Skip to main content

New version of fractional Simpson type inequalities for twice differentiable functions

Abstract

Simpson inequalities for differentiable convex functions and their fractional versions have been studied extensively. Simpson type inequalities for twice differentiable functions are also investigated. More precisely, Budak et al. established the first result on fractional Simpson inequality for twice differentiable functions. In the present article, we prove a new identity for twice differentiable functions. In addition to this, we establish several fractional Simpson type inequalities for functions whose second derivatives in absolute value are convex. This paper is a new version of fractional Simpson type inequalities for twice differentiable functions.

Introduction

Simpson’s inequality plays a considerable role in several branches of mathematics. For four times continuously differentiable functions, the classical Simpson’s inequality is expressed as follows.

Theorem 1

Suppose that \(\mathcal{F}: [ \rho_{1}, \rho _{2} ] \rightarrow \mathbb{R}\) is a four times continuously differentiable mapping on \(( \rho_{1},\rho _{2} )\), and let \(\Vert \mathcal{F}^{ ( 4 ) } \Vert _{\infty }= \underset{\kappa \in ( \rho_{1}, \rho_{2} ) }{\sup } \vert \mathcal{F}^{ ( 4 ) }(\kappa ) \vert <\infty \). Then one has the inequality

$$\begin{aligned}& \biggl\vert \frac{1}{3} \biggl[ \frac{\mathcal{F}(\rho_{1})+\mathcal{F}(\rho_{2})}{2}+2\mathcal{F} \biggl( \frac{\rho _{1}+\rho_{2}}{2} \biggr) \biggr] - \frac{1}{\rho_{2}-\rho_{1}} \int _{\rho_{1}}^{\rho_{2}} \mathcal{F}(\kappa )\,d\kappa \biggr\vert \\& \quad \leq \frac{1}{2880} \bigl\Vert \mathcal{F}^{ ( 4 ) } \bigr\Vert _{\infty } ( \rho _{2}-\rho_{1} ) ^{4}. \end{aligned}$$

Since the convex theory is an effective way to solve a large number of problems from different branches of mathematics, many authors have studied the results of Simpson type for convex mapping. To be more precise, some inequalities of Simpson type for s-convex functions are proved by using differentiable functions [4]. In the papers [34, 36], the new variants of Simpson type inequalities are established based on differentiable convex mapping. Moreover, some papers were devoted to Simpson type inequalities for various convex classes [11, 18, 27, 30, 31].

The Simpson inequalities for differentiable functions are extended to Riemann–Liouville fractional integrals in the papers [8] and [17]. Hence, several paper focused on fractional Simpson inequalities for various fractional integral operators [13, 7, 9, 12, 15, 19, 21, 25, 26, 28, 32, 33, 37, 39]. For further information and unexplained subjects about Simpson type inequalities, we refer the reader to [5, 10, 14, 16, 2224, 38] and the references therein. Besides, Sarikaya et al. established several Simpson type inequalities for functions whose second derivatives are convex [35].

The purpose of this paper is to extend the results given in [35] for twice differentiable functions to Riemann–Liouville fractional integrals. The general structure of the paper consists of four chapters including an introduction. The remaining part of the paper proceeds as follows: In Sect. 2, after giving a general literature survey and the definition of Riemann–Liouville fractional integral operators, we prove an equality for twice differentiable functions. In the next section, for utilizing this equality, we establish several Simpson type inequalities for a mapping whose second derivatives are convex. In the last section, some conclusions and further directions of research are discussed.

Definition 1

Consider \(\mathcal{F}\in L_{1}[\rho_{1},\rho_{2}]\). The Riemann–Liouville integrals \(J_{\rho_{1}+}^{\alpha }\mathcal{F}\) and \(J_{\rho_{2}-}^{\alpha }\mathcal{F}\) of order \(\alpha >0\) with \(\rho_{1}\geq 0\) are defined by

$$ J_{\rho_{1}+}^{\alpha }\mathcal{F}(\kappa )= \frac{1}{\Gamma (\alpha )} \int _{\rho_{1}}^{\kappa } ( \kappa -\tau ) ^{\alpha -1} \mathcal{F}( \tau )\,d\tau ,\quad \kappa >\rho_{1} $$

and

$$ J_{\rho_{2}-}^{\alpha }\mathcal{F}(\kappa )= \frac{1}{\Gamma (\alpha )} \int _{\kappa }^{\rho_{2}} ( \tau -\kappa ) ^{\alpha -1} \mathcal{F}( \tau )\,d\tau ,\quad \kappa < \rho_{2}, $$

respectively. Here, \(\Gamma (\alpha )\) is the gamma function and \(J_{\rho_{1}+}^{0}\mathcal{F}(\kappa )=J_{ \rho _{2}-}^{0}\mathcal{F}(\kappa )=\mathcal{F}( \kappa )\).

For more information and several properties of Riemann–Liouville fractional integrals, please refer to [13, 20, 29].

The first result on fractional Simpson inequality for twice differentiable functions was proved by Budak et al. in [6] as follows.

Theorem 2

Assume that the assumptions of Lemma 1hold. Assume also that the mapping \(\vert \mathcal{F}^{\prime \prime } \vert \) is convex on \([ \rho_{1},\rho_{2} ] \). Then we have the following inequality:

$$\begin{aligned}& \biggl\vert \frac{1}{6} \biggl[ \mathcal{F} ( \rho_{1} ) +4\mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) + \mathcal{F} ( \rho_{2} ) \biggr] \\& \qquad {}- \frac{2^{\alpha -1}\Gamma ( \alpha +1 ) }{ ( \rho_{2}-\rho_{1} ) ^{\alpha }} \bigl[ J_{ ( \frac{\rho_{1}+ \rho _{2}}{2} ) +}^{\alpha }\mathcal{F} ( \rho _{2} ) +J_{ ( \frac{\rho_{1}+\rho_{2}}{2} ) -}^{\alpha }\mathcal{F} ( \rho_{1} ) \bigr] \biggr\vert \\& \quad \leq \frac{ ( \rho_{2}-\rho_{1} ) ^{2}}{6}\mathcal{A} ( \alpha ) \bigl[ \bigl\vert \mathcal{F}^{ \prime \prime } ( \rho_{1} ) \bigr\vert + \bigl\vert \mathcal{F}^{\prime \prime } ( \rho_{2} ) \bigr\vert \bigr] , \end{aligned}$$
(1.1)

where

$$ \mathcal{A} ( \alpha ) = \frac{1}{4 ( \alpha +2 ) } \biggl( \alpha \biggl( \frac{\alpha +1}{3} \biggr) ^{\frac{2}{\alpha }}+ \frac{3}{\alpha +1} \biggr) - \frac{1}{8}. $$
(1.2)

In this paper, we prove a new version of inequality (1.1).

