Skip to main content

Theory and Modern Applications

On the existence and stability of two positive solutions of a hybrid differential system of arbitrary fractional order via Avery–Anderson–Henderson criterion on cones

Abstract

The main objective of this paper is to investigate the existence, uniqueness, and Ulam–Hyers stability of positive solutions for fractional integro-differential boundary values problem. Uniqueness result is obtained by using the Banach principle. For obtaining two positive solutions, we apply another fixed point criterion due to Avery–Anderson–Henderson on cones by establishing some inequalities. An illustrative example is presented to indicate the validity of the obtained results. The results are new and provide a generalization to some known results in the literature.

1 Introduction

The topic of fractional boundary values problems gained a largest share of interest of researchers and scientists due to its great and important role in many fields such as engineering, physics, chemistry, and many other applications, see [13] and the references therein.

The subject of analysis of differential systems such as existence, uniqueness, and stability of solution for various boundary values problems has received the attention of many researchers, since the shape of the solution of differential models is obtained by its boundary [415]. One form of active research is the hybrid system that has been used as a model of several physical systems and has an unusual differential form, see [1623].

The fixed point theorems of many versions are the main core of obtaining the necessary and sufficient criteria implying the existence and uniqueness of solution for fractional boundary values problems [2442]. In particular, Banach fixed point theorem is the most popular one to find the unique solution of the problem. The existence of more than one solution has been obtained by many fixed point theorems such as Schauder’s and Krasnosel’skii’s fixed point theorems according to the stated given conditions on nonlinear terms. The existence of at least two solutions of the nonlinear boundary value problem (BVP) are given by Avery–Anderson–Henderson fixed point principle [43].

The in-depth qualitative behavior of the solution for fractional BVPs is the positivity of such solutions. The study of existence and stability of positive solution in boundary value problems is characterized by more investigation in all components of the fractional models along with the involved boundary conditions [44, 45]. Most researchers avoid the multi nonzero components in initial or boundary conditions such as constants, functions, integrals, or even derivatives of functions. The using of the zero-valued-conditions fasciate these investigations and avoid any conflicts of the components.

Sun et al. [46] investigated the required conditions for confirming the existence and uniqueness of the solution to a nonlinear fractional differential equation (FDE) whose nonlinearity involves an explicit fractional derivative using Avery–Anderson–Henderson fixed point theorem. Devi et al. [44] studied the existence and uniqueness along with the Ulam–Hyers (UH) stability of positive solution of general nonlinear FDEs containing p-Laplacian operator. The authors of [47] turned to the existence and multiplicity of positive solutions for a system consisting of Riemann–Liouville FDEs equipped with the p-Laplacian operators and singular nonnegative nonlinearities, and also furnished with nonlocal boundary conditions which possess the integrals of Riemann–Stieltjes type. The existence criterion and its stability of a hybrid fractional differential equation with fractional integral, fractional derivative in the Caputo sense, and p-Laplacian operator are also investigated in the research article by Al-Sadi et al. [48].

In this article, we focus on the fractional integro-differential boundary value problem of a hybrid system given as

$$ \textstyle\begin{cases} D^{\alpha }(x(t)-g(t,x(t)))=f(t,x(t)),\quad t\in (t_{0},T),\alpha \in (n-1,n), \\ m_{0}x(t_{0})+n_{0}D^{\rho _{0}}x(T)=I^{\delta _{0}}h_{0}(T,x(T)),\quad \rho _{0}\in (0,1), m_{0},n_{0}\in \mathbb{R}, \\ m_{1}x(t_{0})+n_{1}D^{\rho _{1}}x(T)=I^{\delta _{1}}h_{1}(T,x(T)),\quad \rho _{1}\in (1,2), m_{1},n_{1}\in \mathbb{R}, \\ x^{(k)}(t_{0})=I^{\delta _{k}}h_{k}(T,x(T)),\quad k=2,3,\ldots,n-1,n>2,\end{cases} $$
(1)

where \(m_{1},n_{0}\neq 0\), \(D^{\alpha }\) denotes the Caputo fractional derivative and \(f,g,h_{k}:[t_{0},T]\times \mathbb{R} \rightarrow \mathbb{R}\), \(k=0,1,\ldots,n-1\), are given continuous functions, and \(\delta _{0}, \dots , \delta _{n-1}>0\). Note that the novelty of the paper in the above system is that we shall investigate the qualitative criteria for two positive solutions to a new hybrid system with the finite number of integro-differential boundary conditions in terminal points with the help of a complicated case of fixed point techniques due to Avery–Anderson–Henderson. By taking different values for existing parameters and functions, one can get some well-known FDEs studied in the previous research works.

The other five sections of the manuscript are summarized as follows: In Sect. 2, we offer basic preliminaries of results in fractional calculus and fixed point theories. In Sect. 3, the solution of the fractional linear model of (1) is obtained. Therefore, an application of Banach fixed point theorem on the integral solution for system (1) implies the existence of one and only one solution of the system. In Sect. 4, to apply Avery–Anderson–Henderson fixed point theorem, we obtain sufficient criteria and conditions for the positivity and existence of at least two of them for fractional hybrid system (1) by showing the complete continuity of the operator that represents the integral solution of the system. In Sect. 5, the UH stability of the solution is investigated and sufficient conditions for this kind of stability are obtained. Finally, in Sect. 6, we design an example to ensure the consistency of the results. The conclusion section closes this paper.

2 Preliminaries and notations

We again introduce several specifications and facts about fractional calculus and topics of fixed point theorems.

Definition 2.1

([49])

The Riemann–Liouville (left-sided) fractional integral of a real-valued function \(\phi \in C[t_{0},T]\) is introduced as

$$ I^{q }\phi (t)=\frac{1}{\Gamma (q )} \int _{t_{0}}^{t}(t-s)^{q -1} \phi (s) \,ds,\quad q >0, $$

if it exists.

Definition 2.2

([49])

The Caputo fractional derivative of order \(q \in (n-1,n]\) for \(\phi \in C^{n}[t_{0},T]\) is defined as

$$ D^{q }\phi (t)= \textstyle\begin{cases} I^{n-q }\phi ^{(n)}(t),&n-1< q < n, \\ \phi ^{(n)}(t),&q =n,\end{cases}$$

if it exists.

Lemma 2.3

([49])

Let \(n-1< q < n\), then

$$ I^{q }D^{q } \phi (t)= \phi (t)+ a_{0}+a_{1}(t-t_{0})+a_{2}(t-t_{0})^{2}+ \cdots +a_{n-1}(t-t_{0})^{n-1} $$

for \(a_{k}\in \mathbb{R} \), \(k=0,1,\ldots ,n-1\).

For example, the γth Caputo derivative of \(\phi (t)=(t-t_{0})^{\zeta }\) is given by

$$ D^{\gamma }(t-t_{0})^{\zeta }= \textstyle\begin{cases} \frac{\Gamma (\zeta +1)}{\Gamma (\zeta -\gamma +1)}(t-t_{0})^{\zeta - \gamma },&n-1< \gamma < n,n-1< \zeta , \\ 0, & \zeta \leq n-1.\end{cases} $$
(2)

Theorem 2.4

(Banach principle [24])

Let \((E, \Vert \cdot \Vert )\) be a Banach space and Ω be a closed and bounded subset of E. If \(\Psi :\Omega \rightarrow \Omega \) is a contraction operator, then Ψ has a unique fixed point in Ω. We mean by a contraction that it is an operator Ψ that satisfies

$$ \Vert \Psi x-\Psi y \Vert \leq k \Vert x-y \Vert , \quad k\in (0,1), x,y \in \Omega . $$

Theorem 2.5

(Avery–Anderson–Henderson theorem [43])

Consider \((E, \Vert \cdot \Vert )\) as a Banach space, \(P\in E\) as a cone, and μ and ϕ as two increasing nonnegative continuous functionals on P, and let ω be a nonnegative continuous functional on P with \(\omega (0)=0\) provided that, for some \(r_{3}>0\) and \(M>0\), the inequalities \(\phi (x)\leq \omega (x)\leq \mu (x)\) and \(\Vert x\Vert \leq M\phi (x)\) fulfill \(\forall x\in \overline{P(\phi ,r_{3})}\), in which \(P(\phi ,r_{3})=\{x\in P:\phi (x)< r_{3}\}\). Let positive numbers \(r_{1}< r_{2}< r_{3}\) exist so that \(\omega (lx)\leq l\omega (x)\) for \(0\leq l\leq 1\), and \(x\in \partial P(\omega ,r_{2})\). If \(\Psi :\overline{P(\phi ,r_{3})}\rightarrow P\) is an operator with the complete continuity property satisfying:

  1. (C1)

    \(\phi (\Psi x)>r_{3}\), \(\forall x\in \partial P(\phi ,r_{3})\);

  2. (C2)

    \(\omega (\Psi x)< r_{2}\), \(\forall x\in \partial P(\omega ,r_{2})\);

  3. (C3)

    \(P(\mu ,r_{1})\neq \emptyset \), and \(\mu (\Psi x)>r_{1}\), \(\forall x\in \partial P(\mu ,r_{1})\),

then Ψ admits at least two fixed points \(x_{1}\) and \(x_{2}\) provided that \(r_{1}<\mu (x_{1})\) with \(\omega (x_{1})< r_{2}\) and \(r_{2}<\omega (x_{2})\) with \(\phi (x_{2})< r_{3}\).

3 Results regarding unique solution

We obtain firstly a solution of the corresponding linear system of (1).

