Skip to main content

Applying fixed point methodologies to solve a class of matrix difference equations for a new class of operators

Abstract

The goal of this paper is to present a new class of operators satisfying the Prešić-type rational η-contraction condition in the setting of usual metric spaces. New fixed point results are also obtained for these operators. Our results generalize, extend, and unify many papers in this direction. Moreover, two examples are derived to support and document our theoretical results. Finally, to strengthen our paper and its contribution to applications, some convergence results for a class of matrix difference equations are investigated.

Introduction and preliminaries

In 1922, Banach [1] presented his principle which states: A self-mapping defined on a complete metric space \((\mho ,\varpi )\) has a unique fixed point (FP), i.e., \(\zeta ^{\ast }\in \mho \), \(\zeta ^{\ast }=\beth \zeta ^{\ast }\), provided is a contraction, that is, for a constant \(\alpha \in (0,1)\), we have

$$ \varpi (\beth \zeta _{1},\beth \zeta _{2})\leq \alpha \varpi (\zeta _{1}, \zeta _{2}),\quad \forall \zeta _{1},\zeta _{2}\in \mho . $$

Due to the ease of this principle and its essence, which is related to many applications in various branches of mathematics, many researchers have created various supplements and additions. For example, see [28].

From now until the end of our manuscript, we will consider z as a positive integer and \((\mho ,\varpi )\) as a complete metric space.

In 1965, Banach FP theorem was extended by Prešić [9]. He used his results to ensure the convergence of a certain type of sequences as follows:

Theorem 1.1

([9])

Let \(\beth :\mho ^{z}\rightarrow \mho \) be a mapping satisfying the condition below:

$$\begin{aligned}& \varpi \bigl( \beth ( \zeta _{1},\zeta _{2},\dots ,\zeta _{z} ) ,\beth ( \zeta _{2},\dots \zeta _{z},\zeta _{z+1} ) \bigr) \\& \quad \leq \gamma _{1}\varpi ( \zeta _{1},\zeta _{2} ) +\gamma _{2}\varpi ( \zeta _{2},\zeta _{3} ) + \cdots +\gamma _{z}\varpi ( \zeta _{z},\zeta _{z+1} ) \end{aligned}$$
(1.1)

for all \(\zeta _{1},\dots ,\zeta _{z+1}\in \mho \), where \(\gamma _{1},\gamma _{2},\dots ,\gamma _{z}\) are nonnegative constants so that \(\sum _{j=1}^{z}\gamma _{j}<1\). Then there is a unique point \(\zeta ^{\ast }\in \mho \) so that \(\beth ( \zeta ^{\ast },\dots ,\zeta ^{\ast } ) =\zeta ^{ \ast }\). Also if, for any chosen points \(\zeta _{1},\dots ,\zeta _{z}\) in and for \(l\in \mathbb{N} \),

$$ \zeta _{l+z}=\beth ( \zeta _{l},\zeta _{l+1},\dots ,\zeta _{l+z-1} ) , $$
(1.2)

then the sequence \(\{\zeta _{l}\}\) is convergent and \(\zeta ^{\ast }=\lim_{l\rightarrow \infty }\zeta _{l}=\beth ( \lim_{l\rightarrow \infty }\zeta _{l},\lim_{l \rightarrow \infty }\zeta _{l},\dots , \lim_{l\rightarrow \infty }\zeta _{l} ) \).

Remark 1.2

From Theorem 1.1, we note the following:

  • An operator \(\beth :\mho ^{z}\rightarrow \mho \) fulfilling (1.1) is said to be a Prešić operator;

  • A point \(\zeta ^{\ast }\in \mho \) is called an FP of if \(\beth ( \zeta ^{\ast },\dots ,\zeta ^{\ast } ) =\zeta ^{ \ast }\);

  • If we put \(z=1\), we directly obtain the Banach contraction principle (BCP).

The results of Prešić [9] have been generalized by Ćirić and Prešić [10] as follows:

Theorem 1.3

([10])

Assume that \(\beth :\mho ^{z}\rightarrow \mho \) satisfies

$$\begin{aligned}& \varpi \bigl( \beth ( \zeta _{1},\zeta _{2},\dots ,\zeta _{z} ) ,\beth ( \zeta _{2},\dots ,\zeta _{z},\zeta _{z+1} ) \bigr) \\& \quad \leq \gamma \max \bigl\{ \varpi ( \zeta _{1}, \zeta _{2} ) ,\varpi ( \zeta _{2},\zeta _{3} ) , \dots ,\varpi ( \zeta _{z},\zeta _{z+1} ) \bigr\} , \end{aligned}$$
(1.3)

for any \(\zeta _{1},\dots ,\zeta _{z+1}\in \mho \), where \(\gamma \in (0,1)\). Then there is \(\zeta ^{\ast }\in \mho \) so that \(\beth ( \zeta ^{\ast },\dots ,\zeta ^{\ast } ) =\zeta ^{ \ast }\). Further, for any chosen points \(\zeta _{1},\dots ,\zeta _{z}\in \mho \), the sequence \(\{\zeta _{l}\}\) described in (1.2) is convergent and

$$ \lim_{l\rightarrow \infty }\zeta _{l}=\beth \Bigl( \lim _{l\rightarrow \infty }\zeta _{l},\lim_{l \rightarrow \infty }\zeta _{l},\dots ,\lim_{l\rightarrow \infty }\zeta _{l} \Bigr) . $$

Also, if

$$ \varpi \bigl( \beth \bigl( \zeta ^{\ast },\dots ,\zeta ^{\ast } \bigr) ,\beth \bigl( \zeta ^{{\prime }},\dots ,\zeta ^{{{\prime }}} \bigr) \bigr) < \varpi \bigl( \zeta ^{\ast },\zeta ^{{\prime }} \bigr) $$

holds for all \(\zeta ^{\ast },\zeta ^{{\prime }}\in \mho \) with \(\zeta ^{\ast }\neq \zeta ^{{\prime }}\), then the FP is unique in .

Pâcurar [11] was able to present a convergence theorem for Prešić–Kannan contraction. For more details along this line of research, we refer the readers to [1214].

Theorem 1.4

([11])

Suppose that \(\beth :\mho ^{z}\rightarrow \mho \). If there is \(\gamma \in \mathbb{R} \) with \(\gamma z(1+z)\in (0,1)\) so that the inequality

$$ \varpi \bigl( \beth ( \zeta _{1},\dots ,\zeta _{z} ) , \beth ( \zeta _{2},\dots ,\zeta _{z+1} ) \bigr) \leq \gamma \sum_{j=1}^{z+1}\varpi \bigl( \zeta _{j},\beth ( \zeta _{j},\dots ,\zeta _{j} ) \bigr) , $$
(1.4)

is satisfied for each \(( \zeta _{1},\dots ,\zeta _{z+1} ) \in \mho ^{z+1}\), then

  • possesses a unique FP \(\zeta ^{\ast }\in \mho \),

  • for any chosen points \(\zeta _{1},\dots ,\zeta _{z}\in \mho \), the sequence \(\{\zeta _{l}\}\) described in (1.2) converges to \(\zeta ^{\ast }\).

In 2014, a new contribution to the extension of the BCP was highlighted by Jleli and Samet [15]. They presented a new type of contraction, called η-contraction, and obtained generalized results under appropriate conditions.

Definition 1.5

([15])

Let \(\eta :(0,\infty )\rightarrow (1,\infty )\) be a mapping such that:

\((\eta _{1})\):

η is nondecreasing;

\((\eta _{2})\):

for each \(\{r_{l}\}\subseteq \mathbb{R} ^{+}\), \(\lim_{l\rightarrow \infty }\eta (r_{l})=1\) iff \(\lim_{l\rightarrow \infty }r_{l}=0\);

\((\eta _{3})\):

there are \(\ell \in (0,1)\) and \(u\in (0,\infty ) \) so that \(\lim_{r\rightarrow 0^{+}} ( \frac{\eta (r)-1}{r^{\ell }} ) =u\).

A mapping \(\beth :\mho \rightarrow \mho \) is called an η-contraction if \(\exists \gamma \in (0,1)\) and a function η satisfying \((\eta _{1})\)\((\eta _{3})\) so that

$$ \beth \zeta \neq \beth \vartheta\quad \Longrightarrow\quad \eta \bigl( \varpi ( \beth \zeta ,\beth \vartheta ) \bigr) \leq \bigl[ \eta \bigl( \varpi ( \zeta ,\vartheta ) \bigr) \bigr] ^{\gamma },\quad \text{for all }\zeta ,\vartheta \in \mho . $$

The set of all mappings \(\eta :(0,\infty )\rightarrow (1,\infty )\) will be denoted by .

Theorem 1.6

([15])

An operator \(\beth :\mho \rightarrow \mho \) has a unique FP provided that is an η-contraction.

Numerous academics have discussed the concept of η-contraction, and important theoretical and practical findings have been documented that justify the use of FPs in nonlinear analysis under different spatial constraints. We advise the reader to view [16, 17] for further details.

In [18], two classes of matrix equations have been investigated by Ran and Reurings as follows:

$$ \xi =\Game \pm \sum_{j=1}^{m}\wp _{j}^{\ast }\xi \wp _{j} ,$$
(1.5)

where is an \(n\times n\) positive definite matrix and \(\wp _{j}\) are arbitrary \(n\times n\) matrices. Under some hypotheses, they established the existence and uniqueness of positive definite solutions to (1.5). Duan et al. [19] generalized system (1.5) by making a small change as follows:

$$ \xi =\Game \pm \sum_{j=1}^{m}\wp _{j}^{\ast }\xi ^{\rho _{j}} \wp _{j}, $$

where \(0< \vert \rho _{j} \vert <1\). They investigated the existence and uniqueness of a positive definite solution to such an equation on the basis of a fixed point theorem for mixed monotone mappings. This form of matrix equation frequently occurs in a variety of fields, including ladder networks [20, 21], dynamic programming [22, 23], control theory [24, 25], etc.