Some equalities

In this section, we give equalities on twice differentiable functions for using the main results.

Lemma 1

If \(\mathcal{F}:[\rho_{1},\rho _{2}]\rightarrow \mathbb{R} \) is an absolutely continuous mapping \((\rho_{1},\rho _{2})\) such that \(\mathcal{F}^{\prime \prime }\in L_{1} ( [ \rho_{1}, \rho_{2} ] ) \), then the following equality

$$\begin{aligned}& \frac{1}{6} \biggl[ \mathcal{F} ( \rho_{1} ) +4 \mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) + \mathcal{F} ( \rho_{2} ) \biggr] \\& \qquad {} - \frac{2^{\alpha -1}\Gamma ( \alpha +1 ) }{ ( \rho _{2}-\rho_{1} ) ^{\alpha }} \biggl[ J_{ \rho _{2}-}^{\alpha }\mathcal{F} \biggl( \frac{\rho_{1}+\rho _{2}}{2} \biggr) +J_{\rho_{1}+}^{\alpha } \mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) \biggr] \\& \quad = \frac{ ( \rho_{2}-\rho_{1} ) ^{2}}{8 ( \alpha +1 ) } \int _{0}^{1} \biggl( \frac{1-2\alpha }{3}+ \frac{2 ( \alpha +1 ) }{3}\tau -\tau ^{ \alpha +1} \biggr) \\& \qquad {} \times \biggl[ \mathcal{F}^{\prime \prime } \biggl( \frac{1+\tau }{2} \rho_{2}+\frac{1-\tau }{2}\rho_{1} \biggr) +\mathcal{F}^{\prime \prime } \biggl( \frac{1+\tau }{2} \rho _{1}+\frac{1-\tau }{2}\rho_{2} \biggr) \biggr] d \tau \end{aligned}$$
(2.1)

is valid.

Proof

By using integration by parts, we obtain

$$\begin{aligned} \Upsilon _{1} =& \int _{0}^{1} \biggl( \frac{1-2\alpha }{3}+ \frac{2 ( \alpha +1 ) }{3}\tau -\tau ^{ \alpha +1} \biggr) \mathcal{F}^{\prime \prime } \biggl( \frac{1+\tau }{2}\rho_{2}+ \frac{1-\tau }{2}\rho_{1} \biggr) \, d\tau \\ =&-2 \frac{ ( 1-2\alpha ) }{3 ( \rho_{2}- \rho _{1} ) }\mathcal{F}^{\prime } \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) \\ &{}-\frac{2}{ ( \rho_{2}-\rho_{1} ) } \int _{0}^{1} \biggl( \frac{2 ( \alpha +1 ) }{3}- ( \alpha +1 ) \tau ^{\alpha } \biggr) \mathcal{F}^{\prime } \biggl( \frac{1+\tau }{2}\rho_{2}+\frac{1-\tau }{2} \rho _{1} \biggr) \,d\tau \\ =&-2 \frac{ ( 1-2\alpha ) }{3 ( \rho_{2}- \rho _{1} ) }\mathcal{F}^{\prime } \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) + \frac{4 ( \alpha +1 ) }{3 ( \rho_{2}-\rho_{1} ) ^{2}}\mathcal{F} ( \rho_{2} ) + \frac{8 ( \alpha +1 ) }{3 ( \rho_{2}-\rho_{1} ) ^{2}}\mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) \\ &{}- \frac{4\alpha ( \alpha +1 ) }{\rho_{2}-\rho_{1}} \int _{0}^{1}\tau ^{\alpha -1}\mathcal{F} \biggl( \frac{1+\tau }{2}\rho_{2}+\frac{1-\tau }{2} \rho _{1} \biggr) \,d\tau . \end{aligned}$$
(2.2)

By using equation (2.2), the change of the variable \(\kappa =\frac{1+\tau }{2}\rho_{2}+ \frac{1- \tau }{2}\rho_{1}\) for \(\tau \in [ 0,1 ] \) can be rewritten as follows:

$$\begin{aligned} \Upsilon _{1} =&-2 \frac{ ( 1-2\alpha ) }{3 ( \rho _{2}-\rho_{1} ) }\mathcal{F}^{\prime } \biggl( \frac{ \rho _{1}+\rho_{2}}{2} \biggr) + \frac{4 ( \alpha +1 ) }{3 ( \rho_{2}-\rho_{1} ) ^{2}} \mathcal{F} ( \rho_{2} ) + \frac{8 ( \alpha +1 ) }{3 ( \rho_{2}-\rho_{1} ) ^{2}} \mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) \\ &{}- \frac{2^{\alpha +2} ( \alpha +1 ) \Gamma ( \alpha +1 ) }{ ( \rho_{2}-\rho_{1} ) ^{\alpha +2}}J_{\rho_{2}-}^{\alpha }\mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) . \end{aligned}$$
(2.3)

Similarly, we have

$$\begin{aligned} \Upsilon _{2} =& \int _{0}^{1} \biggl( \frac{1-2\alpha }{3}+ \frac{2 ( \alpha +1 ) }{3}\tau -\tau ^{ \alpha +1} \biggr) \mathcal{F}^{\prime \prime } \biggl( \frac{1+\tau }{2}\rho_{1}+ \frac{1-\tau }{2}\rho_{2} \biggr) \, d\tau \\ =&2 \frac{ ( 1-2\alpha ) }{3 ( \rho_{2}- \rho _{1} ) }\mathcal{F}^{\prime } \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) + \frac{4 ( \alpha +1 ) }{3 ( \rho_{2}-\rho_{1} ) ^{2}}\mathcal{F} ( \rho_{1} ) + \frac{8 ( \alpha +1 ) }{3 ( \rho_{2}-\rho_{1} ) ^{2}}\mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) \\ &{}- \frac{2^{\alpha +2} ( \alpha +1 ) \Gamma ( \alpha +1 ) }{ ( \rho_{2}-\rho_{1} ) ^{\alpha +2}}J_{\rho_{1}+}^{\alpha }\mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) . \end{aligned}$$
(2.4)