Theorem 3.1

Let \(m_{1},n_{0}\neq 0\) and \(\delta _{0}, \dots , \delta _{n-1}>0\). Then the linear hybrid fractional boundary value problem (FBVP)

$$ \textstyle\begin{cases} D^{\alpha }(x(t)-g(t))=f(t),\quad t\in (t_{0},T), \alpha >2, \\ m_{0}x(t_{0})+n_{0}D^{\rho _{0}}x(T)=I^{\delta _{0}}h_{0}(T),\quad \rho _{0} \in (0,1), m_{0},n_{0}\in \mathbb{R}, \\ m_{1}x(t_{0})+n_{1}D^{\rho _{1}}x(T)=I^{\delta _{1}}h_{1}(T),\quad \rho _{1} \in (1,2), m_{1},n_{1}\in \mathbb{R}, \\ x^{(k)}(t_{0})=I^{\delta _{k}}h_{k}(T),\quad k=2,3,\ldots , n-1,n\geq 3,\end{cases}$$
(3)

has an integral solution in the following form:

$$\begin{aligned} x(t) &= I^{\alpha }f(t)+g(t)-g(t_{0}) \\ &\quad {}+ \frac{(t-t_{0})\Gamma (2-\rho _{0})}{n_{0}(T-t_{0})^{1-\rho _{0}}} \biggl(I^{\delta _{0}}h_{0}(T)- \frac{m_{0}}{m_{1}}I^{\delta _{1}}h_{1}(T) \biggr)+ \frac{1}{m_{1}}I^{\delta _{1}}h_{1}(T) \\ &\quad {}+\frac{(t-t_{0})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}} \biggl( \frac{n_{1}m_{0}}{m_{1}n_{0}}I^{\alpha -\rho _{1}}f(T)-I^{\alpha -\rho _{0}}f(T) \biggr)-\frac{n_{1}}{m_{1}}I^{\alpha -\rho _{1}}f(T) \\ &\quad {}+\frac{(t-t_{0})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}} \biggl( \frac{n_{1}m_{0}}{m_{1}n_{0}}D^{\rho _{1}}g(T)-D^{\rho _{0}}g(T) \biggr)- \frac{n_{1}}{m_{1}}D^{\rho _{1}}g(T) \\ &\quad {}+\sum_{k=2}^{n-1} \biggl[ { \frac{n_{1}(T-t_{0})^{k-\rho _{1}}}{m_{1}\Gamma (k-\rho _{1}+1)}} \biggl[ {1-\frac{m_{0}}{n_{0}} \frac{(t-t_{0})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}}} \biggr] {-\frac{(t-t_{0})^{k}}{k!}} \\ &\quad {} + \frac{(T-t_{0})^{k-1}(t-t_{0})\Gamma (2-\rho _{0})}{\Gamma (k-\rho _{0}+1)} \biggr] { \bigl[g^{(k)}(t_{0})-I^{\delta _{k}}h_{k}(T) \bigr]}. \end{aligned}$$
(4)

Proof

Taking the fractional integral to both sides of differential equation (3) and using Lemma 2.3, we get

$$ x(t)=I^{\alpha }f(t)+g(t)+\sum_{k=0}^{n-1}{c_{k}(t-t_{0})^{k}}. $$
(5)

By definition of the Caputo derivative of the fractional order \(\rho _{i}<\alpha \), and using equation (2), it becomes

$$\begin{aligned} D^{\rho _{i}}x(t) &=I^{\alpha -\rho _{i}}f(t)+D^{\rho _{i}}g(t)+\sum _{k=0}^{n-1}{c_{k}D^{ \rho _{i}}(t-t_{0})^{k}} \\ &=I^{\alpha -\rho _{i}}f(t)+D^{\rho _{i}}g(t)+\sum _{k=\lceil \rho _{i} \rceil }^{n-1}{\frac{c_{k}\Gamma (k+1)}{\Gamma (k-\rho _{i}+1)}(t-t_{0})^{k-\rho _{i}}.} \end{aligned}$$

Particularly, we find

$$ D^{\rho _{0}}x(t)=I^{\alpha -\rho _{0}}f(t)+D^{\rho _{0}}g(t)+\sum _{k=1}^{n-1}{ \frac{c_{k}\Gamma (k+1)}{\Gamma (k-\rho _{0}+1)}(t-t_{0})^{k-\rho _{0}}} $$

and

$$ D^{\rho _{1}}x(t)=I^{\alpha -\rho _{1}}f(t)+D^{\rho _{1}}g(t)+\sum _{k=2}^{n-1}{ \frac{c_{k}\Gamma (k+1)}{\Gamma (k-\rho _{1}+1)}(t-t_{0})^{k-\rho _{1}}}. $$

Then

$$ x(t_{0})=g(t_{0})+c_{0} $$

and

$$ D^{\rho _{i}}x(t_{0})=D^{\rho _{i}}g(t_{0})\quad \bigl(i\in \{0,1\} \bigr). $$

Also, we have

$$ x(T)=I^{\alpha }f(T)+g(T)+\sum_{k=0}^{n-1}{c_{k}(T-t_{0})^{k}} $$

and

$$ D^{\rho _{i}}x(T)=I^{\alpha -\rho _{i}}f(T)+D^{\rho _{i}}g(T)+\sum _{k= \lceil \rho _{i}\rceil }^{n-1}{ \frac{c_{k}\Gamma (k+1)}{\Gamma (k-\rho _{i}+1)}(T-t_{0})^{k-\rho _{i}}}. $$

The boundary condition \(m_{0}x(t_{0})+n_{0}D^{\rho _{0}}x(T)=I^{\delta _{0}}h_{0}(T)\) gives

$$\begin{aligned} I^{\delta _{0}}h_{0}(T) =& m_{0}g(t_{0})+m_{0}c_{0}+n_{0}I^{\alpha - \rho _{0}}f(T)+n_{0}D^{\rho _{0}}g(T) \\ &{}+ n_{0}\sum_{k=1}^{n-1}{ \frac{c_{k}\Gamma (k+1)}{\Gamma (k-\rho _{0}+1)}(T-t_{0})^{k-\rho _{0}}}, \end{aligned}$$
(6)

and the condition \(m_{1}x(t_{0})+n_{1}D^{\rho _{1}}x(T)=I^{\delta _{1}}h_{1}(T)\) implies

$$\begin{aligned} I^{\delta _{1}}h_{1}(T) &= m_{1}g(t_{0})+m_{1}c_{0}+n_{1}I^{\alpha - \rho _{1}}f(T)+n_{1}D^{\rho _{1}}g(T) \\ &\quad {}+ n_{1}\sum_{k=2}^{n-1}{ \frac{c_{k}\Gamma (k+1)}{\Gamma (k-\rho _{1}+1)}(T-t_{0})^{k-\rho _{1}}}. \end{aligned}$$
(7)

The boundary condition \(x^{(k)}(t_{0})=I^{\delta _{k}}h_{k}(T)\), \(k=2,3,\ldots ,n-1\), implies that

$$ c_{k}=\frac{1}{k!} \bigl[I^{\delta _{k}}h_{k}(T)-g^{(k)}(t_{0}) \bigr],\quad k=2,3, \ldots ,n-1. $$
(8)

Substituting (8) into (6) and (7), we obtain

$$\begin{aligned} & m_{0}c_{0}+\frac{c_{1}n_{0}}{\Gamma (2-\rho _{0})}(T-t_{0})^{1- \rho _{0}} \\ &\quad = I^{\delta _{0}}h_{0}(T)-m_{0}g(t_{0})-n_{0}I^{\alpha -\rho _{0}}f(T)-n_{0}D^{ \rho _{0}}g(T) \\ &\qquad {}+n_{0}\sum_{k=2}^{n-1}{ \frac{(T-t_{0})^{k-\rho _{0}}}{\Gamma (k-\rho _{0}+1)} \bigl[g^{(k)}(t_{0})-I^{ \delta _{k}}h_{k}(T) \bigr]} \end{aligned}$$

and

$$\begin{aligned} c_{0} &= m_{1}^{-1}I^{\delta _{1}}h_{1}(T)-g(t_{0})-m_{1}^{-1}n_{1}I^{ \alpha -\rho _{1}}f(T)-m_{1}^{-1}n_{1}D^{\rho _{1}}g(T) \\ &\quad {}+m_{1}^{-1}n_{1}\sum _{k=2}^{n-1}{ \frac{(T-t_{0})^{k-\rho _{1}}}{\Gamma (k-\rho _{1}+1)} \bigl[g^{(k)}(t_{0})-I^{ \delta _{k}}h_{k}(T) \bigr]}. \end{aligned}$$

Then

$$\begin{aligned} c_{1} &=\frac{\Gamma (2-\rho _{0})}{n_{0}(T-t_{0})^{1-\rho _{0}}} \biggl( I^{\delta _{0}}h_{0}(T)- \frac{m_{0}}{m_{1}}I^{\delta _{1}}h_{1}(T) \biggr) \\ &\quad {}-\frac{\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}} \biggl( I^{ \alpha -\rho _{0}}f(T)-\frac{m_{0}n_{1}}{n_{0}m_{1}}I^{\alpha -\rho _{1}}f(T) \biggr) \\ &\quad {}-\frac{\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}} \biggl( D^{ \rho _{0}}g(T)-\frac{m_{0}n_{1}}{n_{0}m_{1}}D^{\rho _{1}}g(T) \biggr) \\ &\quad {}+\frac{\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}}\sum_{k=2}^{n-1} \biggl( {\frac{(T-t_{0})^{k-\rho _{0}}}{\Gamma (k-\rho _{0}+1)}- \frac{m_{0}n_{1}(T-t_{0})^{k-\rho _{1}}}{n_{0}m_{1}\Gamma (k-\rho _{1}+1)}} \biggr) \\ &\quad {}\times \bigl( {g^{(k)}(t_{0})-I^{\delta _{k}}h_{k}(T)} \bigr) . \end{aligned}$$

Substituting the constants \(c_{k}\), \(k=0,1,2,\ldots,n-1\), into (5), we obtain solution (4), and the proof is finished. □

If \(\rho _{0},\rho _{1}\in (0,1)\), then the integral solution (4) will be different. This case is explained in the next result.