In the setting of η-contraction and matrix equations, our paper is organized as follows. Section 1 is devoted to providing previous contributions to our studied problem in terms of definitions and theory useful in understanding our manuscript. In Sect. 2, the convergence of iterative sequences of the Presšíc-type rational η-contraction mappings in complete metric spaces is discussed. Also, nontrivial examples are obtained to support the theoretical results. Ultimately, in Sect. 3, the obtained results are applied to obtain convergence results for a class of matrix difference equations as a kind of application.

Main results

We start this part with the following definition:

Definition 2.1

We say that a mapping \(\beth :\mho ^{z}\rightarrow \mho \) is a Prešić-type rational η-contraction (PTR η-C, for short) if there is some \(\gamma \in (0,1)\) so that

$$ \eta \bigl( \varpi \bigl( \beth ( \zeta _{1},\dots ,\zeta _{z} ) ,\beth ( \zeta _{2},\dots ,\zeta _{z+1} ) \bigr) \bigr) \leq \biggl\{ \eta \biggl( \max \biggl\{ \frac{\varpi ( \zeta _{j},\zeta _{j+1} ) }{1+\varpi ( \zeta _{j},\zeta _{j+1} ) }:1 \leq j \leq z \biggr\} \biggr) \biggr\} ^{\gamma } $$
(2.1)

for each \(( \zeta _{1},\dots ,\zeta _{z+1} ) \in \mho ^{z+1}\) with \(\beth ( \zeta _{1},\dots ,\zeta _{z} ) \neq \beth ( \zeta _{2},\dots ,\zeta _{z+1} ) \).

It should be noted that if \(\eta (r)=e^{\sqrt{r}}\), then PTR η-C reduces to

$$ \varpi \bigl( \beth ( \zeta _{1},\dots ,\zeta _{z} ) , \beth ( \zeta _{2},\dots ,\zeta _{z+1} ) \bigr) \leq \gamma ^{2} \biggl( \max \biggl\{ \frac{\varpi ( \zeta _{j},\zeta _{j+1} ) }{1+\varpi ( \zeta _{j},\zeta _{j+1} ) }:1\leq j\leq z \biggr\} \biggr) , $$
(2.2)

for each \(( \zeta _{1},\dots ,\zeta _{z+1} ) \in \mho ^{z+1}\), \(\beth ( \zeta _{1},\dots ,\zeta _{z} ) \neq \beth ( \zeta _{2},\dots ,\zeta _{z+1} ) \).

In addition, if \(( \zeta _{1},\dots ,\zeta _{z+1} ) \in \mho ^{z+1}\) is such that \(\beth ( \zeta _{1},\dots ,\zeta _{z} ) =\beth ( \zeta _{2},\dots ,\zeta _{z+1} ) \), then condition (2.2) is more general than (1.3), so the mapping in (2.2) extends and unifies Cirić–Prešić contraction.

Remark 2.2

Every PTR η-C is a Prešić mapping by \((\eta _{1})\) and (1.4), that is,

$$\begin{aligned} \varpi \bigl( \beth ( \zeta _{1},\dots ,\zeta _{z} ) , \beth ( \zeta _{2},\dots ,\zeta _{z+1} ) \bigr) &\leq \gamma \max \biggl\{ \frac{\varpi ( \zeta _{j},\zeta _{j+1} ) }{1+\varpi ( \zeta _{j},\zeta _{j+1} ) }:1 \leq j\leq z \biggr\} \\ &< \max \bigl\{ \varpi ( \zeta _{j},\zeta _{j+1} ) :1 \leq j \leq z \bigr\} . \end{aligned}$$

for each \(( \zeta _{1},\dots ,\zeta _{z+1} ) \in \mho ^{z+1}\) with \(\beth ( \zeta _{1},\dots ,\zeta _{z} ) \neq \beth ( \zeta _{2},\dots ,\zeta _{z+1} ) \). Thus, each PTR η-C is a continuous function.

Now, our first result is as follows:

Theorem 2.3

Suppose that \(\beth :\mho ^{z}\rightarrow \mho \) is a PTR η-C. Then for any chosen points \(\zeta _{1},\dots ,\zeta _{z}\in \mho \), the sequence \(\{\zeta _{l}\}\) described in (1.2) is convergent to \(\zeta ^{\ast }\in \mho \) and \(\zeta ^{\ast }\) is an FP of . In addition, if \(\beth ( \zeta ^{\ast },\dots ,\zeta ^{\ast } ) \neq \beth ( \zeta ^{\prime },\dots ,\zeta ^{{\prime }} ) \) with

$$ \eta \bigl( \varpi \bigl( \beth \bigl( \zeta ^{\ast },\dots , \zeta ^{\ast } \bigr) ,\beth \bigl( \zeta ^{{\prime }},\dots , \zeta ^{\prime } \bigr) \bigr) \bigr) \leq \bigl[ \eta \bigl( \varpi \bigl( \zeta ^{\ast },\zeta ^{\prime } \bigr) \bigr) \bigr] ^{\gamma } $$

for \(\zeta ^{\ast },\zeta ^{{\prime }}\in \mho \) such that \(\zeta ^{\ast }\neq \zeta ^{{\prime }}\), then the point \(\zeta ^{\ast }\) is unique.

Proof

Let \(\zeta _{1},\dots ,\zeta _{z}\) be arbitrary z elements in and for \(l\in \mathbb{N} \) the sequence \(\{\zeta _{l}\}\) is defined in (1.2). If for some \(l_{0}=\{1,2,\dots ,z\}\) one has \(\zeta _{l_{0}}=\zeta _{l_{0}+1}\), then

$$ \zeta _{l_{0}+z}=\beth ( \zeta _{l_{0}},\zeta _{l_{0}+1},\dots , \zeta _{l_{0}+z-1} ) =\beth ( \zeta _{l_{0}+z},\zeta _{l_{0}+z}, \dots ,\zeta _{l_{0}+z} ) , $$

which means that \(\zeta _{l_{0}+z}\) is an FP of and there is no further proof needed. So, we consider \(\zeta _{l+z}\neq \zeta _{l+z+1}\) for all \(l\in \mathbb{N} \). Put \(\gimel _{l+z}=\varpi ( \zeta _{l+z},\zeta _{l+z+1} ) \) and

$$ \phi =\max \biggl\{ \frac{\varpi ( \zeta _{1},\zeta _{2} ) }{1+\varpi ( \zeta _{1},\zeta _{2} ) }, \frac{\varpi ( \zeta _{2},\zeta _{3} ) }{1+\varpi ( \zeta _{2},\zeta _{3} ) }, \dots ,\frac{\varpi ( \zeta _{z},\zeta _{z+1} ) }{1+\varpi ( \zeta _{z},\zeta _{z+1} ) } \biggr\} . $$

Then for all \(l\in \mathbb{N} \) and \(\phi >0\), we have \(\gimel _{l+z}>0\). Thus, for \(l\leq z\), we obtain

$$\begin{aligned} 1 &< \eta ( \gimel _{z+1} ) \\ & =\eta \bigl( \varpi ( \zeta _{z+1}, \zeta _{z+2} ) \bigr) \\ &=\eta \bigl( \varpi \bigl( \beth ( \zeta _{1},\zeta _{2}, \dots ,\zeta _{z} ) ,\beth ( \zeta _{2},\zeta _{3},\dots , \zeta _{z+1} ) \bigr) \bigr) \\ &\leq \biggl[ \eta \biggl( \max \biggl\{ \frac{\varpi ( \zeta _{j},\zeta _{j+1} ) }{1+\varpi ( \zeta _{j},\zeta _{j+1} ) }:1 \leq j\leq z \biggr\} \biggr) \biggr] ^{\gamma } \\ &= \bigl[ \eta ( \phi ) \bigr] ^{\gamma }. \end{aligned}$$

Also,

$$\begin{aligned} 1 &< \eta ( \gimel _{z+2} ) \\ &=\eta \bigl( \varpi ( \zeta _{z+2}, \zeta _{z+3} ) \bigr) \\ &=\eta \bigl( \varpi \bigl( \beth ( \zeta _{2},\zeta _{3}, \dots ,\zeta _{z+1} ) ,\beth ( \zeta _{3},\zeta _{4}, \dots ,\zeta _{z+2} ) \bigr) \bigr) \\ &\leq \biggl[ \eta \biggl( \max \biggl\{ \frac{\varpi ( \zeta _{j},\zeta _{j+1} ) }{1+\varpi ( \zeta _{j},\zeta _{j+1} ) }:2 \leq j\leq z+1 \biggr\} \biggr) \biggr] ^{\gamma } \\ &= \bigl[ \eta ( \phi ) \bigr] ^{\gamma ^{2}}. \end{aligned}$$

Continuing in the same pattern, for \(l\geq 1\), we get

$$ \begin{aligned} 1 &< \eta ( \gimel _{z+l} ) \\ & =\eta \bigl( \varpi ( \zeta _{l+z},\zeta _{l+z+1} ) \bigr) \\ &=\eta \bigl( \varpi \bigl( \beth ( \zeta _{l},\zeta _{l+1}, \dots ,\zeta _{l+z-1} ) ,\beth ( \zeta _{l+1},\zeta _{l+2}, \dots ,\zeta _{l+z} ) \bigr) \bigr) \\ &\leq \bigl[ \eta ( \phi ) \bigr] ^{\gamma ^{l}}. \end{aligned} $$
(2.3)

Taking \(l\rightarrow \infty \) in (2.3) and using \((\eta _{2})\), we have

$$ \lim_{l\rightarrow \infty }\eta ( \gimel _{z+l} ) =1 \quad \Longleftrightarrow\quad \lim_{l\rightarrow \infty }\gimel _{z+l}=0. $$

Based on \((\eta _{3})\), there are \(\ell \in (0,1)\) and \(u\in (0,\infty )\) so that

$$ \lim_{l\rightarrow \infty } \biggl( \frac{\eta ( \gimel _{z+l} ) -1}{\gimel _{z+l}^{\ell }} \biggr) =u. $$