From equations (2.3) and (2.4), we get

$$\begin{aligned} \Upsilon _{1}+\Upsilon _{2} =& \frac{4 ( \alpha +1 ) }{3 ( \rho_{2}-\rho_{1} ) ^{2}} \biggl[ \mathcal{F} ( \rho_{1} ) +4\mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) +\mathcal{F} ( \rho_{2} ) \biggr] \\ &{}- \frac{2^{\alpha +2} ( \alpha +1 ) \Gamma ( \alpha +1 ) }{ ( \rho_{2}-\rho_{1} ) ^{\alpha +2}} \biggl[ J_{\rho_{2}-}^{\alpha }\mathcal{F} \biggl( \frac{\rho _{1}+\rho_{2}}{2} \biggr) +J_{\rho_{1}+}^{ \alpha }\mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) \biggr] . \end{aligned}$$
(2.5)

Multiplying both sides of (2.5) by \(\frac{ ( \rho _{2}-\rho_{1} ) ^{2}}{8 ( \alpha +1 ) }\), we obtain equation (2.1). This ends the proof of Lemma 1. □

Lemma 2

Let us consider the function \(\varpi : [ 0,1 ] \rightarrow \mathbb{R} \) by \(\varpi (\tau )=\frac{1-2\alpha }{3}+ \frac{2 ( \alpha +1 ) }{3}\tau -\tau ^{\alpha +1}\) with \(\alpha >0\).

  1. (1)

    If \(0<\alpha \leq \frac{1}{2}\), then we have

    $$ \int _{0}^{1} \bigl\vert \varpi (\tau ) \bigr\vert \,d\tau = \frac{1-\alpha ^{2}}{3 ( \alpha +2 ) }. $$
  2. (2)

    If \(\alpha >\frac{1}{2}\), then there exists a real number \(\varsigma _{\alpha }\) such that \(0<\varsigma_{\alpha }<1\), and we have

    $$ \int _{0}^{1} \bigl\vert \varpi (\tau ) \bigr\vert \,d\tau =2 \biggl( \frac{ ( \varsigma_{\alpha } ) ^{\alpha +2}}{\alpha +2} - \frac{ ( 1-2\alpha ) \varsigma _{\alpha }+ ( \alpha +1 ) ( \varsigma _{\alpha } ) ^{2}}{3} \biggr) + \frac{1-\alpha ^{2}}{3 ( \alpha +2 ) }. $$

Proof

Let us note that \(0<\alpha \leq \frac{1}{2}\). Then \(\varpi (\tau )\geq 0\) for all \(\tau \in [ 0,1 ] \). Thus, it can be easily seen that

$$ \int _{0}^{1} \bigl\vert \varpi (\tau ) \bigr\vert \,d\tau = \int _{0}^{1}\varpi ( \tau )\,d\tau = \frac{1-\alpha ^{2}}{3 ( \alpha +2 ) }. $$

If \(\alpha >\frac{1}{2}\), then there exists a real number \(\varsigma_{\alpha }\in ( 0,1 ) \) such that \(\varpi ( \tau )\leq 0\) for \(0\leq \tau \leq \varsigma_{\alpha }\) and \(\varpi (\tau )\geq 0\) for \(\varsigma _{\alpha }\leq \tau \leq 1\). Therefore, we obtain

$$\begin{aligned} \int _{0}^{1} \bigl\vert \varpi (\tau ) \bigr\vert \,d\tau =& \int _{0}^{ \varsigma_{\alpha }} \bigl( -\varpi ( \tau ) \bigr) d \tau + \int _{ \varsigma_{\alpha }}^{1}\varpi ( \tau )\,d\tau \\ =&2 \biggl( \frac{ ( \varsigma_{\alpha } ) ^{\alpha +2}}{\alpha +2}- \frac{ ( 1-2\alpha ) \varsigma_{\alpha }+ ( \alpha +1 ) ( \varsigma_{\alpha } ) ^{2}}{3} \biggr) + \frac{1-\alpha ^{2}}{3 ( \alpha +2 ) }. \end{aligned}$$

 □

Lemma 3

Define the function \(\varpi : [ 0,1 ] \rightarrow \mathbb{R} \) by \(\varpi (\tau )=\frac{1-2\alpha }{3}+ \frac{2 ( \alpha +1 ) }{3}\tau -\tau ^{\alpha +1}\) with \(\alpha >0\).

  1. (1)

    Let us consider \(0<\alpha \leq \frac{1}{2}\). Then we have

    $$ \int _{0}^{1} \bigl\vert \varpi (\tau ) \bigr\vert \tau \,d\tau = \frac{3-\alpha -2\alpha ^{2}}{18 ( \alpha +3 ) }. $$
  2. (2)

    If we take \(\alpha >\frac{1}{2}\), then there exists a real number \(\varsigma_{\alpha }\) so that \(0<\varsigma_{\alpha }<1\), and we get

    $$ \int _{0}^{1} \bigl\vert \varpi (\tau ) \bigr\vert \tau \,d\tau =2 \biggl( \frac{ ( \varsigma _{\alpha } ) ^{\alpha +3}}{\alpha +3}- \frac{3 ( 1-2\alpha ) ( \varsigma_{\alpha } ) ^{2}+4 ( \alpha +1 ) ( \varsigma_{\alpha } ) ^{3}}{18} \biggr) +\frac{3+\alpha -2\alpha ^{2}}{18 ( \alpha +3 ) }. $$

Proof

The proof can be done similar to the proof of Lemma 2. □

New Simpson type inequalities for twice differentiable functions

In this section, we prove several Simpson type inequalities for a mapping whose second derivatives are convex.