Theorem 3.2

Let \(\frac{m_{0}n_{1}}{n_{0}m_{1}}\neq \frac{\Gamma (2-\rho _{1})}{\Gamma (2-\rho _{0})}(T-t_{0})^{\rho _{1}- \rho _{0}}\) and \(\delta _{0}, \dots , \delta _{n-1}>0\). Then the linear hybrid FBVP

$$ \textstyle\begin{cases} D^{\alpha }(x(t)-g(t))=f(t), \quad t\in (t_{0},T), \alpha >2, \\ m_{0}x(t_{0})+n_{0}D^{\rho _{0}}x(T)=I^{\delta _{0}}h_{0}(T),\quad \rho _{0} \in (0,1), m_{0},n_{0}\in \mathbb{R}, \\ m_{1}x(t_{0})+n_{1}D^{\rho _{1}}x(T)=I^{\delta _{1}}h_{1}(T),\quad \rho _{1} \in (0,1), m_{1},n_{1}\in \mathbb{R}, \\ x^{(k)}(t_{0})=I^{\delta _{k}}h_{k}(T),\quad k=2,3,\ldots , n-1,n\geq 3,\end{cases}$$
(9)

has an integral solution in the following form:

$$\begin{aligned} x(t) &=I^{\alpha }f(t)+g(t)-g(t_{0}) \\ &\quad {}+ \frac{\Gamma (2-\rho _{1}) ( m_{0}(t-t_{0})\Gamma (2-\rho _{0})-n_{0}{(T-t_{0})^{1-\rho _{0}}} ) }{n_{1}m_{0}\Gamma (2-\rho _{0})(T-t_{0})^{1-\rho _{1}}-n_{0}m_{1}\Gamma (2-\rho _{1})(T-t_{0})^{1-\rho _{0}}}I^{ \delta _{1}}h_{1}(T) \\ &\quad {}+ \frac{\Gamma (2-\rho _{0}) ( n_{1}(T-t_{0})^{1-\rho _{1}}-m_{1}(t-t_{0})\Gamma (2-\rho _{1}) ) }{n_{1}m_{0}\Gamma (2-\rho _{0})(T-t_{0})^{1-\rho _{1}}-n_{0}m_{1}\Gamma (2-\rho _{1})(T-t_{0})^{1-\rho _{0}}}I^{ \delta _{0}}h_{0}(T) \\ &\quad {}+ \frac{n_{0}\Gamma (2-\rho _{0}) ( m_{1}(t-t_{0})\Gamma (2-\rho _{1})-n_{1}(T-t_{0})^{1-\rho _{1}} ) }{n_{1}m_{0}\Gamma (2-\rho _{0})(T-t_{0})^{1-\rho _{1}}-n_{0}m_{1}\Gamma (2-\rho _{1})(T-t_{0})^{1-\rho _{0}}}I^{ \alpha -\rho _{0}}f(T) \\ &\quad {}+ \frac{n_{1}\Gamma (2-\rho _{1}) ( n_{0}{(T-t_{0})^{1-\rho _{0}}}-m_{0}(t-t_{0})\Gamma (2-\rho _{0}) ) }{n_{1}m_{0}\Gamma (2-\rho _{0})(T-t_{0})^{1-\rho _{1}}-n_{0}m_{1}\Gamma (2-\rho _{1})(T-t_{0})^{1-\rho _{0}}}I^{ \alpha -\rho _{1}}f(T) \\ &\quad {}+ \frac{n_{0}\Gamma (2-\rho _{0}) ( m_{1}(t-t_{0})\Gamma (2-\rho _{1})-n_{1}(T-t_{0})^{1-\rho _{1}} ) }{n_{1}m_{0}\Gamma (2-\rho _{0})(T-t_{0})^{1-\rho _{1}}-n_{0}m_{1}\Gamma (2-\rho _{1})(T-t_{0})^{1-\rho _{0}}}D^{ \rho _{0}}g(T) \\ &\quad {}+ \frac{n_{1}\Gamma (2-\rho _{1}) ( n_{0}{(T-t_{0})^{1-\rho _{0}}}-m_{0}(t-t_{0})\Gamma (2-\rho _{0}) ) }{n_{1}m_{0}\Gamma (2-\rho _{0})(T-t_{0})^{1-\rho _{1}}-n_{0}m_{1}\Gamma (2-\rho _{1})(T-t_{0})^{1-\rho _{0}}}D^{ \rho _{1}}g(T) \\ &\quad {}+\sum_{k=2}^{n-1}[ \frac{(t-t_{0})\Gamma (2-\rho _{0})\Gamma (2-\rho _{1}) ( {\frac{n_{0}m_{1}(T-t_{0})^{k-\rho _{0}}}{\Gamma (k-\rho _{0}+1)}-}\frac{m_{0}n_{1}{(T-t_{0})^{k-\rho _{1}}}}{\Gamma (k-\rho _{1}+1)} ) }{n_{1}m_{0}\Gamma (2-\rho _{0})(T-t_{0})^{1-\rho _{1}}-n_{0}m_{1}\Gamma (2-\rho _{1})(T-t_{0})^{1-\rho _{0}}}+ \frac{{(t-t_{0})^{k}}}{k!} \\ &\quad {}- \biggl[ \frac{n_{0}n_{1} ( \frac{\Gamma (2-\rho _{0})}{\Gamma (k-\rho _{0}+1)}-\frac{\Gamma (2-\rho _{1})}{\Gamma (k-\rho _{1}+1)} ) (T-t_{0})^{k-\rho _{0}-\rho _{1}+1}}{n_{1}m_{0}\Gamma (2-\rho _{0}) (T-t_{0})^{1-\rho _{1}}-n_{0}m_{1}\Gamma (2-\rho _{1})(T-t_{0})^{1-\rho _{0}}} \biggr] \\ &\quad {}\times \bigl[I^{\delta _{k}}h_{k}(T)-g^{(k)}(t_{0}) \bigr]. \end{aligned}$$
(10)

Proof

We sketch the proof. Equation (7) will become

$$\begin{aligned} I^{\delta _{1}}h_{1}(T) &= m_{1}g(t_{0})+m_{1}c_{0}+n_{1}I^{\alpha - \rho _{1}}f(T)+n_{1}D^{\rho _{1}}g(T) \\ &\quad {}+n_{1}\sum_{k=1}^{n-1}{ \frac{c_{k}\Gamma (k+1)}{\Gamma (k-\rho _{1}+1)}(T-t_{0})^{k-\rho _{1}}}. \end{aligned}$$
(11)

Solving equations (6) and (11) and taking into account (8), we deduce that

$$\begin{aligned} c_{1} &= \frac{\Gamma (2-\rho _{0})\Gamma (2-\rho _{1}) ( m_{0}I^{\delta _{1}}h_{1}(T)-m_{1}I^{\delta _{0}}h_{0}(T) ) }{n_{1}m_{0}\Gamma (2-\rho _{0})(T-t_{0})^{1-\rho _{1}}-n_{0}m_{1}\Gamma (2-\rho _{1})(T-t_{0})^{1-\rho _{0}}} \\ &\quad {}+ \frac{\Gamma (2-\rho _{0})\Gamma (2-\rho _{1}) ( n_{0}m_{1}I^{\alpha -\rho _{0}}f(T)-m_{0}n_{1}I^{\alpha -\rho _{1}}f(T) ) }{n_{1}m_{0}\Gamma (2-\rho _{0})(T-t_{0})^{1-\rho _{1}}-n_{0}m_{1}\Gamma (2-\rho _{1})(T-t_{0})^{1-\rho _{0}}} \\ &\quad {}+ \frac{\Gamma (2-\rho _{0})\Gamma (2-\rho _{1}) ( n_{0}m_{1}D^{\rho _{0}}g(T)-m_{0}n_{1}D^{\rho _{1}}g(T) ) }{n_{1}m_{0}\Gamma (2-\rho _{0})(T-t_{0})^{1-\rho _{1}}-n_{0}m_{1}\Gamma (2-\rho _{1})(T-t_{0})^{1-\rho _{0}}} \\ &\quad {}+ \frac{\Gamma (2-\rho _{0})\Gamma (2-\rho _{1})}{n_{1}m_{0}\Gamma (2-\rho _{0})(T-t_{0})^{1-\rho _{1}}-n_{0}m_{1}\Gamma (2-\rho _{1})(T-t_{0})^{1-\rho _{0}}} \\ &\quad {}\times \sum_{k=2}^{n-1} \biggl( { \frac{n_{0}m_{1}(T-t_{0})^{k-\rho _{0}}}{\Gamma (k-\rho _{0}+1)}-} \frac{m_{0}n_{1}{(T-t_{0})^{k-\rho _{1}}}}{\Gamma (k-\rho _{1}+1)} \biggr) \bigl[I^{\delta _{k}}h_{k}(T)-g^{(k)}(t_{0}) \bigr] \end{aligned}$$