Assume that \(u<\infty \) and \(v=\frac{u}{2}>0\). By the definition of the limit, there is \(l_{1}\in \mathbb{N} \) such that

$$ \biggl\vert \frac{\eta ( \gimel _{z+l} ) -1}{\gimel _{z+l}^{\ell }}-u \biggr\vert \leq v,\quad \forall l>l_{1}. $$

It follows that

$$ \frac{\eta ( \gimel _{z+l} ) -1}{\gimel _{z+l}^{\ell }} \geq u-v=\frac{u}{2}=v,\quad \forall l>l_{1}. $$

Set \(\frac{1}{v}=q\), then

$$ l\gimel _{z+l}^{\ell }\leq lq \bigl( \eta ( \gimel _{z+l} ) -1 \bigr) , \quad \forall l>l_{1}. $$

Suppose that \(u=\infty \) and \(v>0\). By the definition of the limit, there is \(l_{1}\in \mathbb{N} \) such that

$$ v\leq \frac{\eta ( \gimel _{z+l} ) -1}{\gimel _{z+l}^{\ell }},\quad \forall l>l_{1}. $$

This implies after taking \(\frac{1}{v}=q\) that

$$ l\gimel _{z+l}^{\ell }\leq lq \bigl( \eta ( \gimel _{z+l} ) -1 \bigr) , \quad \forall l>l_{1}. $$

Thus, in both cases, there are \(l_{1}\in \mathbb{N} \) and \(q>0\) so that

$$ l\gimel _{z+l}^{\ell }\leq lq \bigl( \eta ( \gimel _{z+l} ) -1 \bigr) , \quad \forall l>l_{1}. $$

Applying (2.3), we get

$$ l\gimel _{z+l}^{\ell }\leq lq \bigl( \bigl[ \eta ( \phi ) \bigr] ^{\gamma ^{l}}-1 \bigr) , \quad \forall l>l_{1}, $$

and, when \(l\rightarrow \infty \), have

$$ \lim_{l\rightarrow \infty }l\gimel _{z+l}^{\ell }=0. $$

Thus, there is \(l_{2}\in \mathbb{N} \) and \(q>0\) such that

$$ l\gimel _{z+l}^{\ell }\leq 1,\quad \forall l>l_{2}. $$

Hence we can write

$$ \gimel _{z+l}\leq \frac{1}{l^{\frac{1}{\ell }}}, \quad \forall l>l_{2}. $$

Now, we clarify that \(\{\zeta _{l}\}\) is a Cauchy sequence. For \(b>l>l_{2}\), one can write

$$\begin{aligned} \varpi ( \zeta _{z+l},\zeta _{z+b} ) ={}&\varpi \bigl( \beth ( \zeta _{l},\dots ,\zeta _{z+l-1} ) ,\beth ( \zeta _{b},\dots ,\zeta _{z+b-1} ) \bigr) \\ \leq{}& \varpi \bigl( \beth ( \zeta _{l},\dots ,\zeta _{z+l-1} ) ,\beth ( \zeta _{l+1},\dots ,\zeta _{z+l} ) \bigr) \\ &{} +\varpi \bigl( \beth ( \zeta _{l+1},\dots ,\zeta _{z+l} ) , \beth ( \zeta _{l+2},\dots ,\zeta _{z+l+1} ) \bigr) \\ & {}+\cdots +\varpi \bigl( \beth ( \zeta _{b-1},\dots , \zeta _{z+b-2} ) ,\beth ( \zeta _{b},\dots ,\zeta _{z+b-1} ) \bigr) \\ ={}&\varpi ( \zeta _{z+l},\zeta _{z+l+1} ) +\varpi ( \zeta _{z+l+1},\zeta _{z+l+2} ) +\cdots +\varpi ( \zeta _{z+b-1}, \zeta _{z+b} ) \\ ={}&\gimel _{l+z}+\gimel _{l+z+1}+\cdots +\gimel _{z+b-1} \\ ={}&\sum_{s=l}^{b-1}\gimel _{s+z}< \sum_{s=l}^{\infty } \gimel _{s+z}\leq \sum_{s=l}^{\infty } \frac{1}{s^{\frac{1}{\ell }}}< \infty , \end{aligned}$$

hence it follows that \(\{\zeta _{l}\}\) is a Cauchy sequence in \((\mho ,\varpi )\). The completeness of yields that there is \(\zeta ^{\ast }\in \mho \) such that

$$ \lim_{l,b\rightarrow \infty }\varpi ( \zeta _{l},\zeta _{b} ) =\lim_{l\rightarrow \infty }\varpi \bigl( \zeta _{l}, \zeta ^{\ast } \bigr) =0. $$

Because is continuous, we have

$$\begin{aligned} \hbar &=\lim_{l\rightarrow \infty }\zeta _{l+z} \\ &=\lim _{l\rightarrow \infty }\beth ( \zeta _{l},\zeta _{l+1},\dots ,\zeta _{z+l-1} ) \\ &=\beth \Bigl( \lim_{l\rightarrow \infty }\zeta _{l},\lim _{l \rightarrow \infty }\zeta _{l+1},\dots ,\lim_{l\rightarrow \infty } \zeta _{z+l-1} \Bigr) \\ & =\beth \bigl( \zeta ^{\ast },\zeta ^{\ast }, \dots ,\zeta ^{\ast } \bigr) . \end{aligned}$$

For uniqueness, assume that \(\zeta ^{\ast }\) and \(\zeta ^{{\prime }}\) are two distinct FP of the mapping , i.e., \(\zeta ^{\ast }=\beth ( \zeta ^{\ast },\zeta ^{\ast },\dots , \zeta ^{\ast } ) \) and \(\zeta ^{{\prime }}=\beth ( \zeta ^{{\prime }},\zeta ^{{\prime }}, \dots ,\zeta ^{{\prime }} ) \) with \(\zeta ^{\ast }\neq \zeta ^{{\prime }}\). Hence, by hypothesis (2.1), we can write

$$\begin{aligned} \eta \bigl( \varpi \bigl( \zeta ^{\ast },\zeta ^{{\prime }} \bigr) \bigr) &=\eta \bigl( \varpi \bigl( \beth \bigl( \zeta ^{\ast }, \zeta ^{\ast },\dots ,\zeta ^{\ast } \bigr) ,\beth \bigl( \zeta ^{{ \prime }},\zeta ^{{\prime }},\dots ,\zeta ^{{\prime }} \bigr) \bigr) \bigr) \\ &\leq \biggl[ \eta \biggl( \frac{\varpi ( \zeta ^{\ast },\zeta ^{{\prime }} ) }{1+\varpi ( \zeta ^{\ast },\zeta ^{{\prime }} ) } \biggr) \biggr] ^{\gamma } \\ &\leq \bigl[ \eta \bigl( \varpi \bigl( \zeta ^{\ast },\zeta ^{{ \prime }} \bigr) \bigr) \bigr] ^{\gamma }, \end{aligned}$$

a contradiction, as \(\gamma \in (0,1)\). Therefore, \(\zeta ^{\ast }=\zeta ^{{\prime }}\). This ends the proof. □

The following examples support Theorem 2.3.

Example 2.4

Let \(\{\zeta _{l}\}\) be a sequence defined as follows:

$$ \textstyle\begin{cases} \zeta _{1}=3, \\ \zeta _{2}=3+7, \\ \vdots \\ \zeta _{l}=3+7+11+\cdots + ( 4l-1 ) =l(2l+1).\end{cases} $$

Assume that \(\mho = \{ \zeta _{l}:l\in \mathbb{N} \} \) and \(\varpi ( \widetilde{\zeta },\widehat{\zeta } ) = \vert \widetilde{\zeta }-\widehat{\zeta } \vert \). Clearly, \(( \mho ,\varpi ) \) is a complete metric space. Define a mapping \(\beth :\mho ^{3}\rightarrow \mho \) by

$$ \beth ( \zeta _{l},\widetilde{\zeta }_{l},\widehat{\zeta }_{l} ) = \textstyle\begin{cases} \frac{\zeta _{l-1}+\widetilde{\zeta }_{l-1}+\widehat{\zeta }_{l-1}}{3}, & \text{when }l>1, \\ \frac{\zeta _{1}+\widetilde{\zeta }_{1}+\widehat{\zeta }_{1}}{3}, & \text{otherwise.}\end{cases}$$

For \(l>5\), we have

$$\begin{aligned} &\varpi \bigl( \beth ( \zeta _{l-4},\zeta _{l-3},\zeta _{l-2} ) ,\beth ( \zeta _{l-2},\zeta _{l-1},\zeta _{l} ) \bigr) \\ &\quad =\varpi \biggl( \frac{\zeta _{l-5}+\zeta _{l-4}+\zeta _{l-3}}{3}, \frac{\zeta _{l-3}+\zeta _{l-2}+\zeta _{l-1}}{3} \biggr) \\ &\quad =\frac{1}{3} \bigl\vert \bigl( (l-5) (2l-9)+(l-4) (2l-7)+(l-3) (2l-5) \bigr) \\ & \qquad {}- \bigl( (l-3) (2l-5)+(l-2) (2l-3)+(l-1) (2l-1) \bigr) \bigr\vert \\ &\quad =\frac{1}{3} \bigl\vert \bigl(6l^{2}-45l+88\bigr)- \bigl(6l^{2}-21l+22\bigr) \bigr\vert \\ &\quad =\frac{1}{3} \vert 24l-66 \vert =8l-22, \end{aligned}$$

and

$$\begin{aligned} &\max \bigl\{ \varpi \bigl( ( \zeta _{l-4},\zeta _{l-3}, \zeta _{l-2} ) , ( \zeta _{l-2},\zeta _{l-1},\zeta _{l} ) \bigr) \bigr\} \\ &\quad =\max \begin{Bmatrix} \bigl\vert (l-4) (2l-7)-(l-2) (2l-3) \bigr\vert , \\ \bigl\vert (l-3) (2l-5)-(l-1) (2l-1) \bigr\vert , \\ \bigl\vert (l-2) (2l-3)-l(2l+1) \bigr\vert \end{Bmatrix} \\ &\quad =\max \bigl\{ ( 8l-22 ) , ( 8l-14 ) ,(6l-6) \bigr\} = ( 8l-14 ) . \end{aligned}$$