Theorem 3

Let us note that the assumptions of Lemma 1are valid. Let us also note that the mapping \(\vert \mathcal{F}^{\prime \prime } \vert \) is convex on \([ \rho_{1},\rho_{2} ] \). Then we have the following inequality:

$$\begin{aligned}& \biggl\vert \frac{1}{6} \biggl[ \mathcal{F} ( \rho_{1} ) +4\mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) + \mathcal{F} ( \rho_{2} ) \biggr] \\ & \qquad {}- \frac{2^{\alpha -1}\Gamma ( \alpha +1 ) }{ ( \rho_{2}-\rho_{1} ) ^{\alpha }} \biggl[ J_{ \rho _{2}-}^{\alpha }\mathcal{F} \biggl( \frac{\rho_{1}+ \rho _{2}}{2} \biggr) +J_{\rho_{1}+}^{\alpha } \mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) \biggr] \biggr\vert \\ & \quad \leq \frac{ ( \rho_{2}-\rho_{1} ) ^{2}}{8 ( \alpha +1 ) }\Omega _{1}(\alpha ) \bigl[ \bigl\vert \mathcal{F}^{\prime \prime } ( \rho_{1} ) \bigr\vert + \bigl\vert \mathcal{F}^{\prime \prime } ( \rho_{2} ) \bigr\vert \bigr] , \end{aligned}$$

where \(\Omega _{1}\) is defined by

$$ \Omega _{1}(\alpha )=\textstyle\begin{cases} \frac{1-\alpha ^{2}}{3 ( \alpha +2 ) }, & \textit{if }0< \alpha \leq \frac{1}{2}, \\ 2 ( \frac{(\varsigma_{\alpha })^{\alpha +2}}{\alpha +2}- \frac{ ( 1-2\alpha ) \varsigma_{\alpha }+ ( \alpha +1 ) (\varsigma_{\alpha })^{2}}{3} ) +\frac{1-\alpha ^{2}}{3 ( \alpha +2 ) }, & \textit{if }\alpha >\frac{1}{2}.\end{cases} $$

Proof

By taking modulus in Lemma 1, we have

$$\begin{aligned}& \biggl\vert \frac{1}{6} \biggl[ \mathcal{F} ( \rho_{1} ) +4\mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) + \mathcal{F} ( \rho_{2} ) \biggr] \\ & \qquad {}- \frac{2^{\alpha -1}\Gamma ( \alpha +1 ) }{ ( \rho_{2}-\rho_{1} ) ^{\alpha }} \biggl[ J_{ \rho _{2}-}^{\alpha }\mathcal{F} \biggl( \frac{\rho_{1}+ \rho _{2}}{2} \biggr) +J_{\rho_{1}+}^{\alpha } \mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) \biggr] \biggr\vert \\ & \quad \leq \frac{ ( \rho_{2}-\rho_{1} ) ^{2}}{8 ( \alpha +1 ) } \int _{0}^{1} \biggl\vert \frac{1-2\alpha }{3}+\frac{2 ( \alpha +1 ) }{3}\tau - \tau ^{\alpha +1} \biggr\vert \,d\tau \\ & \qquad {}\times \biggl[ \biggl\vert \mathcal{F}^{\prime \prime } \biggl( \frac{1+\tau }{2}\rho_{2}+\frac{1-\tau }{2} \rho _{1} \biggr) \biggr\vert + \biggl\vert \mathcal{F}^{\prime \prime } \biggl( \frac{1+\tau }{2}\rho_{1}+ \frac{1-\tau }{2} \rho_{2} \biggr) \biggr\vert \biggr] \,d\tau . \end{aligned}$$
(3.1)

By using the convexity of \(\vert \mathcal{F}^{\prime \prime } \vert \), we obtain

$$\begin{aligned}& \biggl\vert \frac{1}{6} \biggl[ \mathcal{F} ( \rho_{1} ) +4\mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) + \mathcal{F} ( \rho_{2} ) \biggr] \\ & \qquad {}- \frac{2^{\alpha -1}\Gamma ( \alpha +1 ) }{ ( \rho_{2}-\rho_{1} ) ^{\alpha }} \biggl[ J_{ \rho _{2}-}^{\alpha }\mathcal{F} \biggl( \frac{\rho_{1}+ \rho _{2}}{2} \biggr) +J_{\rho_{1}+}^{\alpha } \mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) \biggr] \biggr\vert \\ & \quad \leq \frac{ ( \rho_{2}-\rho_{1} ) ^{2}}{8 ( \alpha +1 ) } \biggl[ \int _{0}^{1} \biggl\vert \frac{1-2\alpha }{3}+\frac{2 ( \alpha +1 ) }{3}\tau- \tau ^{\alpha +1} \biggr\vert \\ & \qquad {}\times \biggl[ \biggl( \frac{1+\tau }{2} \biggr) \bigl\vert \mathcal{F}^{\prime \prime } ( \rho _{2} ) \bigr\vert + \biggl( \frac{1-\tau }{2} \biggr) \bigl\vert \mathcal{F}^{\prime \prime } ( \rho_{1} ) \bigr\vert \biggr] \,d\tau \\ & \qquad {}+ \biggl( \frac{1+\tau }{2} \biggr) \bigl\vert \mathcal{F}^{\prime \prime } ( \rho_{1} ) \bigr\vert + \biggl( \frac{1-\tau }{2} \biggr) \bigl\vert \mathcal{F}^{ \prime \prime } ( \rho_{2} ) \bigr\vert \biggr] \,d\tau \\ & \quad = \frac{ ( \rho_{2}-\rho_{1} ) ^{2}}{8 ( \alpha +1 ) } \int _{0}^{1} \biggl\vert \frac{1-2\alpha }{3}+\frac{2 ( \alpha +1 ) }{3}\tau -\tau ^{ \alpha +1} \biggr\vert \,d\tau \bigl[ \bigl\vert \mathcal{F}^{\prime \prime } ( \rho_{2} ) \bigr\vert + \bigl\vert \mathcal{F}^{\prime \prime } ( \rho_{1} ) \bigr\vert \bigr] \\& \quad = \frac{ ( \rho_{2}-\rho_{1} ) ^{2}}{8 ( \alpha +1 ) }\Omega _{1}(\alpha ) \bigl[ \bigl\vert \mathcal{F}^{\prime \prime } ( \rho_{1} ) \bigr\vert + \bigl\vert \mathcal{F}^{\prime \prime } ( \rho_{2} ) \bigr\vert \bigr] . \end{aligned}$$

This completes the proof of Theorem 3. □

Theorem 4

Let us consider that the assumptions of Lemma 1hold. If the mapping \(\vert \mathcal{F}^{\prime \prime } \vert ^{q}\), \(q>1\) is convex on \([\rho_{1},\rho_{2}]\), then we have the following inequality:

$$\begin{aligned}& \biggl\vert \frac{1}{6} \biggl[ \mathcal{F} ( \rho_{1} ) +4\mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) + \mathcal{F} ( \rho_{2} ) \biggr] \\& \qquad {}- \frac{2^{\alpha -1}\Gamma ( \alpha +1 ) }{ ( \rho_{2}-\rho_{1} ) ^{\alpha }} \biggl[ J_{ \rho _{2}-}^{\alpha }\mathcal{F} \biggl( \frac{\rho_{1}+ \rho _{2}}{2} \biggr) +J_{\rho_{1}+}^{\alpha } \mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) \biggr] \biggr\vert \\& \quad \leq \frac{ ( \rho_{2}-\rho_{1} ) ^{2}}{8 ( \alpha +1 ) }\Psi ( \alpha ,p ) \bigl[ \bigl\vert \mathcal{F}^{\prime \prime } ( \rho_{1} ) \bigr\vert ^{q}+ \bigl\vert \mathcal{F}^{\prime \prime } ( \rho _{2} ) \bigr\vert ^{q} \bigr] ^{\frac{1}{q}}. \end{aligned}$$