and

$$\begin{aligned} c_{0} &=-g(t_{0})+ \frac{n_{1}\Gamma (2-\rho _{0})(T-t_{0})^{1-\rho _{1}}I^{\delta _{0}}h_{0}(T)-n_{0}\Gamma (2-\rho _{1}){(T-t_{0})^{1-\rho _{0}}}I^{\delta _{1}}h_{1}(T)}{n_{1}m_{0}\Gamma (2-\rho _{0})(T-t_{0})^{1-\rho _{1}}-n_{0}m_{1}\Gamma (2-\rho _{1})(T-t_{0})^{1-\rho _{0}}} \\ &\quad {}-n_{0}n_{1} \frac{\Gamma (2-\rho _{0})(T-t_{0})^{1-\rho _{1}}I^{\alpha -\rho _{0}}f(T)-\Gamma (2-\rho _{1}){(T-t_{0})^{1-\rho _{0}}}I^{\alpha -\rho _{1}}f(T)}{m_{0}n_{1}\Gamma (2-\rho _{0})(T-t_{0})^{1-\rho _{1}}-n_{0}m_{1}\Gamma (2-\rho _{1})(T-t_{0})^{1-\rho _{0}}} \\ &\quad {}-n_{0}n_{1} \frac{\Gamma (2-\rho _{0})(T-t_{0})^{1-\rho _{1}}D^{\rho _{0}}g(T)-\Gamma (2-\rho _{1}){(T-t_{0})^{1-\rho _{0}}}D^{\rho _{1}}g(T)}{m_{0}n_{1}\Gamma (2-\rho _{0})(T-t_{0})^{1-\rho _{1}}-n_{0}m_{1}\Gamma (2-\rho _{1})(T-t_{0})^{1-\rho _{0}}} \\ &\quad {}-n_{0}n_{1}\sum_{k=2}^{n-1}{ \frac{ ( \frac{\Gamma (2-\rho _{0})}{\Gamma (k-\rho _{0}+1)}-\frac{\Gamma (2-\rho _{1})}{\Gamma (k-\rho _{1}+1)} ) (T-t_{0})^{k-\rho _{0}-\rho _{1}+1}[I^{\delta _{k}}h_{k}(T)-g^{(k)}(t_{0})]}{n_{1}m_{0}\Gamma (2-\rho _{0})(T-t_{0})^{1-\rho _{1}}-n_{0}m_{1}\Gamma (2-\rho _{1})(T-t_{0})^{1-\rho _{0}}}.} \end{aligned}$$

Substituting the constants \(c_{k}\), \(k=0,1,2,\ldots,n-1\), into (5), we obtain solution (10), and this completes our proof. □

Now, by Theorem 2.4, we prove the existence of a unique solution to system (1). For this, define an operator \(\Psi :{C([t_{0},T],\mathbb{R} )}\rightarrow {\mathbb{R} }\) provided

$$\begin{aligned} \Psi x(t) &=I^{\alpha }f \bigl(t,x(t) \bigr)+g \bigl(t,x(t) \bigr)-g \bigl(t_{0},x(t_{0}) \bigr) \\ &\quad {}+\frac{(t-t_{0})\Gamma (2-\rho _{0})}{n_{0}(T-t_{0})^{1-\rho _{0}}} \biggl( I^{\delta _{0}}{h_{0} \bigl(T,x(T) \bigr)}-\frac{m_{0}}{m_{1}}I^{\delta _{1}}{h_{1} \bigl(T,x(T) \bigr)} \biggr) +\frac{1}{m_{1}}I^{\delta _{1}}h_{1}{ \bigl(T,x(T) \bigr)} \\ &\quad {}+\frac{(t-t_{0})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}} \biggl( \frac{n_{1}m_{0}}{m_{1}n_{0}}I^{\alpha -\rho _{1}}f \bigl(T,x(T) \bigr)-I^{\alpha - \rho _{0}}f \bigl(T,x(T) \bigr) \biggr) \\ &\quad {}- \frac{n_{1}}{m_{1}}I^{\alpha -\rho _{1}}f \bigl(T,x(T) \bigr) \\ &\quad {}+\frac{(t-t_{0})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}} \biggl( \frac{n_{1}m_{0}}{m_{1}n_{0}}D^{\rho _{1}}g \bigl(T,x(T) \bigr)-D^{\rho _{0}}g \bigl(T,x(T) \bigr) \biggr) \\ &\quad {}-\frac{n_{1}}{m_{1}}D^{\rho _{1}}g \bigl(T,x(T) \bigr) \\ &\quad {}+\sum_{k=2}^{n-1} \biggl[ { \frac{n_{1}(T-t_{0})^{k-\rho _{1}}}{m_{1}\Gamma (k-\rho _{1}+1)} \biggl[ {1-\frac{m_{0}}{n_{0}} \frac{(t-t_{0})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}}} \biggr] -\frac{(t-t_{0})^{k}}{k!}} \\ &\quad {} + \frac{(T-t_{0})^{k-1}(t-t_{0})\Gamma (2-\rho _{0})}{\Gamma (k-\rho _{0}+1)} \biggr] \bigl[ {g^{(k)} \bigl(t_{0},x(t_{0}) \bigr)-I^{\delta _{k}}{h_{k}} \bigl(T,x(T) \bigr)} \bigr] ,\quad m_{1},n_{0}\neq 0. \end{aligned}$$

The required criterion for finding a unique solution of the nonlinear hybrid FBVP (1) is given in the next result.

Theorem 3.3

Assume

[H1]:

f, \(g^{(k)}\), \(h_{k}:[t_{0},T]\times {C([t_{0},T], \mathbb{R})} \rightarrow \mathbb{R} \), \(k=0,1,\ldots ,n-1\), are continuous functions such that

$$ \textstyle\begin{cases} \vert f(t,\mathrm{u}_{1})-f(s,\mathrm{v}_{1}) \vert \leq {C}_{f} \vert \mathrm{u}_{1}-\mathrm{v}_{1} \vert , \\ \vert g^{(k)}(t,\mathrm{u}_{1})-g^{(k)}(s,\mathrm{v}_{1}) \vert \leq {C}_{g^{(k)}} \vert \mathrm{u}_{1}-\mathrm{v}_{1} \vert , \\ \vert h_{k}(t,\mathrm{u}_{1})-h_{k}(s,\mathrm{v}_{1}) \vert \leq {C}_{h_{k}} \vert \mathrm{u}_{1}-\mathrm{v}_{1} \vert ,\end{cases}$$

where \(t,s\in {}[ t_{0},T]\), \(\mathrm{u}_{1},\mathrm{v}_{1}\in {C([t_{0},T], \mathbb{R})}\), \({C}_{f}\), \({C}_{g^{(k)}}\), \({C}_{h_{k}}\) are nonnegative constants.

Then the hybrid FBVP system (1) admits one and only one solution provided that \(\Delta <1 \), where

$$\begin{aligned} \Delta &=\frac{C_{f}(T-t_{0})^{\alpha }}{\Gamma (\alpha +1)}+2C_{g}+ \frac{(T-t_{0})^{\rho _{0}}\Gamma (2-\rho _{0})}{ \vert n_{0} \vert } \\ &\quad {}\times \biggl[ \frac{(T-t_{0})^{\delta _{0}}C_{h_{0}}}{\Gamma (\delta _{0}+1)}+ \frac{ \vert m_{0} \vert (T-t_{0})^{\delta _{1}}C_{h_{1}}}{ \vert m_{1} \vert \Gamma (\delta _{1}+1)} \biggr] \\ &\quad {} + \frac{(T-t_{0})^{\delta _{1}}C_{h_{1}}}{ \vert m_{1} \vert \Gamma (\delta _{1}+1)}+(T-t_{0})^{ \rho _{0}}\Gamma (2-\rho _{0})C_{f} \\ &\quad {}\times \biggl[ \frac{ \vert n_{1}m_{0} \vert (T-t_{0})^{\alpha -\rho _{1}}}{ \vert m_{1}n_{0} \vert \Gamma (\alpha -\rho _{1}+1)}+ \frac{(T-t_{0})^{\alpha -\rho _{0}}}{\Gamma (\alpha -\rho _{0}+1)} \biggr] + \frac{ \vert n_{1} \vert (T-t_{0})^{\alpha -\rho _{1}}C_{f}}{ \vert m_{1} \vert \Gamma (\alpha -\rho _{1}+1)} \\ &\quad {}+(T-t_{0})^{\rho _{1}}\Gamma (2-\rho _{0}) \biggl[ \frac{ \vert n_{1}m_{0} \vert C_{g^{(2)}}(T-t_{0})^{2-\rho _{1}}}{ \vert m_{1}n_{0} \vert \Gamma (3-\rho _{1})}+ \frac{(T-t_{0})^{1-\rho _{0}}C_{g^{(1)}}}{\Gamma (2-\rho _{0})} \biggr] \\ &\quad {} + \frac{ \vert n_{1} \vert C_{g^{(2)}}(T-t_{0})^{2-\rho _{1}}}{ \vert m_{1} \vert \Gamma (3-\rho _{1})} \\ &\quad {}+\sum_{k=2}^{n-1}\max _{t\in {}[ t_{0},T]} \biggl\vert { \frac{n_{1}(T-t_{0})^{k-\rho _{1}}}{m_{1}\Gamma (k-\rho _{1}+1)} \biggl[ {1- \frac{m_{0}}{n_{0}} \frac{(t-t_{0})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}}} \biggr] } \\ &\quad {} -\frac{(t-t_{0})^{k}}{k!}+ \frac{(T-t_{0})^{k-1}(t-t_{0})\Gamma (2-\rho _{0})}{\Gamma (k-\rho _{0}+1)} \biggr\vert \biggl[ C_{g^{(k)}}+ \frac{(T-t_{0})^{\delta _{k}}C_{h_{k}}}{\Gamma (\delta _{k}+1)} \biggr] . \end{aligned}$$
(12)