Now,

$$ \lim_{l\rightarrow \infty } \frac{\varpi ( \beth ( \zeta _{l-4},\zeta _{l-3},\zeta _{l-2} ) ,\beth ( \zeta _{l-2},\zeta _{l-1},\zeta _{l} ) ) }{\max \{ \varpi ( ( \zeta _{l-4},\zeta _{l-3},\zeta _{l-2} ) , ( \zeta _{l-2},\zeta _{l-1},\zeta _{l} ) ) \} }= \lim_{l\rightarrow \infty } \frac{8l-22}{8l-14}=1. $$

Thus,

$$ \varpi \bigl( \beth ( \zeta _{l-4},\zeta _{l-3},\zeta _{l-2} ) ,\beth ( \zeta _{l-2},\zeta _{l-1},\zeta _{l} ) \bigr) \leq \gamma \max \bigl\{ \varpi \bigl( ( \zeta _{l-4}, \zeta _{l-3},\zeta _{l-2} ) , ( \zeta _{l-2},\zeta _{l-1}, \zeta _{l} ) \bigr) \bigr\} $$

does not hold for \(\gamma \in (0,1)\), which implies that assumption (1.1) of Theorem 1.1 is not fulfilled. Now, define the mapping \(\eta :(0,\infty )\rightarrow (1,\infty )\) by \(\eta (s)=e^{\frac{se^{s}}{1+s}}\). We can easily verify that \(\eta \in \nabla \) and is PTR η-C. Indeed, the inequality

$$ \begin{aligned} &e^{\sqrt{\varpi ( \beth ( \zeta _{i},\zeta _{i+1}, \zeta _{i+2} ) ,\beth ( \zeta _{i+2},\zeta _{i+3},\zeta _{i+4} ) ) \frac{e^{\varpi ( \beth ( \zeta _{i},\zeta _{i+1},\zeta _{i+2} ) ,\beth ( \zeta _{i+2},\zeta _{i+3},\zeta _{i+4} ) ) }}{1+\varpi ( \beth ( \zeta _{i},\zeta _{i+1},\zeta _{i+2} ) ,\beth ( \zeta _{i+2},\zeta _{i+3},\zeta _{i+4} ) ) }}} \\ &\quad \leq e^{\gamma \sqrt{\varpi ( ( \zeta _{i},\zeta _{i+1}, \zeta _{i+2} ) , ( \zeta _{i+2},\zeta _{i+3},\zeta _{i+4} ) ) \frac{e^{\varpi ( ( \zeta _{i},\zeta _{i+1},\zeta _{i+2} ) , ( \zeta _{i+2},\zeta _{i+3},\zeta _{i+4} ) ) }}{1+\varpi ( ( \zeta _{i},\zeta _{i+1},\zeta _{i+2} ) , ( \zeta _{i+2},\zeta _{i+3},\zeta _{i+4} ) ) }}}, \end{aligned} $$
(2.4)

holds for \(\beth ( \zeta _{i},\zeta _{i+1},\zeta _{i+2} ) \neq \beth ( \zeta _{i+2},\zeta _{i+3},\zeta _{i+4} ) \), \(i=1,2,\dots \), and for some \(\gamma \in (0,1)\). Inequality (1.1) is equivalent to

$$ \begin{aligned} &\varpi \bigl( \beth ( \zeta _{i},\zeta _{i+1}, \zeta _{i+2} ) ,\beth ( \zeta _{i+2},\zeta _{i+3},\zeta _{i+4} ) \bigr) e^{ \frac{\varpi ( \beth ( \zeta _{i},\zeta _{i+1},\zeta _{i+2} ) ,\beth ( \zeta _{i+2},\zeta _{i+3},\zeta _{i+4} ) ) }{1+\varpi ( \beth ( \zeta _{i},\zeta _{i+1},\zeta _{i+2} ) ,\beth ( \zeta _{i+2},\zeta _{i+3},\zeta _{i+4} ) ) }} \\ &\quad \leq \gamma ^{2}\max \bigl\{ \varpi \bigl( ( \zeta _{i}, \zeta _{i+1},\zeta _{i+2} ) , ( \zeta _{i+2},\zeta _{i+3}, \zeta _{i+4} ) \bigr) \bigr\} e^{{ \frac{\max \{ \varpi ( ( \zeta _{i},\zeta _{i+1},\zeta _{i+2} ) , ( \zeta _{i+2},\zeta _{i+3},\zeta _{i+4} ) ) \} }{1+\max \{ \varpi ( ( \zeta _{i},\zeta _{i+1},\zeta _{i+2} ) , ( \zeta _{i+2},\zeta _{i+3},\zeta _{i+4} ) ) \} }}}. \end{aligned} $$

So, for some \(\gamma \in (0,1)\), we can write

$$ \frac{\varpi ( \beth ( \zeta _{i},\zeta _{i+1},\zeta _{i+2} ) ,\beth ( \zeta _{i+2},\zeta _{i+3},\zeta _{i+4} ) ) e^{\frac{\varpi ( \beth ( \zeta _{i},\zeta _{i+1},\zeta _{i+2} ) ,\beth ( \zeta _{i+2},\zeta _{i+3},\zeta _{i+4} ) ) }{1+\varpi ( \beth ( \zeta _{i},\zeta _{i+1},\zeta _{i+2} ) ,\beth ( \zeta _{i+2},\zeta _{i+3},\zeta _{i+4} ) ) }}}{\max \{ \varpi ( ( \zeta _{i},\zeta _{i+1},\zeta _{i+2} ) , ( \zeta _{i+2},\zeta _{i+3},\zeta _{i+4} ) ) \} e^{{\frac{\max \{ \varpi ( ( \zeta _{i},\zeta _{i+1},\zeta _{i+2} ) , ( \zeta _{i+2},\zeta _{i+3},\zeta _{i+4} ) ) \} }{1+\max \{ \varpi ( ( \zeta _{i},\zeta _{i+1},\zeta _{i+2} ) , ( \zeta _{i+2},\zeta _{i+3},\zeta _{i+4} ) ) \} }}}}\leq \gamma ^{2}. $$

Now, we will discuss the following cases:

(i) If \(i=l=1\), we get

$$\begin{aligned} & \frac{\varpi ( \beth ( \zeta _{1},\zeta _{2},\zeta _{3} ) ,\beth ( \zeta _{3},\zeta _{4},\zeta _{5} ) ) e^{\frac{\varpi ( \beth ( \zeta _{1},\zeta _{2},\zeta _{3} ) ,\beth ( \zeta _{3},\zeta _{4},\zeta _{5} ) ) }{1+\varpi ( \beth ( \zeta _{1},\zeta _{2},\zeta _{3} ) ,\beth ( \zeta _{3},\zeta _{4},\zeta _{5} ) ) }}}{\max \{ \varpi ( ( \zeta _{1},\zeta _{2},\zeta _{3} ) , ( \zeta _{3},\zeta _{4},\zeta _{5} ) ) \} e^{{\frac{\max \{ \varpi ( ( \zeta _{1},\zeta _{2},\zeta _{3} ) , ( \zeta _{3},\zeta _{4},\zeta _{5} ) ) \} }{1+\max \{ \varpi ( ( \zeta _{1},\zeta _{2},\zeta _{3} ) , ( \zeta _{3},\zeta _{4},\zeta _{5} ) ) \} }}}} \\ &\quad = \frac{\varpi ( \frac{\zeta _{1}+\zeta _{2}+\zeta _{3}}{3},\frac{\zeta _{3}+\zeta _{4}+\zeta _{5}}{3} ) e^{\frac{\varpi ( \frac{\zeta _{1}+\zeta _{2}+\zeta _{3}}{3},\frac{\zeta _{3}+\zeta _{4}+\zeta _{5}}{3} ) }{1+\varpi ( \frac{\zeta _{1}+\zeta _{2}+\zeta _{3}}{3},\frac{\zeta _{3}+\zeta _{4}+\zeta _{5}}{3} ) }}}{\max \{ \varpi ( ( \zeta _{1},\zeta _{2},\zeta _{3} ) , ( \zeta _{3},\zeta _{4},\zeta _{5} ) ) \} e^{{\frac{\max \{ \varpi ( ( \zeta _{1},\zeta _{2},\zeta _{3} ) , ( \zeta _{3},\zeta _{4},\zeta _{5} ) ) \} }{1+\max \{ \varpi ( ( \zeta _{1},\zeta _{2},\zeta _{3} ) , ( \zeta _{3},\zeta _{4},\zeta _{5} ) ) \} }}}} \\ &\quad = \frac{\varpi ( \frac{34}{3},\frac{112}{3} ) e^{\frac{\varpi ( \frac{34}{3},\frac{112}{3} ) }{1+\varpi ( \frac{34}{3},\frac{112}{3} ) }}}{\max \{ \varpi ( ( 3,10,21 ) , ( 21,36,55 ) ) \} e^{{\frac{\max \{ \varpi ( ( 3,10,21 ) , ( 21,36,55 ) ) \} }{1+\max \{ \varpi ( ( 3,10,21 ) , ( 21,36,55 ) ) \} }}}} \\ &\quad \leq \frac{26e^{26}}{34e^{34}}=\frac{13}{17}e^{-8}< e^{-2}. \end{aligned}$$