Here, \(\frac{1}{p}+\frac{1}{q}=1\) and Ψ is defined by

$$ \Psi ( \alpha ,p ) = \biggl( \int _{0}^{1} \biggl\vert \frac{1-2\alpha }{3}+\frac{2 ( \alpha +1 ) }{3}\tau - \tau ^{\alpha +1} \biggr\vert ^{p}\,d\tau \biggr) ^{ \frac{1}{p}}. $$

Proof

With the help of Hölder’s inequality in inequality (3.1), we get

$$\begin{aligned}& \biggl\vert \frac{1}{6} \biggl[ \mathcal{F} ( \rho_{1} ) +4\mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) + \mathcal{F} ( \rho_{2} ) \biggr] \\& \qquad {}- \frac{2^{\alpha -1}\Gamma ( \alpha +1 ) }{ ( \rho_{2}-\rho_{1} ) ^{\alpha }} \biggl[ J_{ \rho _{2}-}^{\alpha }\mathcal{F} \biggl( \frac{\rho_{1}+ \rho _{2}}{2} \biggr) +J_{\rho_{1}+}^{\alpha } \mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) \biggr] \biggr\vert \\& \quad \leq \frac{ ( \rho_{2}-\rho_{1} ) ^{2}}{8 ( \alpha +1 ) } \biggl\{ \biggl( \int _{0}^{1} \biggl\vert \frac{1-2\alpha }{3}+ \frac{2 ( \alpha +1 ) }{3}\tau -\tau ^{\alpha +1} \biggr\vert ^{p}\,d\tau \biggr) ^{ \frac{1}{p}} \\& \qquad {}\times \biggl( \int _{0}^{1} \biggl\vert \mathcal{F}^{ \prime \prime } \biggl( \frac{1+\tau }{2}\rho_{2}+ \frac{1-\tau }{2}\rho_{1} \biggr) \biggr\vert ^{q}d \tau \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{1} \biggl\vert \frac{1-2\alpha }{3}+ \frac{2 ( \alpha +1 ) }{3}\tau -\tau ^{\alpha +1} \biggr\vert ^{p}\,d\tau \biggr) ^{\frac{1}{p}} \\& \qquad {}\times \biggl( \int _{0}^{1} \biggl\vert \mathcal{F}^{ \prime \prime } \biggl( \frac{1+\tau }{2}\rho_{1}+ \frac{1-\tau }{2}\rho_{2} \biggr) \biggr\vert ^{q}d \tau \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}$$

By using the convexity of \(\vert \mathcal{F}^{\prime \prime } \vert ^{q}\), we obtain

$$\begin{aligned}& \biggl\vert \frac{1}{6} \biggl[ \mathcal{F} ( \rho_{1} ) +4\mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) + \mathcal{F} ( \rho_{2} ) \biggr] \\& \qquad {}- \frac{2^{\alpha -1}\Gamma ( \alpha +1 ) }{ ( \rho_{2}-\rho_{1} ) ^{\alpha }} \biggl[ J_{ \rho _{2}-}^{\alpha }\mathcal{F} \biggl( \frac{\rho_{1}+ \rho _{2}}{2} \biggr) +J_{\rho_{1}+}^{\alpha } \mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) \biggr] \biggr\vert \\& \quad \leq \frac{ ( \rho_{2}-\rho_{1} ) ^{2}}{8 ( \alpha +1 ) } \biggl( \int _{0}^{1} \biggl\vert \frac{1-2\alpha }{3}+\frac{2 ( \alpha +1 ) }{3}\tau - \tau ^{\alpha +1} \biggr\vert ^{p}\,d\tau \biggr) ^{ \frac{1}{p}} \\& \qquad {}\times \biggl[ \biggl( \int _{0}^{1} \biggl[ \biggl( \frac{1+ \tau }{2} \biggr) \bigl\vert \mathcal{F}^{\prime \prime } ( \rho _{2} ) \bigr\vert ^{q}+ \biggl( \frac{1-\tau }{2} \biggr) \bigl\vert \mathcal{F}^{\prime \prime } ( \rho _{1} ) \bigr\vert ^{q} \biggr] \,d\tau \biggr) ^{ \frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{1} \biggl[ \biggl( \frac{1+\tau }{2} \biggr) \bigl\vert \mathcal{F}^{\prime \prime } ( \rho _{1} ) \bigr\vert ^{q}+ \biggl( \frac{1-\tau }{2} \biggr) \bigl\vert \mathcal{F}^{\prime \prime } ( \rho_{2} ) \bigr\vert ^{q} \biggr] d \tau \biggr) ^{\frac{1}{q}} \biggr] \\& \quad = \frac{ ( \rho_{2}-\rho_{1} ) ^{2}}{8 ( \alpha +1 ) } \biggl( \int _{0}^{1} \biggl\vert \frac{1-2\alpha }{3}+\frac{2 ( \alpha +1 ) }{3}\tau -\tau ^{ \alpha +1} \biggr\vert ^{p}\,d\tau \biggr) ^{\frac{1}{p}} \\& \qquad {}\times \biggl[ \biggl( \frac{3 \vert \mathcal{F}^{\prime \prime } ( \rho_{2} ) \vert ^{q}+ \vert \mathcal{F}^{\prime \prime } ( \rho_{1} ) \vert ^{q}}{4} \biggr) ^{\frac{1}{q}}+ \biggl( \frac{ \vert \mathcal{F}^{\prime \prime } ( \rho_{2} ) \vert ^{q}+3 \vert \mathcal{F}^{\prime \prime } ( \rho_{1} ) \vert ^{q}}{4} \biggr) ^{\frac{1}{q}} \biggr] . \end{aligned}$$