Proof

Let Ω be any closed bounded subset of E. Then the continuity of Ψ is followed by that of constitutive functions and Lebesgue dominated convergence theorem. By enlarging the set Ω, one can deduce that Ψ maps Ω into itself. We need to show the contraction property of the operator Ψ. For this, let \(x,y\in \Omega \), then

$$\begin{aligned} & \bigl\vert \Psi y(t) -\Psi x(t) \bigr\vert \\ &\quad \leq \frac{1}{\Gamma (\alpha )} \int _{t_{0}}^{t}(t-s)^{\alpha -1} \bigl\vert f \bigl(s,y(s) \bigr)-f \bigl(s,x(s) \bigr) \bigr\vert \,ds \\ &\qquad {}+ \bigl\vert g \bigl(t,y(t) \bigr)-g \bigl(t,x(t) \bigr) \bigr\vert + \bigl\vert g \bigl(t_{0},y(t_{0}) \bigr)-g \bigl(t_{0},x(t_{0}) \bigr) \bigr\vert \\ &\qquad {} + \frac{(t-t_{0})\Gamma (2-\rho _{0})}{ \vert n_{0} \vert (T-t_{0})^{1-\rho _{0}}} \biggl[ \frac{1}{\Gamma (\delta _{0})}\int _{t_{0}}^{T}(T-s)^{\delta _{0}-1} \bigl\vert h_{0} \bigl(s,y(s) \bigr)-h_{0} \bigl(s,x(s) \bigr) \bigr\vert \,ds \\ &\qquad {} + \frac{ \vert m_{0} \vert }{ \vert m_{1} \vert \Gamma (\delta _{1})} \int _{t_{0}}^{T}(T-s)^{\delta _{1}-1} \bigl\vert h_{1} \bigl(s,y(s) \bigr)-h_{1} \bigl(s,x(s) \bigr) \bigr\vert \,ds \biggr] \\ &\qquad {} +\frac{1}{ \vert m_{1} \vert \Gamma (\delta _{1})}\int _{t_{0}}^{T}(T-s)^{\delta _{1}-1} \bigl\vert h_{1} \bigl(s,y(s) \bigr)-h_{1} \bigl(s,x(s) \bigr) \bigr\vert \,ds \\ &\qquad {} +\frac{(t-t_{0})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}} \biggl[ \frac{ \vert n_{1}m_{0} \vert }{ \vert m_{1}n_{0} \vert \Gamma (\alpha -\rho _{1})} \int _{t_{0}}^{T}(T-s)^{\alpha -\rho _{1}-1} \bigl\vert f \bigl(s,y(s) \bigr)-f \bigl(s,x(s) \bigr) \bigr\vert \,ds \\ &\qquad {} +\frac{1}{\Gamma (\alpha -\rho _{0})} \int _{t_{0}}^{T}(T-s)^{ \alpha -\rho _{0}-1} \bigl\vert f \bigl(s,y(s) \bigr)-f \bigl(s,x(s) \bigr) \bigr\vert \,ds \biggr] \\ &\qquad {} + \frac{ \vert n_{1} \vert }{ \vert m_{1} \vert \Gamma (\alpha -\rho _{1})} \int _{t_{0}}^{T}(T-s)^{\alpha -\rho _{1}-1} \bigl\vert f \bigl(s,y(s) \bigr)-f \bigl(s,x(s) \bigr) \bigr\vert \,ds \\ &\qquad {} +\frac{(t-t_{0})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}} \biggl[ \frac{ \vert n_{1}m_{0} \vert }{ \vert m_{1}n_{0} \vert \Gamma (2-\rho _{1})} \int _{t_{0}}^{T}(T-s)^{1-\rho _{1}} \bigl\vert g^{{\prime \prime }} \bigl(s,y(s) \bigr)-g^{{ \prime \prime }} \bigl(s,x(s) \bigr) \bigr\vert \,ds \\ &\qquad {} +\frac{1}{\Gamma (1-\rho _{0})} \int _{t_{0}}^{T}(T-s)^{- \rho _{0}} \bigl\vert g^{{\prime }} \bigl(s,y(s) \bigr)-g^{{\prime }} \bigl(s,x(s) \bigr) \bigr\vert \,ds \biggr] \\ &\qquad {} + \frac{ \vert n_{1} \vert }{ \vert m_{1} \vert \Gamma (2-\rho _{1})} \int _{t_{0}}^{T}(T-s)^{1-\rho _{1}} \bigl\vert g^{{\prime \prime }} \bigl(s,y(s) \bigr)-g^{{ \prime \prime }} \bigl(s,x(s) \bigr) \bigr\vert \,ds \\ &\qquad {} +\sum_{k=2}^{n-1} \biggl\vert { \frac{n_{1}(T-t_{0})^{k-\rho _{1}}}{m_{1}\Gamma (k-\rho _{1}+1)} \biggl[ {1-\frac{m_{0}}{n_{0}} \frac{(t-t_{0})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}}} \biggr] - \frac{(t-t_{0})^{k}}{k!}} \\ &\qquad {} + \frac{(T-t_{0})^{k-1}(t-t_{0})\Gamma (2-\rho _{0})}{\Gamma (k-\rho _{0}+1)} \biggr\vert \biggl[ \bigl\vert {g^{(k)} \bigl(t_{0},x(t_{0}) \bigr)-g^{(k)} \bigl(t_{0},y(t_{0}) \bigr)} \bigr\vert \\ &\qquad {} +\frac{1}{\Gamma (\delta _{k})} \int _{t_{0}}^{T}(T-s)^{ \delta _{k}-1} \bigl\vert h_{k} \bigl(s,y(s) \bigr)-h_{k} \bigl(s,x(s) \bigr) \bigr\vert \,ds \biggr] \\ &\quad \leq \frac{C_{f}(T-t_{0})^{\alpha }}{\Gamma (\alpha +1)} \Vert y-x \Vert +2C_{g} \Vert y-x \Vert \\ &\qquad {} + \frac{(T-t_{0})^{\rho _{0}}\Gamma (2-\rho _{0})}{ \vert n_{0} \vert } \biggl[ \frac{(T-t_{0})^{\delta _{0}}C_{h_{0}}}{\Gamma (\delta _{0}+1)}+ \frac{ \vert m_{0} \vert (T-t_{0})^{\delta _{1}}C_{h_{1}}}{ \vert m_{1} \vert \Gamma (\delta _{1}+1)} \biggr] \Vert y-x \Vert \\ &\qquad {} + \frac{(T-t_{0})^{\delta _{1}}C_{h_{1}}}{ \vert m_{1} \vert \Gamma (\delta _{1}+1)} \Vert y-x \Vert \\ &\qquad {} +(T-t_{0})^{\rho _{0}}\Gamma (2-\rho _{0})C_{f} \biggl[ \frac{ \vert n_{1}m_{0} \vert (T-t_{0})^{\alpha -\rho _{1}}}{ \vert m_{1}n_{0} \vert \Gamma (\alpha -\rho _{1}+1)}+ \frac{(T-t_{0})^{\alpha -\rho _{0}}}{\Gamma (\alpha -\rho _{0}+1)} \biggr] \Vert y-x \Vert \\ &\qquad {} + \frac{ \vert n_{1} \vert (T-t_{0})^{\alpha -\rho _{1}}C_{f}}{ \vert m_{1} \vert \Gamma (\alpha -\rho _{1}+1)} \Vert y-x \Vert \\ &\qquad {} +(T-t_{0})^{\rho _{1}}\Gamma (2-\rho _{0}) \biggl[ \frac{ \vert n_{1}m_{0} \vert C_{g^{(2)}}(T-t_{0})^{2-\rho _{1}}}{ \vert m_{1}n_{0} \vert \Gamma (3-\rho _{1})}+ \frac{(T-t_{0})^{1-\rho _{0}}C_{g^{(1)}}}{\Gamma (2-\rho _{0})} \biggr] \Vert y-x \Vert \\ &\qquad {} + \frac{ \vert n_{1} \vert C_{g^{(2)}}(T-t_{0})^{2-\rho _{1}}}{ \vert m_{1} \vert \Gamma (3-\rho _{1})} \Vert y-x \Vert \\ &\qquad {} +\sum_{k=2}^{n-1} \biggl\vert { \frac{n_{1}(T-t_{0})^{k-\rho _{1}}}{m_{1}\Gamma (k-\rho _{1}+1)} \biggl[ {1-\frac{m_{0}}{n_{0}} \frac{(t-t_{0})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}}} \biggr] - \frac{(t-t_{0})^{k}}{k!}} \\ &\qquad {} + \frac{(T-t_{0})^{k-1}(t-t_{0})\Gamma (2-\rho _{0})}{\Gamma (k-\rho _{0}+1)} \biggr\vert \biggl[ C_{g^{(k)}}+ \frac{(T-t_{0})^{\delta _{k}}C_{h_{k}}}{\Gamma (\delta _{k}+1)} \biggr] \Vert y-x \Vert =\Delta \Vert y-x \Vert , \end{aligned}$$

where Δ is introduced in (12). Thus, the operator Ψ satisfies the contraction property of Banach fixed point Theorem 2.4 with constant \(\Delta <1\). Hence Ψ admits a fixed point in Ω, which is the same unique solution of hybrid FBVP (1). □

4 Results regarding two positive solutions

We establish sufficient conditions of the existence of two positive solutions of system (1) with the help of the existing hypotheses on cones presented in Theorem 2.5 due to Avery–Anderson–Henderson.