(ii) If \(i=l>1\), we obtain

$$\begin{aligned} & \frac{\varpi ( \beth ( \zeta _{l},\zeta _{l+1},\zeta _{l+2} ) ,\beth ( \zeta _{l+2},\zeta _{l+3},\zeta _{l+4} ) ) e^{\frac{\varpi ( \beth ( \zeta _{l},\zeta _{l+1},\zeta _{l+2} ) ,\beth ( \zeta _{l+2},\zeta _{l+3},\zeta _{l+4} ) ) }{1+\varpi ( \beth ( \zeta _{l},\zeta _{l+1},\zeta _{l+2} ) ,\beth ( \zeta _{l+2},\zeta _{l+3},\zeta _{l+4} ) ) }}}{\max \{ \varpi ( ( \zeta _{l},\zeta _{l+1},\zeta _{l+2} ) , ( \zeta _{l+2},\zeta _{l+3},\zeta _{l+4} ) ) \} e^{{\frac{\max \{ ( \zeta _{l},\zeta _{l+1},\zeta _{l+2} ) , ( \zeta _{l+2},\zeta _{l+3},\zeta _{l+4} ) \} }{1+\max \{ ( \zeta _{l},\zeta _{l+1},\zeta _{l+2} ) , ( \zeta _{l+2},\zeta _{l+3},\zeta _{l+4} ) \} }}}} \\ &\quad = \frac{\varpi ( \frac{\zeta _{l-1}+\zeta _{l}+\zeta _{l+1}}{3},\frac{\zeta _{l+1}+\zeta _{l+2}+\zeta _{l+3}}{3} ) e^{\frac{\varpi ( \frac{\zeta _{l-1}+\zeta _{l}+\zeta _{l+1}}{3},\frac{\zeta _{l+1}+\zeta _{l+2}+\zeta _{l+3}}{3} ) }{1+\varpi ( \frac{\zeta _{l-1}+\zeta _{l}+\zeta _{l+1}}{3},\frac{\zeta _{l+1}+\zeta _{l+2}+\zeta _{l+3}}{3} ) }}}{\max \{ \varpi ( ( \zeta _{l},\zeta _{l+1},\zeta _{l+2} ) , ( \zeta _{l+2},\zeta _{l+3},\zeta _{l+4} ) ) \} e^{{\frac{\max \{ \varpi ( ( \zeta _{l},\zeta _{l+1},\zeta _{l+2} ) , ( \zeta _{l+2},\zeta _{l+3},\zeta _{l+4} ) ) \} }{1+\max \{ \varpi ( ( \zeta _{l},\zeta _{l+1},\zeta _{l+2} ) , ( \zeta _{l+2},\zeta _{l+3},\zeta _{l+4} ) ) \} }}}} \\ &\quad = \frac{ \vert \frac{6l^{2}+3l+4}{3}-\frac{6l^{2}+27l+34}{3} \vert e^{\frac{ \vert \frac{6l^{2}+3l+4}{3}-\frac{6l^{2}+27l+34}{3} \vert }{1+ \vert \frac{6l^{2}+3l+4}{3}-\frac{6l^{2}+27l+34}{3} \vert }}}{\max \{ \vert 8l+10 \vert , \vert 8l+18 \vert , \vert 8l+26 \vert \} e^{{\frac{\max \{ \vert 8l+10 \vert , \vert 8l+18 \vert , \vert 8l+26 \vert \} }{1+\max \{ \vert 8l+10 \vert , \vert 8l+ 18 \vert , \vert 8l+26 \vert \} }}}} \\ &\quad = \frac{ ( 8l+10 ) e^{\frac{ ( 8l+10 ) }{1+ ( 8l+10 ) }}}{ ( 8l+26 ) e^{\frac{ ( 8l+26 ) }{1+ ( 8l+26 ) }}}\leq \frac{ ( 8l+10 ) e^{ ( 8l+10 ) }}{ ( 8l+26 ) e^{ ( 8l+26 ) }}e^{-16}< e^{-2}, \end{aligned}$$

with \(\gamma =\frac{1}{e}\). Hence all requirements of Theorem 2.3 are fulfilled and the point \((1,1,1)\) is the unique FP of .

Example 2.5

Assume that \(\mho =[0,1]\), \(\varpi ( \widetilde{\zeta },\widehat{\zeta } ) = \vert \widetilde{\zeta }-\widehat{\zeta } \vert \), and \(\beth :\mho ^{z}\rightarrow \mho \) is described by

$$ \beth ( \zeta _{1},\dots ,\zeta _{l} ) = \frac{\zeta _{1}+\zeta _{l}}{8l},\quad \forall \zeta _{1},\dots ,\zeta _{l}\in \mho . $$

Let \(\eta :(0,\infty )\rightarrow (1,\infty )\) be a mapping defined by \(\eta (s)=e^{\sqrt{\frac{s}{1+s}}}\). Since \(e^{\sqrt{\frac{s}{1+s}}}\leq e^{\sqrt{s}}\), we can see from [15] that \(\eta \in \nabla \). Now, for \(\zeta _{1},\zeta _{2},\dots ,\zeta _{l+1}\in \mho \), one can write

$$ \varpi \bigl( \beth ( \zeta _{1},\dots ,\zeta _{l} ) , \beth ( \zeta _{2},\dots ,\zeta _{l+1} ) \bigr) >0, $$

and

$$\begin{aligned} &\eta \bigl( \varpi \bigl( \beth ( \zeta _{1},\dots ,\zeta _{l} ) ,\beth ( \zeta _{2},\dots ,\zeta _{l+1} ) \bigr) \bigr) \\ &\quad =e^{\sqrt{ \frac{\varpi ( \beth ( \zeta _{1},\dots ,\zeta _{l} ) ,\beth ( \zeta _{2},\dots ,\zeta _{l+1} ) ) }{1+\varpi ( \beth ( \zeta _{1},\dots ,\zeta _{l} ) ,\beth ( \zeta _{2},\dots ,\zeta _{l+1} ) ) }}} \\ &\quad =e^{\sqrt{ \frac{ ( \frac{1}{8l} ) \vert ( \zeta _{1}-\zeta _{2} ) + ( \zeta _{l}-\zeta _{l+1} ) \vert }{1+ \vert ( \zeta _{1}-\zeta _{2} ) + ( \zeta _{l}-\zeta _{l+1} ) \vert }}} \\ &\quad =e^{ ( \frac{1}{2\sqrt{2l}} ) \sqrt{ \frac{ \vert ( \zeta _{1}-\zeta _{2} ) + ( \zeta _{l}-\zeta _{l+1} ) \vert }{1+ \vert ( \zeta _{1}-\zeta _{2} ) + ( \zeta _{l}-\zeta _{l+1} ) \vert }}} \\ &\quad \leq e^{ ( \frac{1}{\sqrt{2}} ) \sqrt{ \frac{\max \{ \varpi ( \zeta _{1},\zeta _{2} ) ,\varpi (\zeta _{l},\zeta _{l+1}) \} }{1+\max \{ \varpi ( \zeta _{1},\zeta _{2} ) ,\varpi (\zeta _{l},\zeta _{l+1}) \} }}} \\ &\quad \leq e^{ ( \frac{1}{\sqrt{2}} ) \sqrt{\max \{ \frac{\varpi ( \zeta _{j},\zeta _{j+1} ) }{1+\varpi ( \zeta _{j},\zeta _{j+1} ) }:1 \leq j\leq z \} }} \\ &\quad = \biggl[ \eta \biggl( \max \biggl\{ \frac{\varpi ( \zeta _{j},\zeta _{j+1} ) }{1+\varpi ( \zeta _{j},\zeta _{j+1} ) }:1 \leq j\leq z \biggr\} \biggr) \biggr] ^{\gamma }, \end{aligned}$$

with \(\gamma =\frac{1}{\sqrt{2}}\). In addition, for all \(\zeta ^{\ast },\zeta ^{\prime }\in \mho \) with \(\zeta ^{\ast }\neq \zeta ^{\prime }\), we obtain

$$ \varpi \bigl( \beth \bigl( \zeta ^{\ast },\zeta ^{\ast },\dots , \zeta ^{\ast } \bigr) ,\beth \bigl( \zeta ^{\prime },\zeta ^{ \prime },\dots ,\zeta ^{\prime } \bigr) \bigr) = \frac{ \vert \zeta ^{\ast }-\zeta ^{\prime } \vert }{8l}>0, $$

and

$$\begin{aligned} \eta \bigl( \varpi \bigl( \beth \bigl( \zeta ^{\ast },\zeta ^{ \ast },\dots ,\zeta ^{\ast } \bigr) ,\beth \bigl( \zeta ^{\prime }, \zeta ^{\prime },\dots ,\zeta ^{\prime } \bigr) \bigr) \bigr) &= \eta \biggl( \frac{ \vert \zeta ^{\ast }-\zeta ^{\prime } \vert }{8l} \biggr) \\ &=e^{ \sqrt{ ( \frac{\frac{ \vert \zeta ^{\ast }-\zeta ^{\prime } \vert }{8l}}{1+\frac{ \vert \zeta ^{\ast }-\zeta ^{\prime } \vert }{8l}} ) }} \\ &\leq e^{ ( \frac{1}{2\sqrt{2l}} ) \sqrt{ ( \frac{ \vert \zeta ^{\ast }-\zeta ^{\prime } \vert }{1+ \vert \zeta ^{\ast }-\zeta ^{\prime } \vert } ) }} \\ &\leq e^{\frac{1}{\sqrt{2}}\sqrt{ ( \frac{ \vert \zeta ^{\ast }-\zeta ^{\prime } \vert }{1+ \vert \zeta ^{\ast }-\zeta ^{\prime } \vert } ) }} \\ &= \bigl[ \eta \bigl( \varpi \bigl( \zeta ^{\ast },\zeta ^{\prime } \bigr) \bigr) \bigr] ^{\gamma }, \end{aligned}$$

with \(\gamma =\frac{1}{\sqrt{2}}\). Hence, all assumptions of Theorem 2.3 are fulfilled. In addition, for some chosen \(\zeta _{1},\dots ,\zeta _{l}\in \mho \), the sequence \(\{\zeta _{l}\}\) defined in (2.3) converges to \(\zeta ^{\ast }=0\), which is the unique FP of .