This finishes the proof of Theorem 4. □

Theorem 5

Suppose that the assumptions of Lemma 1hold. If the mapping \(\vert \mathcal{F}^{\prime \prime } \vert ^{q}\), \(q\geq 1 \) is convex on \([\rho_{1},\rho_{2}]\), then we have the following inequality:

$$\begin{aligned}& \biggl\vert \frac{1}{6} \biggl[ \mathcal{F} ( \rho_{1} ) +4\mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) + \mathcal{F} ( \rho_{2} ) \biggr] \\& \qquad {}- \frac{2^{\alpha -1}\Gamma ( \alpha +1 ) }{ ( \rho_{2}-\rho_{1} ) ^{\alpha }} \biggl[ J_{ \rho _{2}-}^{\alpha }\mathcal{F} \biggl( \frac{\rho_{1}+ \rho _{2}}{2} \biggr) +J_{\rho_{1}+}^{\alpha } \mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) \biggr] \biggr\vert \\& \quad \leq \frac{ ( \rho_{2}-\rho_{1} ) ^{2}}{8 ( \alpha +1 ) } \bigl( \Omega _{1}(\alpha ) \bigr) ^{1- \frac{1}{q}} \\& \qquad {}\times \biggl\{ \biggl( \frac{ ( \Omega _{1}(\alpha )+\Omega _{2}(\alpha ) ) \vert \mathcal{F}^{\prime \prime } ( \rho _{2} ) \vert ^{q}+ ( \Omega _{1}(\alpha )-\Omega _{2}(\alpha ) ) \vert \mathcal{F}^{\prime \prime } ( \rho _{1} ) \vert ^{q}}{2} \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \frac{ ( \Omega _{1}(\alpha )+\Omega _{2}(\alpha ) ) \vert \mathcal{F}^{\prime \prime } ( \rho _{1} ) \vert ^{q}+ ( \Omega _{1}(\alpha )-\Omega _{2}(\alpha ) ) \vert \mathcal{F}^{\prime \prime } ( \rho _{2} ) \vert ^{q}}{2} \biggr) ^{\frac{1}{q}} \biggr\} , \end{aligned}$$

where \(\Omega _{1}\) is defined as in Theorem 3and \(\Omega _{2}\) is defined by

$$ \Omega _{2}(\alpha )=\textstyle\begin{cases} \frac{3-\alpha -2\alpha ^{2}}{18 ( \alpha +3 ) }, & \textit{if }0< \alpha \leq \frac{1}{2}, \\ 2 ( \frac{ ( \varsigma_{\alpha } ) ^{\alpha +3}}{\alpha +3}- \frac{3 ( 1-2\alpha ) ( \varsigma _{\alpha } ) ^{2}+4 ( \alpha +1 ) ( \varsigma _{\alpha } ) ^{3}}{18} ) + \frac{3+\alpha -2\alpha ^{2}}{18 ( \alpha +3 ) }, & \textit{if }\alpha >\frac{1}{2}.\end{cases} $$

Proof

By applying the power-mean inequality in (3.1), we get

$$\begin{aligned}& \biggl\vert \frac{1}{6} \biggl[ \mathcal{F} ( \rho_{1} ) +4\mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) + \mathcal{F} ( \rho_{2} ) \biggr] \\& \qquad {}- \frac{2^{\alpha -1}\Gamma ( \alpha +1 ) }{ ( \rho_{2}-\rho_{1} ) ^{\alpha }} \biggl[ J_{ \rho _{2}-}^{\alpha }\mathcal{F} \biggl( \frac{\rho_{1}+ \rho _{2}}{2} \biggr) +J_{\rho_{1}+}^{\alpha } \mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) \biggr] \biggr\vert \\& \quad \leq \frac{ ( \rho_{2}-\rho_{1} ) ^{2}}{8 ( \alpha +1 ) } \biggl[ \biggl( \int _{0}^{1} \biggl\vert \frac{1-2\alpha }{3}+ \frac{2 ( \alpha +1 ) }{3}\tau -\tau ^{\alpha +1} \biggr\vert \,d\tau \biggr) ^{1- \frac{1}{q}} \\& \qquad {}\times \biggl( \int _{0}^{1} \biggl\vert \frac{1-2\alpha }{3}+\frac{2 ( \alpha +1 ) }{3}\tau -\tau ^{ \alpha +1} \biggr\vert \biggl\vert \mathcal{F}^{\prime \prime } \biggl( \frac{1+\tau }{2} \rho_{2}+\frac{1-\tau }{2} \rho _{1} \biggr) \biggr\vert ^{q}\,d\tau \biggr) ^{ \frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{1} \biggl\vert \frac{1-2\alpha }{3}+ \frac{2 ( \alpha +1 ) }{3}\tau -\tau ^{\alpha +1} \biggr\vert \,d\tau \biggr) ^{1-\frac{1}{q}} \\& \qquad {}\times \biggl( \int _{0}^{1} \biggl\vert \frac{1-2\alpha }{3}+\frac{2 ( \alpha +1 ) }{3}\tau -\tau ^{ \alpha +1} \biggr\vert \biggl\vert \mathcal{F}^{\prime \prime } \biggl( \frac{1+\tau }{2}\rho_{1}+\frac{1-\tau }{2} \rho _{2} \biggr) \biggr\vert ^{q}\,d\tau \biggr) ^{ \frac{1}{q}} \biggr] . \end{aligned}$$
(3.2)

Since \(\vert \mathcal{F}^{\prime \prime } \vert ^{q}\) is convex, we obtain

$$\begin{aligned}& \int _{0}^{1} \biggl\vert \frac{1-2\alpha }{3}+ \frac{2 ( \alpha +1 ) }{3}\tau -\tau ^{ \alpha +1} \biggr\vert \biggl\vert \mathcal{F}^{\prime \prime } \biggl( \frac{1+\tau }{2} \rho _{2}+\frac{1-\tau }{2}\rho_{1} \biggr) \biggr\vert ^{q}\,d\tau \\& \quad \leq \int _{0}^{1} \biggl\vert \frac{1-2\alpha }{3}+ \frac{2 ( \alpha +1 ) }{3}\tau -\tau ^{\alpha +1} \biggr\vert \biggl[ \frac{1+\tau }{2} \bigl\vert \mathcal{F}^{\prime \prime } ( \rho_{2} ) \bigr\vert ^{q}+ \frac{1-\tau }{2} \bigl\vert \mathcal{F}^{\prime \prime } ( \rho _{1} ) \bigr\vert ^{q} \biggr] \,d\tau \\& \quad = \frac{ ( \Omega _{1}(\alpha )+\Omega _{2}(\alpha ) ) \vert \mathcal{F}^{\prime \prime } ( \rho_{2} ) \vert ^{q}+ ( \Omega _{1}(\alpha )-\Omega _{2}(\alpha ) ) \vert \mathcal{F}^{\prime \prime } ( \rho_{1} ) \vert ^{q}}{2}, \end{aligned}$$