Define the cone \(P= \{ {x\in C([t_{0},T], \mathbb{R} ):x(t)\geq 0} \} \). We want to obtain firstly sufficient conditions to make \(\Psi x\in P\), whenever \(x\in P\).

The next assumptions are essential for the coming results.

[H2]:

Assume that

$$ \textstyle\begin{cases} m_{0},n_{1}\leq 0,\quad m_{1},n_{0}>0, \\ \frac{\Gamma (3-\rho _{1})}{\Gamma (3-\rho _{0})}< \frac{m_{0}n_{1}}{n_{0}m_{1}}(T-t_{0})^{\rho _{0}-\rho _{1}}, \\ f(t,x(t))\geq 0, \\ g(t,x(t))\geq g(t_{0},x(t_{0}))\geq 0,\quad t\in {}[ t_{0},T], \\ \frac{n_{1}m_{0}}{m_{1}n_{0}}I^{\alpha -\rho _{1}}f(T,x(T))\geq I^{ \alpha -\rho _{0}}f(T,x(T)), \\ Kg(\kappa ,x(\kappa ))\geq \frac{n_{1}m_{0}}{m_{1}n_{0}}D^{\rho _{1}}g(T,x(T)) \geq D^{\rho _{0}}g(T,x(T))\geq 0,\quad K>0,\kappa \in {}[ t_{0},T], \\ 0\leq {g^{(k)}(t_{0},x(t_{0}))\leq I^{\delta _{k}}{h_{k}}(T,x(T))},\quad k=2,3,\ldots ,n-1.\end{cases}$$
[H3]:

f, \(g^{(k)}\), \(h_{k}:[t_{0},T]\times P\rightarrow \mathbb{R} \), \(k=0,1,\ldots ,n-1\), are all bounded and continuous functions. Moreover, for \(r>0\), there exist a positive real number \({L}_{r}\) and a continuous nonnegative function \(\mathfrak{g}\) so that \(\forall (t,x),(s,y)\in {}[ t_{0},T]\times {}[ 0,r]\),

$$ \bigl\vert g(t,x)-g(s,y) \bigr\vert \leq {L}_{r} \bigl\vert \mathfrak{g}(x)-\mathfrak{g}(y) \bigr\vert . $$

Lemma 4.1

If [H2] holds and \(x\in P\), then \(\Psi x\in P\).

Proof

For any \(t\in {}[ t_{0},T]\), let

$$ \xi _{k}(t)=C_{1} \bigl(1-C_{2}(t-t_{0}) \bigr)-\frac{(t-t_{0})^{k}}{k!}+C_{3}(t-t_{0}), $$

where

$$ C_{1}= \frac{n_{1}(T-t_{0})^{k-\rho _{1}}}{m_{1}\Gamma (k-\rho _{1}+1)},\qquad C_{2}={ \frac{m_{0}}{n_{0}} \frac{\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}}} $$

and

$$ C_{3}= \frac{(T-t_{0})^{k-1}\Gamma (2-\rho _{0})}{\Gamma (k-\rho _{0}+1)}. $$

We first need to show that \(\xi _{k}(t)\leq 0\), that is,

$$ C_{1}+(C_{3}-C_{1}C_{2}) (t-t_{0})\leq \frac{(t-t_{0})^{k}}{k!},\quad t\in {}[ t_{0},T]. $$

Therefore, it suffices to show that \(C_{1}+(C_{3}-C_{1}C_{2})(t-t_{0})\leq 0 \). Notice that \(\xi _{k}(t_{0})=C_{1}<0\), then we need to show that \(C_{3}\leq C_{1}C_{2}\), that is,

$$ \frac{\Gamma (k-\rho _{1}+1)}{\Gamma (k-\rho _{0}+1)}< \frac{m_{0}n_{1}}{n_{0}m_{1}}(T-t_{0})^{\rho _{0}-\rho _{1}},\quad k=2,3,\ldots ,n-1. $$

By induction on k, it is obvious, by assumption, that it is true for \(k=2\). We assume it is true for the case k and show it for the case \(k+1\). We have

$$\begin{aligned} \frac{\Gamma (k-\rho _{1}+2)}{\Gamma (k-\rho _{0}+2)} =&\frac{(k-\rho _{1}+1) \Gamma (k-\rho _{1}+1)}{(k-\rho _{0}+1)\Gamma (k-\rho _{0}+1)} \\ < &\frac{m_{0}n_{1}(k-\rho _{1}+1)}{n_{0}m_{1}(k-\rho _{0}+1)}(T-t_{0})^{\rho _{0}-\rho _{1}}< \frac{m_{0}n_{1}}{n_{0}m_{1}}(T-t_{0})^{ \rho _{0}-\rho _{1}}. \end{aligned}$$

We deduce now

$$ \sum_{k=2}^{n-1} \xi _{k}(t) \bigl[ {g^{(k)} \bigl(t_{0},x(t_{0}) \bigr)-I^{ \delta _{k}}{h_{k}} \bigl(T,x(T) \bigr)} \bigr] \geq 0. $$

The remainder of the proof is obvious by the given assumptions. Hence, the result follows. □

Lemma 4.2

If [H2] and [H3] are fulfilled, then \(\Psi :P\rightarrow P\) admits the complete continuity property.

Proof

Define a bounded subset \(B_{r}=\{x\in P:x(t)\leq r\}\) of P, and let

$$ \textstyle\begin{cases} \max_{t\in {}[ t_{0},T],x\in {}[ 0,r]}f(t,x)\leq L_{f}, \\ \max_{t\in {}[ t_{0},T],x\in {}[ 0,r]}g^{(k)}(t,x)\leq L_{g^{(k)}}, \\ \max_{t\in {}[ t_{0},T],x\in {}[ 0,r]}h_{k}(t,x)\leq L_{h_{k}},\end{cases}$$

for positive constants \(L_{f}\), \(L_{g^{(k)}}\), and \(L_{h_{k}}\), \(k=0,1,2,\ldots ,n-1\). The proof consists of three steps.

(Step 1) Ψ is a continuous operator.

Assuming \(x\in P\), then by Lemma 4.1, \(\Psi x\in P\) which implies that \(\Psi :P\rightarrow P\). Let \(\{x_{m}\}\) be a sequence in the cone P such that \(\lim_{m\rightarrow \infty }x_{m}=x\) in P. The continuity of f, \(g^{(k)}\), and \(h_{k}\) implies that \(\lim_{m\rightarrow \infty }f(t,x_{m}(t))=f(t,x(t))\), \(\lim {}_{m\rightarrow \infty }g^{(k)}(t,x_{m}(t))=g^{(k)}(t,x(t))\), and \(\lim_{m\rightarrow \infty }h_{k}(t,x_{m}(t))=h_{k}(t,x(t))\). In this case, by the dominated convergence theorem,

$$\begin{aligned} &\lim_{m\rightarrow \infty }\Psi x_{m}(t) \\ &\quad = I^{\alpha } \Bigl( \lim_{m \rightarrow \infty }f \bigl(t,x_{m}(t) \bigr) \Bigr) +\lim_{m\rightarrow \infty } \bigl( g \bigl(t,x_{m}(t) \bigr)-g \bigl(t_{0},x_{m}(t_{0}) \bigr) \bigr) \\ &\qquad {}+\frac{(t-t_{0})\Gamma (2-\rho _{0})}{n_{0}(T-t_{0})^{1-\rho _{0}}} \biggl( I^{\delta _{0}} \Bigl( {\lim _{m\rightarrow \infty }h_{0} \bigl(s,x_{m}(s) \bigr)} \Bigr) -\frac{m_{0}}{m_{1}}I^{\delta _{1}} \Bigl( {\lim _{m\rightarrow \infty }h_{1} \bigl(s,x_{m}(s) \bigr)} \Bigr) \biggr) \\ &\qquad {}+\frac{1}{m_{1}}I^{\delta _{1}} \Bigl( {\lim_{m\rightarrow \infty }h_{1} \bigl(s,x_{m}(s) \bigr)} \Bigr) \\ &\qquad {}+\frac{(t-t_{0})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}} \biggl( \frac{n_{1}m_{0}}{m_{1}n_{0}}I^{\alpha -\rho _{1}} \Bigl( \lim_{m \rightarrow \infty }f \bigl(T,x_{m}(T) \bigr) \Bigr) -I^{\alpha -\rho _{0}} \Bigl( \lim_{m\rightarrow \infty }f \bigl(T,x_{m}(T) \bigr) \Bigr) \biggr) \\ &\qquad {}-\frac{n_{1}}{m_{1}}I^{\alpha -\rho _{1}} \Bigl( \lim_{m \rightarrow \infty }f \bigl(T,x_{m}(T) \bigr) \Bigr) \\ &\qquad {}+\frac{(t-t_{0})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}} \biggl( \frac{n_{1}m_{0}}{m_{1}n_{0}}\lim_{m\rightarrow \infty }D^{\rho _{1}}g \bigl(T,x_{m}(T) \bigr)- \lim_{m\rightarrow \infty }D^{\rho _{0}}g \bigl(T,x_{m}(T) \bigr) \biggr) \\ &\qquad {}-\frac{n_{1}}{m_{1}}\lim_{m\rightarrow \infty }D^{\rho _{1}}g \bigl(T,x_{m}(T) \bigr) \\ &\qquad {}+\sum_{k=2}^{n-1} \biggl[ { \frac{n_{1}(T-t_{0})^{k-\rho _{1}}}{m_{1}\Gamma (k-\rho _{1}+1)} \biggl[ {1-\frac{m_{0}}{n_{0}} \frac{(t-t_{0})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}}} \biggr] -\frac{(t-t_{0})^{k}}{k!}} \\ &\qquad {} + \frac{(T-t_{0})^{k-1}(t-t_{0})\Gamma (2-\rho _{0})}{\Gamma (k-\rho _{0}+1)} \biggr] \Bigl[ \lim_{m\rightarrow \infty }g^{(k)} \bigl(t_{0},x_{m}(t_{0}) \bigr)-{I^{ \delta _{k}}} \Bigl( {\lim_{m\rightarrow \infty }h_{k}} \bigl(s,x_{m}(s) \bigr) \Bigr) \Bigr] \\ &\quad =\Psi x(t),\quad t\in {}[ t_{0},T]. \end{aligned}$$

Thus, Ψ is a continuous operator.