If we put \(\eta (s)=e^{\sqrt{s}}\) in Theorem 2.3, we get the result below.

Corollary 2.6

Consider \(\beth :\mho ^{z}\rightarrow \mho \) is a given mapping and suppose there is \(\gamma \in (0,1)\) such that

$$ \varpi \bigl( \beth ( \zeta _{1},\dots ,\zeta _{z} ) , \beth ( \zeta _{2},\dots ,\zeta _{z+1} ) \bigr) \leq \gamma ^{2} \biggl( \max \biggl\{ \frac{\varpi ( \zeta _{j},\zeta _{j+1} ) }{1+\varpi ( \zeta _{j},\zeta _{j+1} ) }:1\leq j\leq z \biggr\} \biggr) . $$
(2.5)

Then for any chosen points \(\zeta _{1},\dots ,\zeta _{z}\in \mho \), the sequence \(\{\zeta _{l}\}\) described in (1.2) converges to \(\zeta ^{\ast }\in \mho \) and \(\zeta ^{\ast }=\beth (\zeta ^{\ast },\dots ,\zeta ^{\ast })\). Moreover, if

$$ \varpi \bigl( \beth \bigl( \zeta ^{\ast },\dots ,\zeta ^{\ast } \bigr) ,\beth \bigl( \zeta ^{{\prime }},\dots ,\zeta ^{\prime } \bigr) \bigr) \leq \gamma ^{2}\varpi \bigl( \zeta ^{\ast }, \zeta ^{\prime } \bigr) $$

holds for all \(\zeta ^{\ast },\zeta ^{{\prime }}\in \mho \) with \(\zeta ^{\ast }\neq \zeta ^{{\prime }}\), Then the point \(\zeta ^{\ast }\) is a unique FP of the mapping .

Corollary 2.7

Assume that \(\beth :\mho ^{z}\rightarrow \mho \) is a given mapping and there are nonnegative constants \(\gamma _{1},\gamma _{2},\dots ,\gamma _{z}\) with \(\gamma _{1}+\gamma _{2}+\cdots +\gamma _{z}<1\) such that

$$ \begin{aligned} \varpi \bigl( \beth ( \zeta _{1},\dots , \zeta _{z} ) ,\beth ( \zeta _{2},\dots ,\zeta _{z+1} ) \bigr)\leq {}&\gamma _{1} \frac{\varpi ( \zeta _{1},\zeta _{2} ) }{1+\varpi ( \zeta _{1},\zeta _{2} ) }+ \gamma _{2} \frac{\varpi ( \zeta _{2},\zeta _{3} ) }{1+\varpi ( \zeta _{2},\zeta _{3} ) } \\ &{} +\cdots +\gamma _{z} \frac{\varpi ( \zeta _{z},\zeta _{z+1} ) }{1+\varpi ( \zeta _{z},\zeta _{z+1} ) }, \end{aligned} $$
(2.6)

for each \(( \zeta _{1},\dots ,\zeta _{z+1} ) \in \mho ^{z+1}\) with \(\beth ( \zeta _{1},\dots ,\zeta _{z} ) \neq \beth ( \zeta _{2},\dots ,\zeta _{z+1} ) \). Then for any chosen points \(\zeta _{1},\dots ,\zeta _{z}\in \mho \), the sequence \(\{\zeta _{l}\}\), given by (1.2) converges to \(\zeta ^{\ast }\in \mho \), where \(\zeta ^{\ast }\) is a unique FP of .

Proof

It is clear that (2.6) implies (2.5) with \(\gamma ^{2}=\gamma _{1}+\gamma _{2}+\cdots +\gamma _{z}\).

Now, suppose that \(\zeta ^{\ast },\zeta ^{{\prime }}\in \mho \) with \(\zeta ^{\ast }\neq \zeta \), Based on (2.6), one can obtain

$$\begin{aligned} &\varpi \bigl( \beth \bigl( \zeta ^{\ast },\zeta ^{\ast },\dots , \zeta ^{\ast } \bigr) ,\beth \bigl( \zeta ^{{\prime }},\zeta ^{{ \prime }},\dots ,\zeta ^{\prime } \bigr) \bigr) \\ &\quad =\varpi \bigl( \beth \bigl( \zeta ^{\ast },\dots ,\zeta ^{\ast } \bigr) ,\beth \bigl( \zeta ^{\ast },\dots ,\zeta ^{\ast },\zeta ^{ \prime } \bigr) \bigr) \\ &\qquad {} +\varpi \bigl( \beth \bigl( \zeta ^{\ast },\dots ,\zeta ^{ \ast }, \zeta ^{\prime } \bigr) ,\beth \bigl( \zeta ^{\ast },\dots , \zeta ^{\ast },\zeta ^{\prime },\zeta ^{\prime } \bigr) \bigr) \\ &\qquad {} +\cdots +\varpi \bigl( \beth \bigl( \zeta ^{\ast },\dots , \zeta ^{\prime },\zeta ^{\prime } \bigr) ,\beth \bigl( \zeta ^{ \prime }, \dots ,\zeta ^{\prime },\zeta ^{\prime } \bigr) \bigr) \\ &\quad \leq ( \gamma _{z}+\gamma _{z-1}+\cdots +\gamma _{z} ) \frac{\varpi ( \zeta ^{\ast },\zeta ^{\prime } ) }{1+\varpi ( \zeta ^{\ast },\zeta ^{\prime } ) } \\ &\quad \leq \gamma ^{2}\varpi \bigl( \zeta ^{\ast },\zeta ^{\prime } \bigr) . \end{aligned}$$

Thus, the conditions of Corollary 2.6 hold. □

If we take a large class of functions , for example,

$$ \eta (s)=2-\frac{2}{\pi }\arctan \biggl( \frac{1}{s^{\theta }} \biggr) , $$

where \(\theta \in (0,1)\) and \(s>0\), we obtain the following theorem from Theorem 2.3.

Theorem 2.8

Suppose that \(\beth :\mho ^{z}\rightarrow \mho \) is a given mapping. If there are a mapping \(\eta \in \nabla \) and constants \(\gamma ,\theta \in (0,1)\) such that

$$\begin{aligned} &2-\frac{2}{\pi }\arctan \biggl( \frac{1}{ [ \varpi ( \beth ( \zeta _{1},\dots ,\zeta _{z} ) ,\beth ( \zeta _{2},\dots ,\zeta _{z+1} ) ) ] ^{\theta }} \biggr) \\ &\quad \leq \biggl[ 2-\frac{2}{\pi }\arctan \biggl( \frac{1}{ [ \max \{ \frac{\varpi ( \zeta _{j},\zeta _{j+1} ) }{1+\varpi ( \zeta _{j},\zeta _{j+1} ) }:1\leq j\leq z \} ] ^{\theta }} \biggr) \biggr] ^{\gamma }, \end{aligned}$$

for each \(( \zeta _{1},\dots ,\zeta _{z+1} ) \in \mho ^{z+1}\) with \(\beth ( \zeta _{1},\dots ,\zeta _{z} ) \neq \beth ( \zeta _{2},\dots ,\zeta _{z+1} ) \), then for any chosen points \(\zeta _{1},\dots ,\zeta _{z}\in \mho \), the sequence \(\{\zeta _{l}\}\), given by (1.2) converges to \(\zeta ^{\ast }\in \mho \). Then \(\zeta ^{\ast }\) is a unique FP of . Moreover, if

$$\begin{aligned} &2-\frac{2}{\pi }\arctan \biggl( \frac{1}{ [ \varpi ( \beth ( \zeta ^{\ast },\dots ,\zeta ^{\ast } ) ,\beth ( \zeta ^{{\prime }},\dots ,\zeta ^{\prime } ) ) ] ^{\theta }} \biggr) \\ &\quad \leq \biggl[ 2-\frac{2}{\pi }\arctan \biggl( \frac{1}{ ( \varpi ( \zeta ^{\ast },\zeta ^{\prime } ) ) ^{\theta }} \biggr) \biggr] ^{\gamma }, \end{aligned}$$

holds for \(\zeta ^{\ast },\zeta ^{{\prime }}\in \mho \) with \(\zeta ^{\ast }\neq \zeta ^{{\prime }}\), then the point \(\zeta ^{\ast }\) is a unique FP of the mapping .

Remark 2.9

It should be noted that:

  • Our Theorem 2.3 unifies and extends Theorem 1.3 in [10] and Theorem 1.2 in [9].

  • Corollary 1 in [15] can be obtained directly from Theorem 2.3 putting \(\gamma =1\) and neglecting the denominator of the contractive condition (2.1).

  • If we take \(\gamma =1\) and neglect the denominators of the contractivity conditions of Corollaries 2.6 and 2.7, we obtain the BCP [1].

Application to matrix difference equations

In this part, the symbols \(\aleph (N)\) for (\(N\geq 2\)), , , \(\wp ^{\ast }\), and φ refer to the family of \(N\times N\) Hermitian positive definite matrices, an \(N\times N\) Hermitian positive semidefinite matrix, an \(N\times N\) nonsingular matrix, the conjugate transpose of , and the function from \(\aleph (N)\) to \(\aleph (N)\), respectively.

Now, the definition of the equilibrium point is stated as follows:

Definition 3.1

Consider \(\beth :\mho ^{z}\rightarrow \mho \) as a given mapping. For any \(\zeta _{1},\dots ,\zeta _{z}\in \mho \), define a recursive sequence \(\{\zeta _{l}\}\) by

$$ \zeta _{l+z}=\beth ( \zeta _{l},\zeta _{l+1},\dots ,\zeta _{l+z-1} ) , $$
(3.1)

for each \(l\in \mathbb{N} \). We say that a point \(\overline{\zeta }\in \mho \) is an equilibrium point of (3.1) if the hypothesis below holds:

$$ \overline{\zeta }=\beth ( \overline{\zeta },\overline{\zeta }, \dots ,\overline{\zeta } ) . $$
(3.2)

Definition 3.2

If for all \(\zeta _{1},\zeta _{2},\dots ,\zeta _{z}\in \mho \) one has \(\varpi ( \zeta _{l},\overline{\zeta } ) \rightarrow 0\) as \(l\rightarrow \infty \), then an equilibrium point is called a global attractor.