and similarly

$$\begin{aligned}& \int _{0}^{1} \biggl\vert \frac{1-2\alpha }{3}+ \frac{2 ( \alpha +1 ) }{3}\tau -\tau ^{ \alpha +1} \biggr\vert \biggl\vert \mathcal{F}^{\prime \prime } \biggl( \frac{1+\tau }{2} \rho _{1}+\frac{1-\tau }{2}\rho_{2} \biggr) \biggr\vert ^{q}\,d\tau \\& \quad \leq \frac{ ( \Omega _{1}(\alpha )+\Omega _{2}(\alpha ) ) \vert \mathcal{F}^{\prime \prime } ( \rho_{1} ) \vert ^{q}+ ( \Omega _{1}(\alpha )-\Omega _{2}(\alpha ) ) \vert \mathcal{F}^{\prime \prime } ( \rho_{2} ) \vert ^{q}}{2}. \end{aligned}$$

Then we obtain the desired result Theorem 5. □

Special cases

In this section, we present special cases of the main findings in the paper.

Remark 1

If we choose \(\alpha =1\) in Theorem 3, then \(\varsigma _{\alpha }=\frac{1}{3}\), and we have the inequality

$$\begin{aligned}& \biggl\vert \frac{1}{6} \biggl[ \mathcal{F} ( \rho_{1} ) +4\mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) + \mathcal{F} ( \rho_{2} ) \biggr] - \frac{1}{ \rho _{2}-\rho_{1}} \int _{\rho_{1}}^{ \rho _{2}}\mathcal{F}(\kappa )\,d\kappa \biggr\vert \\& \quad \leq \frac{ ( \rho_{2}-\rho_{1} ) ^{2}}{162} \bigl[ \bigl\vert \mathcal{F}^{\prime \prime } ( \rho _{1} ) \bigr\vert + \bigl\vert \mathcal{F}^{\prime \prime } ( \rho_{2} ) \bigr\vert \bigr], \end{aligned}$$

which is proved by Sarikaya et al. in [35].

Corollary 1

In Theorem 4, if we assign \(\alpha =1\), then \(\varsigma _{\alpha }=\frac{1}{3}\), and the following inequality

$$\begin{aligned}& \biggl\vert \frac{1}{6} \biggl[ \mathcal{F} ( \rho_{1} ) +4\mathcal{F} \biggl( \frac{\rho_{1}+\rho_{2}}{2} \biggr) + \mathcal{F} ( \rho_{2} ) \biggr] - \frac{1}{ \rho _{2}-\rho_{1}} \int _{\rho_{1}}^{ \rho _{2}}\mathcal{F}(\kappa )\,d\kappa \biggr\vert \\& \quad \leq \frac{ ( \rho_{2}-\rho_{1} ) ^{2}}{16}\Psi ( 1,p ) \bigl[ \bigl\vert \mathcal{F}^{\prime \prime } ( \rho_{1} ) \bigr\vert ^{q}+ \bigl\vert \mathcal{F}^{\prime \prime } ( \rho_{2} ) \bigr\vert ^{q} \bigr] ^{\frac{1}{q}} \end{aligned}$$

is valid.

Remark 2

If we take \(\alpha =1\) in Theorem 5, then Theorem 5 reduces to [35, Theorem 2.5].

Conclusion

In the present article, fractional version of Simpson type inequality for twice differentiable functions are established. Moreover, we show that our results generalize the inequalities obtained by Sarikaya et al. [35]. This work is a new version of fractional Simpson type inequalities for twice differentiable functions. In the future studies, authors can try to generalize our results by utilizing a different kind of convex function classes or another type fractional integral operators. In addition to this, the authors can give some applications of special cases with the help of our results.

Availability of data and materials

Data sharing not applicable to this paper as no data sets were generated or analysed during the current study.

References

  1. Abdeljawad, T., Rashid, S., Hammouch, Z., Iscan, I., Chu, Y.M.: Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications. Adv. Differ. Equ. 2020(1), 496 (2020)

    MathSciNet  Article  Google Scholar 

  2. Agarwal, P.: Some inequalities involving Hadamard-type k-fractional integral operators. Math. Methods Appl. Sci. 40(11), 3882–3891 (2017)

    MathSciNet  Article  Google Scholar 

  3. Agarwal, P., Jleli, M., Tomar, M.: Certain Hermite–Hadamard type inequalities via generalized k-fractional integrals. J. Inequal. Appl. 2017, 55 (2017). https://doi.org/10.1186/s13660-017-1318-y

    MathSciNet  Article  MATH  Google Scholar 

  4. Alomari, M., Darus, M., Dragomir, S.S.: New inequalities of Simpson’s type for s-convex functions with applications. RGMIA Res. Rep. Collect. 12(4) (2009)

  5. Budak, H., Erden, S., Ali, M.A.: Simpson and Newton type inequalities for convex functions via newly defined quantum integrals. Math. Methods Appl. Sci. 44(1), 378–390 (2021)

    MathSciNet  Article  Google Scholar 

  6. Budak, H., Kara, H., Hezenci, F.: Fractional Simpson type inequalities for twice differentiable functions (2021, submitted)

  7. Chand, M., Prajapati, J.C., Bonyah, E.: Fractional integrals and solution of fractional kinetic equations involving k-Mittag-Leffler function. Trans. A. Razmadze Math. Inst. 171(2), 144–166 (2017)

    MathSciNet  Article  Google Scholar 

  8. Chen, J., Huang, X.: Some new inequalities of Simpson’s type for s-convex functions via fractional integrals. Filomat 31(15), 4989–4997 (2017)

    MathSciNet  Article  Google Scholar 

  9. Choi, J., Agarwal, P.: Some new Saigo type fractional integral inequalities and their q-analogues. Abstr. Appl. Anal. 2014, Article ID 579260 (2014). https://doi.org/10.1155/2014/579260

    MathSciNet  Article  MATH  Google Scholar 

  10. Dragomir, S.S., Agarwal, R.P., Cerone, P.: On Simpson’s inequality and applications. J. Inequal. Appl. 5, 533–579 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Du, T., Li, Y., Yang, Z.: A generalization of Simpson’s inequality via differentiable mapping using extended \((s,m)\)-convex functions. Appl. Math. Comput. 293, 358–369 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Ertuğral, F., Sarikaya, M.Z.: Simpson type integral inequalities for generalized fractional integral. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(4), 3115–3124 (2019)