(Step 2) The operator Ψ is uniformly bounded. \(\forall t\in {}[ t_{0},T]\), we get

$$\begin{aligned} 0 \leq& \Psi x(t) \\ \leq& \frac{(T-t_{0})^{\alpha }L_{f}}{\Gamma (\alpha +1)}+L_{g} \\ &{}+\frac{(T-t_{0})\Gamma (2-\rho _{0})}{n_{0}(T-t_{0})^{1-\rho _{0}}} \biggl( \frac{L_{h_{0}}(T-t_{0})^{\delta _{0}}}{\Gamma (\delta _{0}+1)}+ \frac{L_{h_{1}}(-m_{0})(T-t_{0})^{\delta _{1}}}{m_{1}\Gamma (\delta _{1}+1)} \biggr) \\ &{}+ \frac{L_{h_{1}}(T-t_{0})^{\delta _{1}}}{m_{1}\Gamma (\delta _{1}+1)}+\frac{L_{f}(T-t_{0})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}} \frac{(-n_{1})(-m_{0})(T-t_{0})^{\alpha -\rho _{1}}}{m_{1}n_{0}\Gamma (\alpha -\rho _{1}+1)} \\ &{}+ \frac{L_{f}(-n_{1})(T-t_{0})^{\alpha -\rho _{1}}}{m_{1}\Gamma (\alpha -\rho _{1}+1)}+ \frac{(t-t_{0})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}}\frac{(-n_{1})(-m_{0})L_{g^{(2)}}(T-t_{0})^{2-\rho _{1}}}{m_{1}n_{0}\Gamma (3-\rho _{1})} \\ &{}+ \frac{(-n_{1})L_{g^{(2)}}(T-t_{0})^{2-\rho _{1}}}{m_{1}\Gamma (3-\rho _{1})} \\ &{}+\sum_{k=2}^{n-1} \biggl[ \frac{(T-t_{0})^{k}}{k!}- \frac{n_{1}(T-t_{0})^{k-\rho _{1}}}{m_{1}\Gamma (k-\rho _{1}+1)} \biggl[ {1- \frac{m_{0}}{n_{0}} \frac{(t-t_{0})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}}} \biggr] \\ &{} - \frac{(T-t_{0})^{k-1}(t-t_{0})\Gamma (2-\rho _{0})}{\Gamma (k-\rho _{0}+1)} \biggr] \frac{{L_{h_{k}}(T-t_{0})^{\delta _{k}}}}{\Gamma (\delta _{k}+1)}. \end{aligned}$$

Hence, Ψ maps a bounded set \(B_{r}\) into a uniformly bounded subset of P.

(Step 3) \(\Psi B_{r}\) is an equicontinuous set in P. Let \(x\in B_{r}\) and \(t_{2},t_{1}\in {}[ t_{0},T]\) such that \(t_{1}< t_{2}\), then

$$\begin{aligned} & \bigl\vert \Psi x(t_{2})-\Psi x(t_{1}) \bigr\vert \\ &\quad \leq \frac{L_{f}}{\Gamma (\alpha )} \int _{t_{0}}^{t_{1}}{ \bigl[(t_{2}-s)^{\alpha -1}-(t_{1}-s)^{\alpha -1} \bigr]\,ds} \\ &\qquad {}+\frac{L_{f}}{\Gamma (\alpha )} \int _{t_{1}}^{t_{2}}{(t_{2}-s)^{\alpha -1} \,ds}+ \bigl\vert g \bigl(t_{2},x(t_{2}) \bigr)-g \bigl(t_{1},x(t_{1}) \bigr) \bigr\vert \\ &\qquad {}+ \frac{(t_{2}-t_{1})\Gamma (2-\rho _{0})}{n_{0}(T-t_{0})^{1-\rho _{0}}} \biggl\vert I^{\delta _{0}}{h_{0} \bigl(T,x(T) \bigr)}-\frac{m_{0}}{m_{1}}I^{ \delta _{1}}{h_{1} \bigl(T,x(T) \bigr)} \biggr\vert \\ &\qquad {}+\frac{(t_{2}-t_{1})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}} \biggl\vert \frac{n_{1}m_{0}}{m_{1}n_{0}}I^{\alpha -\rho _{1}}f \bigl(T,x(T) \bigr)-I^{ \alpha -\rho _{0}}f \bigl(T,x(T) \bigr) \biggr\vert \\ &\qquad {}+\frac{(t_{2}-t_{1})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}} \biggl\vert \frac{n_{1}m_{0}}{m_{1}n_{0}}D^{\rho _{1}}g \bigl(T,x(T) \bigr)-D^{ \rho _{0}}g \bigl(T,x(T) \bigr) \biggr\vert \\ &\qquad {}+\sum_{k=2}^{n-1} \biggl[ \frac{(t_{2}-t_{0})^{k}-(t_{1}-t_{0})^{k}}{k!}+{\frac{m_{0}n_{1}\Gamma (2-\rho _{0})(T-t_{0})^{k+\rho _{0}-\rho _{1}-1}(t_{2}-t_{1})}{n_{0}m_{1}\Gamma (k-\rho _{1}+1)}} \\ &\qquad {} - \frac{(T-t_{0})^{k-1}(t-t_{0})\Gamma (2-\rho _{0})(t_{2}-t_{1})}{\Gamma (k-\rho _{0}+1)} \biggr] \bigl\vert {I^{\delta _{k}}{h_{k}} \bigl(T,x(T) \bigr)-}g^{(k)} \bigl(t_{0},x(t_{0}) \bigr) \bigr\vert \\ &\quad \leq L_{f} \frac{(t_{2}-t_{0})^{\alpha }-(t_{1}-t_{0})^{\alpha }+2(t_{2}-t_{1})^{\alpha }}{\Gamma (\alpha +1)}+{L}_{r} \bigl\vert \mathfrak{g}(t_{2})-\mathfrak{g}(t_{1}) \bigr\vert \\ &\qquad {}+ \frac{(t_{2}-t_{1})\Gamma (2-\rho _{0})}{n_{0}(T-t_{0})^{1-\rho _{0}}} \biggl( \frac{L_{h_{0}}(T-t_{0})^{\delta _{0}}}{\Gamma (\delta _{0}+1)}+ \frac{L_{h_{1}} \vert m_{0} \vert (T-t_{0})^{\delta _{1}}}{m_{1}\Gamma (\delta _{1}+1)} \biggr) \\ &\qquad {}+ \frac{L_{f}(t_{2}-t_{1})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}} \biggl( \frac{n_{1}m_{0}(T-t_{0})^{\alpha -\rho _{1}}}{m_{1}n_{0}\Gamma (\alpha -\rho _{1}+1)}+ \frac{(T-t_{0})^{\alpha -\rho _{0}}}{\Gamma (\alpha -\rho _{0}+1)} \biggr) \\ &\qquad {}+\frac{(t_{2}-t_{1})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}} \biggl( \frac{n_{1}m_{0}L_{g^{(2)}}(T-t_{0})^{2-\rho _{1}}}{m_{1}n_{0}\Gamma (3-\rho _{1})}+ \frac{L_{g^{(1)}}(T-t_{0})^{1-\rho _{0}}}{\Gamma (2-\rho _{0})} \biggr) \\ &\qquad {}+\sum_{k=2}^{n-1} \biggl[ \frac{(t_{2}-t_{0})^{k}-(t_{1}-t_{0})^{k}}{k!}+{\frac{m_{0}n_{1}\Gamma (2-\rho _{0})(T-t_{0})^{k+\rho _{0}-\rho _{1}-1}(t_{2}-t_{1})}{n_{0}m_{1}\Gamma (k-\rho _{1}+1)}} \\ &\qquad {} - \frac{(T-t_{0})^{k-1}(t-t_{0})\Gamma (2-\rho _{0})(t_{2}-t_{1})}{\Gamma (k-\rho _{0}+1)} \biggr] \biggl\vert { \frac{L_{h_{k}}(T-t_{0})^{\delta _{k}}}{\Gamma (\delta _{k}+1)}+}L_{g^{(k)}} \biggr\vert . \end{aligned}$$

If \(t_{2}-t_{1}\rightarrow 0\), then \(|\Psi x(t_{2})-\Psi x(t_{1})|\rightarrow 0\) independently of the values of x. Hence, \(\Psi B_{r} \) is equicontinuous. By the means of the Arzela–Ascoli theorem, we follow that \(\Psi :P\rightarrow P\) is completely continuous. □

We now show the existence of at least two solutions for the hybrid FBVP (1).