Here, we explore the global attractivity for the following recursive sequence:

$$ \zeta _{l+z}=\Game +\frac{1}{z}\sum _{j=0}^{z-1}\wp ^{\ast } \varphi \biggl( \frac{\zeta _{l+j}}{1+\zeta _{l+j}} \biggr) \wp ,\quad \forall l\geq 1. $$
(3.3)

Before applying the theoretical results, we analyze the Thompson metric ϖ on \(\aleph (N)\), which is described as

$$ \varpi ( \wp _{1},\wp _{2} ) =\max \biggl\{ \log W \biggl( \frac{\wp _{1}}{\wp _{2}} \biggr) ,\log W \biggl( \frac{\wp _{2}}{\wp _{1}} \biggr) \biggr\} , $$

for \(\wp _{1},\wp _{2}\in \aleph (N)\), where \(W ( \frac{\wp _{1}}{\wp _{2}} ) =\inf \{ \Lambda >0: \wp _{1}\leq \Lambda \wp _{2} \} =\Lambda ^{+} ( \wp _{2}^{- \frac{1}{2}}\wp _{1}^{\frac{-1}{2}}\wp _{2} ) \), that is, W is the maximal eigenvalue of \(\wp _{2}^{-\frac{1}{2}}\wp _{1}^{\frac{-1}{2}}\wp _{2}\). Here \(\wp _{1}\leq \wp _{2}\) means that \(\wp _{2}-\wp _{1}\) is positive semidefinite and \(\wp _{1}<\wp _{2}\) means that \(\wp _{2}-\wp _{1}\) is positive definite.

Based on ϖ, which defined as

$$ \varpi ( \wp _{1},\wp _{2} ) = \bigl\Vert \ln \bigl( \wp _{1}^{-\frac{1}{2}}\wp _{2}\wp _{1}^{\frac{-1}{2}} \bigr) \bigr\Vert , $$

\(\aleph (N)\) is a complete metric space [26], where \(\Vert \cdot \Vert \) is a spectral norm [27].

Now, let us start with the exciting characteristics of ϖ, i.e., for any nonsingular matrix W,

$$ \varpi ( \wp _{1},\wp _{2} ) =\varpi \bigl( \wp _{1}^{-1}, \wp _{2}^{-1} \bigr) =\varpi \bigl( W^{\ast }\wp _{1}W,W^{\ast } \wp _{2}W \bigr) . $$
(3.4)

The second important result is the nonpositive curvature property of ϖ in the form of

$$ \varpi \bigl( \wp _{1}^{r},\wp _{2}^{r} \bigr) \leq h\varpi ( \wp _{1},\wp _{2} ) , \quad h\in {}[ 0,1]. $$
(3.5)

Based on (3.4) and (3.5), we can write

$$ \varpi \bigl( W^{\ast }\wp _{1}^{r}W,W^{\ast } \wp _{2}^{r}W \bigr) \leq \vert h \vert \varpi \bigl( \wp _{1}^{r},\wp _{2}^{r} \bigr) ,\quad h\in {}[ -1,1], $$

for all \(\wp _{1},\wp _{2}\in \aleph (N)\).

Lemma 3.3

([28])

For each \(\wp _{1},\wp _{2},\wp _{3},\wp _{4}\in \aleph (N)\), we get

$$ \varpi ( \wp _{1}+\wp _{2},\wp _{3}+\wp _{4} ) \leq \max \bigl\{ \varpi ( \wp _{1},\wp _{3} ) ,\varpi ( \wp _{2},\wp _{4} ) \bigr\} . $$

Moreover, for all positive semidefinite \(\wp _{1},\wp _{2},\wp _{3}\in \aleph (N)\), we have

$$ \varpi ( \wp _{1}+\wp _{2},\wp _{1}+\wp _{3} ) \leq \varpi ( \wp _{2},\wp _{3} ) . $$

Consider that \(\varphi :\aleph (N)\rightarrow \aleph (N)\) is an η-contraction related with ϖ. For \(W_{1},W_{2},\dots ,W_{z}\in \aleph (N)\), let \(\{W_{l}\}\subset \aleph (N)\) be a sequence defined by (3.3).

Now, we can state and prove our main theorem for this part.

Theorem 3.4

Equation (3.3) has a global attractor \(\overline{\zeta }\in \aleph (N)\), which is a unique equilibrium point.

Proof

Define an operator \(\beth :\aleph (N)^{z}\rightarrow \aleph (N)\) by

$$\begin{aligned}& \beth ( W_{1},W_{2},\dots ,W_{z} ) \\& \quad =\Game + \frac{1}{z} \biggl[ \wp ^{\ast }\varphi \biggl( \frac{W_{1}}{1+W_{1}} \biggr) \wp +\wp ^{\ast }\varphi \biggl( \frac{W_{2}}{1+W_{2}} \biggr) \wp + \cdots +\wp ^{\ast }\varphi \biggl( \frac{W_{z}}{1+W_{z}} \biggr) \wp \biggr] , \end{aligned}$$

for all \(W_{1},W_{2},\dots ,W_{z}\in \aleph (N)\).

Let \(W_{1},W_{2},\dots ,W_{z+1}\in \aleph (N)\). According to Lemma 3.3, we obtain

$$\begin{aligned} &\varpi \bigl( \beth ( W_{1},W_{2},\dots ,W_{z} ) , \beth ( W_{2},W_{3},\dots ,W_{z+1} ) \bigr) \\ &\quad =\varpi \Biggl( \Game +\frac{1}{z}\sum_{j=1}^{z} \wp ^{\ast } \varphi \biggl( \frac{W_{i}}{1+W_{i}} \biggr) \wp ,\Game + \frac{1}{z}\sum_{k=2}^{z+1} \wp ^{\ast }\varphi \biggl( \frac{W_{k}}{1+W_{k}} \biggr) \wp \Biggr) \\ &\quad \leq \varpi \Biggl( \frac{1}{z}\sum_{j=1}^{z} \wp ^{\ast } \varphi \biggl( \frac{W_{i}}{1+W_{i}} \biggr) \wp , \frac{1}{z}\sum_{k=2}^{z+1}\wp ^{\ast }\varphi \biggl( \frac{W_{k}}{1+W_{k}} \biggr) \wp \Biggr) \\ &\quad =\varpi \Biggl( \sum_{j=1}^{z} \biggl( \frac{1}{\sqrt{z}} \wp \biggr) ^{\ast }\varphi \biggl( \frac{W_{i}}{1+W_{i}} \biggr) \biggl( \frac{1}{\sqrt{z}}\wp \biggr) ,\sum _{k=2}^{z+1} \biggl( \frac{1}{\sqrt{z}}\wp \biggr) ^{\ast }\varphi \biggl( \frac{W_{k}}{1+W_{k}} \biggr) \biggl( \frac{1}{\sqrt{z}}\wp \biggr) \Biggr) . \end{aligned}$$

Set \(\Delta =\frac{1}{\sqrt{z}}\wp \). Then by Lemma 3.3, we have

ϖ ( ( W 1 , W 2 , , W z ) , ( W 2 , W 3 , , W z + 1 ) ) ϖ ( j = 1 z Δ φ ( W i 1 + W i ) Δ , k = 2 z + 1 Δ φ ( W k 1 + W k ) Δ ) = ϖ ( Δ φ ( W 1 1 + W 1 ) Δ + Δ φ ( W 2 1 + W 2 ) Δ + + Δ φ ( W z 1 + W z ) Δ , Δ φ ( W 2 1 + W 2 ) + Δ φ ( W 3 1 + W 32 ) Δ + + Δ φ ( W k + 1 1 + W k + 1 ) Δ ) max { ϖ ( Δ φ ( W 1 1 + W 1 ) Δ , Δ φ ( W 2 1 + W 2 ) Δ ) , ϖ ( Δ φ ( W 3 1 + W 3 ) Δ , Δ φ ( W 4 1 + W 4 ) Δ ) , ϖ ( Δ φ ( W z 1 + W z ) Δ , Δ φ ( W k + 1 1 + W k + 1 ) Δ ) } = max { ϖ ( Δ φ ( W k 1 + W k ) Δ , Δ φ ( W k + 1 1 + W k + 1 ) Δ ) } ,
(3.6)

for \(k=1,2,\dots ,z\). Because is nonsingular, Δ is also nonsingular. Using (3.6) for all \(k=1,2,\dots ,z\), we can write

$$ \varpi \biggl( \Delta ^{\ast }\varphi \biggl( \frac{W_{k}}{1+W_{k}} \biggr) \Delta ,\Delta ^{\ast }\varphi \biggl( \frac{W_{k+1}}{1+W_{k+1}} \biggr) \Delta \biggr) =\varpi \biggl( \varphi \biggl( \frac{W_{k}}{1+W_{k}} \biggr) ,\varphi \biggl( \frac{W_{k+1}}{1+W_{k+1}} \biggr) \biggr) . $$