    MathSciNet  Article  Google Scholar 

  13. Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Order, pp. 223–276. Springer, Vienna (1997)

    MATH  Google Scholar 

  14. Hua, J., Xi, B.Y., Qi, F.: Some new inequalities of Simpson type for strongly s-convex functions. Afr. Math. 26(5), 741–752 (2015)

    MathSciNet  Article  Google Scholar 

  15. Hussain, S., Khalid, J., Chu, Y.M.: Some generalized fractional integral Simpson’s type inequalities with applications. AIMS Math. 5(6), 5859–5883 (2020)

    MathSciNet  Article  Google Scholar 

  16. Hussain, S., Qaisar, S.: More results on Simpson’s type inequality through convexity for twice differentiable continuous mappings. SpringerPlus 5(1), 77 (2016)

    Article  Google Scholar 

  17. Iqbal, M., Qaisar, S., Hussain, S.: On Simpson’s type inequalities utilizing fractional integrals. J. Comput. Anal. Appl. 23(6), 1137–1145 (2017)

    MathSciNet  Google Scholar 

  18. İşcan, İ.: Hermite–Hadamard and Simpson-like type inequalities for differentiable harmonically convex functions. J. Math. 2014, Article ID 346305 (2014)

    MathSciNet  Google Scholar 

  19. Kermausuor, S.: Simpson’s type inequalities via the Katugampola fractional integrals for s-convex functions. Kragujev. J. Math. 45(5), 709–720 (2021)

    Article  Google Scholar 

  20. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Book  Google Scholar 

  21. Lei, H., Hu, G., Nie, J., Du, T.: Generalized Simpson-type inequalities considering first derivatives through the k-fractional integrals. IAENG Int. J. Appl. Math. 50(3), 1–8 (2020)

    Google Scholar 

  22. Li, Y., Du, T.: Some Simpson type integral inequalities for functions whose third derivatives are \((\alpha ,m)\)-GA-convex functions. J. Egypt. Math. Soc. 24(2), 175–180 (2016)

    MathSciNet  Article  Google Scholar 

  23. Liu, B.Z.: An inequality of Simpson type. Proc. R. Soc. A 461, 2155–2158 (2005)

    MathSciNet  Article  Google Scholar 

  24. Liu, W.: Some Simpson type inequalities for h-convex and \((\alpha ,m)\)-convex functions. J. Comput. Anal. Appl. 16(5), 1005–1012 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Liu, X., Zhang, L., Agarwal, P., Wang, G.: On some new integral inequalities of Gronwall–Bellman–Bihari type with delay for discontinuous functions and their applications. Indag. Math. 27(1), 1–10 (2016)

    MathSciNet  Article  Google Scholar 

  26. Luo, C., Du, T.: Generalized Simpson type inequalities involving Riemann–Liouville fractional integrals and their applications. Filomat 34(3), 751–760 (2020)

    MathSciNet  Article  Google Scholar 

  27. Matloka, M.: Some inequalities of Simpson type for h-convex functions via fractional integrals. Abstr. Appl. Anal. 2015, Article ID 956850 (2015)

    MathSciNet  Article  Google Scholar 

  28. Mehrez, K., Agarwal, P.: New Hermite–Hadamard type integral inequalities for convex functions and their applications. J. Comput. Appl. Math. 350, 274–285 (2019)

    MathSciNet  Article  Google Scholar 

  29. Miller, S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  30. Ozdemir, M.E., Akdemir, A.O., Kavurmaci, H.: On the Simpson’s inequality for convex functions on the coordinates. Turk. J. Anal. Number Theory 2(5), 165–169 (2014)

    Article  Google Scholar 

  31. Park, J.: On Simpson like type integral inequalities for differentiable preinvex functions. Appl. Math. Sci. 7(121), 6009–6021 (2013)

    MathSciNet  Google Scholar 

  32. Rashid, S., Akdemir, A.O., Jarad, F., Noor, M.A., Noor, K.I.: Simpson’s type integral inequalities for k-fractional integrals and their applications. AIMS Math. 4(4), 1087–1100 (2019)

    MathSciNet  Article  Google Scholar 

  33. Sarikaya, M.Z., Budak, H., Erden, S.: On new inequalities of Simpson’s type for generalized convex functions. Korean J. Math. 27(2), 279–295 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Sarikaya, M.Z., Set, E., Ozdemir, M.E.: On new inequalities of Simpson’s type for convex functions. RGMIA Res. Rep. Collect. 13(2), Article 2 (2010)

    MATH  Google Scholar 

  35. Sarikaya, M.Z., Set, E., Ozdemir, M.E.: On new inequalities of Simpson’s type for functions whose second derivatives absolute values are convex. J. Appl. Math. Stat. Inform. 9(1), 37–45 (2013)

    MathSciNet  Article  Google Scholar 

  36. Sarikaya, M.Z., Set, E., Ozdemir, M.E.: On new inequalities of Simpson’s type for s-convex functions. Comput. Math. Appl. 60(8), 2191–2199 (2020)

    MathSciNet  Article  Google Scholar 

  37. Set, E., Akdemir, A.O., Ozdemir, M.E.: Simpson type integral inequalities for convex functions via Riemann–Liouville integrals. Filomat 31(14), 4415–4420 (2017)

    MathSciNet  Article  Google Scholar 

  38. Vivas-Cortez, M., Abdeljawad, T., Mohammed, P.O., Rangel-Oliveros, Y.: Simpson’s integral inequalities for twice differentiable convex functions. Math. Probl. Eng. 2020, Article ID 1936461 (2020)

    MathSciNet  Article  Google Scholar 

  39. Wang, G., Agarwal, P., Chand, M.: Certain Gruss type inequalities involving the generalized fractional integral operator. J. Inequal. Appl. 2014, 147 (2014). https://doi.org/10.1186/1029-242X-2014-147

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding

There is no funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fatih Hezenci.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hezenci, F., Budak, H. & Kara, H. New version of fractional Simpson type inequalities for twice differentiable functions. Adv Differ Equ 2021, 460 (2021). https://doi.org/10.1186/s13662-021-03615-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-021-03615-2

MSC

  • 26D07
  • 26D10
  • 26D15

Keywords

  • Simpson type inequalities
  • Convex function
  • Fractional integrals