(p−1)/p

[
1 − p − 1

2pk
+O

(
k−2)

]
, (5.14)

and using the fact that k−1 = (k + 1)−1 +O((k + 1)−2) as k → ∞, we have

ΔΦ
(
Δhk

)
=
(
p − 1
p

)p−1{[
(k + 1)−(p−1)/p − k−(p−1)/p]

− p − 1
2p

[
(k + 1)−2+1/p − k−2+1/p]

}
+ ΔO

(
k−3+1/p)

=
(
p − 1
p

)p−1{
(k + 1)−(p−1)/p

[
1 −

(
k + 1
k

)(p−1)/p]

− p − 1
2p

(k + 1)−2+1/p
[
1 −

(
k + 1
k

)2−1/p]}
+O

(
(k + 1)−3+1/p

)

= −
(
p − 1
p

)p

(k + 1)−2+1/p +O
(
(k + 1)−3+1/p

)
.

(5.15)

Consequently,

c̃k = −ΔΦ
(
Δhk

)

Φ
(
hk+1

) =
γp

(k + 1)p
+O

(
(k + 1)−p−1

)
. (5.16)

To prove that (5.9) is nonoscillatory, we apply Theorem 4.2 with

ck =
γp

(k + 1)p
+ dk (5.17)

and c̃k given by (5.16). The term O((k + 1)−p−1) is of the form ak(k + 1)−p−1, where ak is a
bounded sequence; so we have

ck − c̃k = dk − ak

(k + 1)p+1
> 0 (5.18)

because of (5.10). Condition (4.1) is also satisfied since from (5.11)we have that the series

∞∑(
ck − c̃k

)
h
p

k+1 =
∞∑[

dk(k + 1)p−1 − ak

(k + 1)2

]
(5.19)

is convergent.
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Concerning assumptions (3.3) and (4.29),

hkhk+1
(
Δhk

)p−2 = k(p−1)/p(k + 1)(p−1)/p
(
p − 1
p

)p−2
k−(p−2)/p(1 +O

(
k−1)) (5.20)

=
(
p − 1
p

)p−2
k
(
1 +O

(
k−1)) (5.21)

and similarly

Gk = hkΦ
(
Δhk

)
=
(
p − 1
p

)p−1(
1 +O

(
k−1)) (5.22)

as k → ∞. This means that both (3.3) and (4.29) are satisfied. Moreover, by a routine computa-
tion, one finds (using the discrete l’Hospital rule; see, e.g., [20, page 29]) that

lim
k→∞

∑k−1
j=1 (1/j)

log k
= 1. (5.23)

Now, if (5.12) holds, there exists ε > 0 such that

lim sup
k→∞

log k
∞∑

j=k

dj(j + 1)p−1 <
1

2(1 + ε)

(
p − 1
p

)p−1
=

1
2q(1 + ε)

(
p − 1
p

)p−2
. (5.24)

This means that

lim sup
k→∞

log k
q

2

(
p

p − 1

)p−2 ∞∑

j=k

(1 + ε)Cj <
1
4
, (5.25)

where C is given by (1.9) with hk = k(p−1)/p. Then using (5.21) and (5.23) (with R given by
(1.9)), we have

lim sup
k→∞

(
k−1∑

R−1
j

)( ∞∑

j=k

(1 + ε)Cj

)

<
1
4
. (5.26)

This implies, by Lemma 2.4, that (4.30) is nonoscillatory and the statement follows from
Theorem 4.2.

Remark 5.2. (i) We conjecture that (5.9) is oscillatory (under (5.10) and (5.11)) provided

lim inf
k→∞

log k
∞∑

j=k

dj(j + 1)p−1 >
1
2

(
p − 1
p

)p−1
. (5.27)

The proof of this conjecture could follow essentially the same line as that of the previous theo-
rem, with the only difference that Theorem 4.1 instead of Theorem 4.2 is used (and, of course,
(2.7) is used instead of (2.8)). However, Theorem 4.1 needs h to be the recessive solution of the
equation

ΔΦ
(
Δxk

)
+ c̃kΦ

(
xk+1

)
= 0 (5.28)
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with c̃k given by (5.16), and in contrast to the continuous case (see [18, 21–23]), a suitable
summation characterization of the recessive solution is not known yet (note that the results
of [24] do not apply to our case); so we are not able to prove that hk = k(p−1)/p is really the
recessive solution of (5.28)with c̃ given by (5.16). Moreover, we conjecture that condition (4.2)
in Theorem 4.1 can be replaced by the weaker condition (4.29).

(ii)A typical equation to which the previous theorem applies is the Riemann-Weber-type
difference equation

Δ
(
Φ
(
Δxk

))
+
[

γp

(k + 1)p
+

λ

(k + 1)plog2(k + 1)

]
Φ
(
xk+1

)
= 0. (5.29)

By Theorem 4.2, this equation is nonoscillatory if λ < (1/2)((p − 1)/p)p−1.
(iii) The previous statement can be viewed as a partial extension of the (non-)

oscillation criterion given in [25], where it is proved, among others, that the difference equation

Δ2xk +
1
4k2

[
1 +

1

log2k
+ · · · + 1

∏n−1
j=1

(
logjk

)2 +
λ

∏n
j=1

(
logjk

)2

]
xk+1 = 0, (5.30)

where log0k = k, logjk = log(logj−1k), j = 1, . . . , n, is oscillatory if λ > 1 and nonoscillatory if
λ < 1.
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