Since φ is an η-contraction, for all \(k=1,2,\dots ,z\), we have

$$ \eta \biggl( \varpi \biggl( \Delta ^{\ast }\varphi \biggl( \frac{W_{k}}{1+W_{k}} \biggr) \Delta ,\Delta ^{\ast }\varphi \biggl( \frac{W_{k+1}}{1+W_{k+1}} \biggr) \Delta \biggr) \biggr) \leq \biggl[ \eta \biggl( \frac{\varpi ( W_{k},W_{k+1} ) }{1+\varpi ( W_{k},W_{k+1} ) } \biggr) \biggr] ^{\lambda }, $$

for some \(\gamma \in (0,1)\). Thus, we get

$$\begin{aligned} &\eta \bigl( \varpi \bigl( \beth ( W_{1},W_{2},\dots ,W_{z} ) ,\beth ( W_{2},W_{3},\dots ,W_{z+1} ) \bigr) \bigr) \\ &\quad \leq \biggl[ \eta \biggl( \max \biggl\{ \frac{\varpi ( W_{k},W_{k+1} ) }{1+\varpi ( W_{k},W_{k+1} ) } \biggr\} :1\leq j \leq z \biggr) \biggr] ^{\gamma }, \end{aligned}$$

for \(W_{1},W_{2},\dots ,W_{z+1}\in \aleph (N)\). Hence, by Theorem 2.3, there exists an FP of the mapping , which is a global attractor equilibrium point \(\overline{\zeta }\in \aleph (N)\). Moreover, for \(W_{1},W_{2}\in \aleph (N)\), such that \(\beth ( W_{1},W_{1},\dots ,W_{1} ) \neq \beth ( W_{2},W_{2}, \dots ,W_{2} ) \), one can write

$$\begin{aligned} &\eta \bigl( \varpi \bigl( \beth ( W_{1},W_{1},\dots ,W_{1} ) ,\beth ( W_{2},W_{2},\dots ,W_{2} ) \bigr) \bigr) \\ &\quad =\eta \biggl( \varpi \biggl( \Game +\wp ^{\ast }\varphi \biggl( \frac{W_{1}}{1+W_{1}} \biggr) \wp ,\Game +\wp ^{\ast }\varphi \biggl( \frac{W_{2}}{1+W_{2}} \biggr) \wp \biggr) \biggr) \\ &\quad \leq \eta \biggl( \varpi \biggl( \wp ^{\ast }\varphi \biggl( \frac{W_{1}}{1+W_{1}} \biggr) \wp ,\wp ^{\ast }\varphi \biggl( \frac{W_{2}}{1+W_{2}} \biggr) \wp \biggr) \biggr) \\ &\quad =\eta \biggl( \varpi \biggl( \varphi \biggl( \frac{W_{1}}{1+W_{1}} \biggr) , \varphi \biggl( \frac{W_{2}}{1+W_{2}} \biggr) \biggr) \biggr) \\ &\quad \leq \biggl[ \eta \biggl( \varpi \biggl( \frac{W_{1}}{1+W_{1}}, \frac{W_{2}}{1+W_{2}} \biggr) \biggr) \biggr] ^{\gamma } \\ &\quad \leq \bigl[ \eta \bigl( \varpi ( W_{1},W_{2} ) \bigr) \bigr] . \end{aligned}$$

Again, based on Theorem 2.3, the equilibrium point is unique. □

Conclusion and future work

In this study, a new concept of Prešić-type rational η-contraction mappings has been introduced and the convergence of iterative sequences of such contractions has been discussed in the setting of complete metric spaces. The new theory improves and extends many results existing in the literature. Some nontrivial examples have been provided to support the results obtained herein. Moreover, some convergence results for a class of matrix difference equations have been derived. As future works, the authors are looking for generalizations of these results to multivalued Prešić-type rational η-contraction mappings and studying the convergence of the matrix difference equations numerically.

Availability of data and materials

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 3, 133–181 (1922)

    Article  Google Scholar 

  2. Al-Sulami, H.H., Hussain, N., Ahmad, J.: Some generalized fixed point results with applications to dynamic programming. J. Funct. Spaces 2020, Article ID 8130764 (2020)

    MathSciNet  MATH  Google Scholar 

  3. Hussain, A., Tanzeela, K., Mitrović, Z.D., Radenović, S.: Optimal solutions and applications to nonlinear matrix and integral equations via simulation function. Filomat 32(12), 6087–6106 (2018)

    MathSciNet  Article  Google Scholar 

  4. Vetro, F.: A generalization of Nadler fixed point theorem. Carpath. J. Math. 31(3), 403–410 (2015)

    MathSciNet  Article  Google Scholar 

  5. Nussbaum, R.: Hilbert’s projective metric and iterated nonlinear maps. Mem. Am. Math. Soc. 75, 1–137 (1988)

    MathSciNet  MATH  Google Scholar 

  6. Rashwan, R.A., Hammad, H.A., Mahmoud, M.G.: Common fixed point results for weakly compatible mappings under implicit relations in complex valued g-metric spaces. Inf. Sci. Lett. 8(3), 111–119 (2019)

    Article  Google Scholar 

  7. Hammad, H.A., de la Sen, M.: A tripled fixed point technique for solving a tripled-system of integral equations and Markov process in CCbMS. Adv. Differ. Equ. 2020, 567 (2020)

    MathSciNet  Article  Google Scholar 

  8. Hammad, H.A., Agarwal, P., Guirao, J.L.G.: Applications to boundary value problems and homotopy theory via tripled fixed point techniques in partially metric spaces. Mathematics 9(16), 2012 (2021)

    Article  Google Scholar 

  9. Prešić, S.B.: Sur une classe d’inéquations aux différences finies et sur la convergence de certaines suites. Publ. Inst. Math. 5, 75–78 (1965)

    MathSciNet  MATH  Google Scholar 

  10. Ćirić, L.B., Prešić, S.B.: On Prešić type generalization of the Banach contraction mapping principle. Acta Math. Univ. Comen. 76, 143–147 (2007)

    MATH  Google Scholar 

  11. Pâcurar, M.: A multi-step iterative method for approximating fixed points of Prešić–Kannan operators. Acta Math. Univ. Comen. 79, 77–88 (2010)

    MATH  Google Scholar 

  12. Abbas, M., Berzig, M., Nazir, T., Karapınar, E.: Iterative approximation of fixed points for Prešić type F-contraction operators. UPB Sci. Bull., Ser. A 78, 1–14 (2016)

    MATH  Google Scholar 

  13. Pâcurar, M.: Approximating common fixed points of Prešić–Kannan type operators by a multi-step iterative method. An. Ştiinţ. Univ. ‘Ovidius’ Constanţa, Ser. Mat. 17, 153–168 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Shukla, S.: Prešić type results in 2-Banach spaces. Afr. Math. 25(4), 1043–1051 (2014)

    Article  Google Scholar 

  15. Jleli, M., Samet, B.: A new generalization of the Banach contraction principle. J. Inequal. Appl. 2014, 38 (2014)

    MathSciNet  Article  Google Scholar 

  16. Al-Sulami, H.H., Hussain, N., Ahmad, J.: Some generalized fixed point results with applications to dynamic programming. J. Funct. Spaces 2020, Article ID 8130764 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Li, X., Hussain, A., Adeel, M., Savas, E.: Fixed point theorems for \(Z_{e}\)-contraction and applications to nonlinear integral equations. IEEE Access 7, 120023–120029 (2019)

    Article  Google Scholar 

  18. Ran, A.C.M., Reurings, M.C.B.: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 132, 1435–1443 (2004)

    MathSciNet  Article  Google Scholar 

  19. Duan, X., Liao, A., Tang, B.: On the nonlinear matrix equation \(\xi =\Game \pm \sum_{j=1}^{m}\wp _{j}^{\ast }\xi ^{\rho _{j}} \wp _{j} \). Linear Algebra Appl. 429, 110–121 (2008)

    MathSciNet  Article  Google Scholar 

  20. Ando, T.: Limit of cascade iteration of matrices. Numer. Funct. Anal. Optim. 21, 579–589 (1980)

    Article  Google Scholar 

  21. Anderson, W.N., Morley, T.D., Trapp, G.E.: Ladder networks, fixed points and the geometric mean. Circuits Syst. Signal Process. 3, 259–268 (1983)

    Article  Google Scholar 

  22. Engwerda, J.C.: On the existence of a positive solution of the matrix equation \(\xi +\wp ^{T}\xi ^{-1}\wp =I\). Linear Algebra Appl. 194, 91–108 (1993)

    MathSciNet  Article  Google Scholar 

  23. Pusz, W., Woronowitz, S.L.: Functional calculus for sesquilinear forms and the purification map. Rep. Math. Phys. 8, 159–170 (1975)

    MathSciNet  Article  Google Scholar 

  24. Buzbee, B.L., Golub, G.H., Nielson, C.W.: On direct methods for solving Poisson’s equations. SIAM J. Numer. Anal. 7, 627–656 (1970)

    MathSciNet  Article  Google Scholar 

  25. Green, W.L., Kamen, E.: Stabilization of linear systems over a commutative normed algebra with applications to spatially distributed parameter dependent systems. SIAM J. Control Optim. 23, 1–18 (1985)

    MathSciNet  Article  Google Scholar 

  26. Nussbaum, R.: Hilbert’s projective metric and iterated nonlinear maps. Mem. Am. Math. Soc. 75, 1–137 (1988)

    MathSciNet  MATH  Google Scholar 

  27. Thompson, A.C.: On certain contraction mappings in a partially ordered vector space. Proc. Am. Math. Soc. 14(3), 438–443 (1963)

    MathSciNet  MATH  Google Scholar 

  28. Lim, Y.: Solving the nonlinear matrix equation \(X=Q+\sum_{i=1}^{m}A_{i}X^{\delta _{i}}A_{i}^{\ast }\) via a contraction principle. Linear Algebra Appl. 430, 1380–1383 (2009)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the editor and anonymous referees for their valuable comments and suggestions.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hüseyin Işık.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hammad, H.A., Elmursi, M., Rashwan, R.A. et al. Applying fixed point methodologies to solve a class of matrix difference equations for a new class of operators. Adv Cont Discr Mod 2022, 52 (2022). https://doi.org/10.1186/s13662-022-03724-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-022-03724-6

MSC

  • 54H25
  • 47H10
  • 46T99

Keywords

  • Rational η-contraction mapping
  • Fixed point technique
  • Difference equations
  • Global attractor
  • Equilibrium point