Skip to main content

Theory and Modern Applications

Table 1 Properties of the fixed point \(B(u^{*},v^{*})\)

From: Bifurcation and chaos in a discrete Holling–Tanner model with Beddington–DeAngelis functional response

Conditions

Eigenvalues

Properties

G<s<G + 4

\(-1<\lambda _{1,2}<1\)

stable node

\(\max \{-\frac{Gs}{H}, \frac{(2+G)(2-s)}{H} \}<\frac{1}{h}\leqslant -\frac{(G+s)^{2}}{4H}\)

G>s

\(\lambda _{1,2}>1\)

unstable node

\(-\frac{Gs}{H}<\frac{1}{h}\leqslant -\frac{(G+s)^{2}}{4H}\)

G + 4<s

\(\lambda _{1,2}<-1\)

unstable node

\(\frac{(2+G)(2-s)}{H}<\frac{1}{h}\leqslant -\frac{(G+s)^{2}}{4H}\)

G<s

\(\lambda _{1}<-1\), \(-1<\lambda _{2}<1\)

unstable saddle

\(-\frac{Gs}{H}<\frac{1}{h}<\frac{(2+G)(2-s)}{H}\)

\(\frac{1}{h}\leqslant -\frac{(G+s)^{2}}{4H}\)

\(\frac{1}{h}>-\frac{(G+s)^{2}}{4H}\)

conjugate complex roots

stable focus

\(\frac{(1+G)(1-s)}{H}<\frac{1}{h}<\frac{G-s-Gs}{H}\)

\(|\lambda _{1,2}|<1\)

\(\frac{1}{h}>\max \{-\frac{(G+s)^{2}}{4H},\frac{G-s-Gs}{H} \}\)

conjugate complex roots

unstable focus

\(|\lambda _{1,2}|>1\)

\(\frac{1}{h}=\frac{(2+G)(2-s)}{H}\)

\(\lambda _{1}=-1\), \(\lambda _{2}\neq -1\)

nonhyperbolic

s ≠ G + 4

\(\frac{1}{h}=\frac{(2+G)(2-s)}{H}\)

\(\lambda _{1,2}=-1\)

nonhyperbolic

s = G + 4

\(\frac{1}{h}=\frac{G-s-Gs}{H}\)

conjugate complex roots

nonhyperbolic

G<s<G + 4

\(|\lambda _{1,2}|=1\)