For simplifications, we use the following notations in the coming results:

$$\begin{aligned}& \bigl\vert \xi _{k}(t) \bigr\vert \leq M_{\xi _{k}}, \\& \begin{aligned} R_{1} &=m_{f}(T-t_{0})^{\alpha } \biggl( \frac{1}{\Gamma (\alpha +1)}+ \frac{ \vert n_{1} \vert }{m_{1}(T-t_{0})^{\rho _{1}}\Gamma (\alpha -\rho _{1}+1)} \biggr) \\ &\quad {}+\frac{m_{h_{0}}(T-t_{0})^{\delta _{0}+\rho _{0}}}{n_{0}} \frac{\Gamma (2-\rho _{0})}{\Gamma (\delta _{0}+1)} + \frac{m_{h_{1}}(T-t_{0})^{\delta _{1}}}{m_{1}\Gamma (\delta _{1}+1)} \biggl( 1+\frac{ \vert m_{0} \vert }{n_{0}}(T-t_{0})^{ \rho _{0}}\Gamma (2- \rho _{0}) \biggr) , \end{aligned} \\& \begin{aligned} R_{2} &=M_{f}(T-t_{0})^{\alpha } \biggl( \frac{1}{\Gamma (\alpha +1)}+ \frac{ \vert n_{1} \vert ( 1+\frac{m_{0}(T-t_{0})^{\rho _{0}}\Gamma (2-\rho _{0})}{n_{0}} ) }{m_{1}(T-t_{0})^{\rho _{1}}\Gamma (\alpha -\rho _{1}+1)}+ \frac{\Gamma (2-\rho _{0})}{\Gamma (\alpha -\rho _{0}+1)} \biggr) \\ &\quad {}+M_{g} \biggl( 2+K \biggl( \frac{n_{0}}{ \vert m_{0} \vert }+ \frac{n_{1}m_{0}}{m_{1}n_{0}}(T-t_{0})^{\rho _{0}}\Gamma (2-\rho _{0}) \biggr) \biggr) \\ &\quad {}+ \frac{M_{h_{0}}(T-t_{0})^{\delta _{0}+\rho _{0}}\Gamma (2-\rho _{0})}{n_{0}\Gamma (\delta _{0}+1)} + \frac{M_{h_{1}}(T-t_{0})^{\delta _{1}}}{m_{1}\Gamma (\delta _{1}+1)} \biggl( 1+ \frac{ \vert m_{0} \vert (T-t_{0})^{\rho _{0}}\Gamma (2-\rho _{0})}{n_{0}} \biggr) \\ &\quad {}+2\sum_{k=2}^{n-1}{M_{\xi _{k}}}M_{h_{k}} \biggl( {1+ \frac{(T-t_{0})^{\delta _{k}}}{\Gamma (\delta _{k}+1)}} \biggr) \end{aligned} \end{aligned}$$

and

$$\begin{aligned} R_{3} &=\frac{n_{f}(\tau -t_{0})^{\alpha }}{\Gamma (\alpha +1)}+ \frac{n_{h_{1}}(T-t_{0})^{\delta _{1}}}{m_{1}\Gamma (\delta _{1}+1)} \\ &\quad {}+ \frac{(\tau -t_{0})\Gamma (2-\rho _{0})}{n_{0}(T-t_{0})^{1-\rho _{0}}} \biggl( \frac{n_{h_{0}}(T-t_{0})^{\delta _{0}}}{\Gamma (\delta _{0}+1)}+ \frac{ \vert m_{0} \vert n_{h_{1}}(T-t_{0})^{\delta _{1}}}{m_{1}\Gamma (\delta _{1}+1)} \biggr) \\ &\quad {}+ \frac{ \vert n_{1} \vert (T-t_{0})^{\alpha -\rho _{1}}n_{f}}{m_{1}\Gamma (\alpha -\rho _{1}+1)},\quad \tau \in {}[ t_{0},T], \end{aligned}$$

where the involved constants exist and are positive.

Theorem 4.3

Let [H2] and [H3] hold. If there exist \(0< r_{1}< r_{2}< r_{3}\) satisfying

  1. (i)

    \(f(t,x)>n_{f}\frac{r_{3}}{R_{3}}\), \(h_{i}(t,x)>n_{h_{i}}\frac{r_{3}}{R_{3}}\), \(i=0\), \(1,t\in {}[ \tau ,T]\), \(x\geq r_{3}\),

  2. (ii)

    \(f(t,x)\leq M_{f}\frac{r_{2}}{R_{2}}\), \(h_{i}(t,x)\leq M_{h_{k}}\frac{r_{2}}{R_{2}}\), \(i=0,1\), \((t,x)\in {}[ t_{0},T]\times {}[ 0,r_{2}]\), and

  3. (iii)

    \(f(t,x)>m_{f}\frac{r_{1}}{R_{1}}\), \(h_{i}(t,x)>m_{h_{i}}\frac{r_{1}}{R_{1}}\), \(i=0\), \(1,(t,x)\in {}[ t_{0},T]\times {}[ 0,r_{1}]\),

then hybrid system (1) possesses at least two positive solutions \(x_{1}\) and \(x_{2}\) provided that \(r_{1}<\Vert x_{1}\Vert \) with \(\Vert x_{1}\Vert < r_{2}\) along with \(r_{2}<\Vert x_{2}\Vert \) with \(\min_{t\in {}[ \tau ,T]}x(t)< r_{3}\).

Proof

Let \(\tau \in {}[ t_{0},T)\) and define the functionals ϕ, ω, and μ on the cone P such that

$$ \phi (x)=\min_{t\in {}[ \tau ,T]}x(t),\qquad \omega (x)=\mu (x)= \Vert x \Vert . $$

It is obvious that \(\omega (0)=0\), \(\omega (lx)= \vert l \vert \omega (x)\), and \(\phi (x)\leq \omega (x)\leq \mu (x)\). Using Lemmas 4.1and 4.2, we have \(\Psi :\overline{P(\phi ,r_{3})}\rightarrow P\) is completely continuous. We start with the first condition of Theorem 2.5, namely \(\phi (\Psi x)>r_{3}\) for all \(x\in \partial P(\phi ,r_{3})\). Let \(\min_{t\in {}[ \tau ,T]}x(t)=r_{3}\), we get

$$\begin{aligned} \min_{t\in {}[ \tau ,T]}\Psi x(t) &>\frac{n_{f}r_{3}}{R_{3}} \frac{(\tau -t_{0})^{\alpha }}{\Gamma (\alpha +1)}+ \frac{n_{h_{1}}r_{3}(T-t_{0})^{\delta _{1}}}{m_{1}R_{3}\Gamma (\delta _{1}+1)} \\ &\quad {}+ \frac{(\tau -t_{0})\Gamma (2-\rho _{0})}{n_{0}(T-t_{0})^{1-\rho _{0}}} \biggl( \frac{n_{h_{0}}r_{3}(T-t_{0})^{\delta _{0}}}{R_{3}\Gamma (\delta _{0}+1)}+ \frac{ \vert m_{0} \vert n_{h_{1}}r_{3}(T-t_{0})^{\delta _{1}}}{m_{1}R_{3}\Gamma (\delta _{1}+1)} \biggr) \\ &\quad {}+ \frac{ \vert n_{1} \vert (T-t_{0})^{\alpha -\rho _{1}}n_{f}r_{3}}{m_{1}\Gamma (\alpha -\rho _{1}+1)R_{3}} \\ &=r_{3}. \end{aligned}$$

Next, we check the second condition. Let \(x\in \partial P(\omega ,r_{2})\), then

$$\begin{aligned} \Psi x(t) &\leq \frac{(T-t_{0})^{\alpha }M_{f}r_{2}}{\Gamma (\alpha +1)R_{2}}+ \frac{2M_{g}r_{2}}{R_{2}}+ \frac{M_{h_{1}}r_{2}(T-t_{0})^{\delta _{1}}}{m_{1}R_{2}\Gamma (\delta _{1}+1)} \\ &\quad {}+\frac{(T-t_{0})^{\rho _{0}}\Gamma (2-\rho _{0})r_{2}}{n_{0}R_{2}} \biggl( \frac{M_{h_{0}}(T-t_{0})^{\delta _{0}}}{\Gamma (\delta _{0}+1)}+ \frac{ \vert m_{0} \vert M_{h_{1}}(T-t_{0})^{\delta _{1}}}{m_{1}\Gamma (\delta _{1}+1)} \biggr) \\ &\quad {}+\frac{M_{f}(T-t_{0})^{\rho _{0}}\Gamma (2-\rho _{0})r_{2}}{R_{2}} \biggl( \frac{n_{1}m_{0}(T-t_{0})^{\alpha -\rho _{1}}}{m_{1}n_{0}\Gamma (\alpha -\rho _{1}+1)}+ \frac{(T-t_{0})^{\alpha -\rho _{0}}}{\Gamma (\alpha -\rho _{0}+1)} \biggr) \\ &\quad {}+ \frac{M_{f} \vert n_{1} \vert (T-t_{0})^{\alpha -\rho _{1}}r_{2}}{m_{1}\Gamma (\alpha -\rho _{1}+1)R_{2}}+ \frac{r_{2}n_{0}KM_{g}}{ \vert m_{0} \vert R_{2}} \\ &\quad {}+\frac{(T-t_{0})^{\rho _{0}}\Gamma (2-\rho _{0})}{R_{2}} \frac{n_{1}m_{0}KM_{g}r_{2}}{m_{1}n_{0}} \\ &\quad {}+\frac{2r_{2}}{R_{2}}\sum_{k=2}^{n-1}{M_{\xi _{k}}}M_{h_{k}} \biggl( {1+\frac{(T-t_{0})^{\delta _{k}}}{\Gamma (\delta _{k}+1)}} \biggr) . \end{aligned}$$

This shows that \(\omega (\Psi x)=\Vert \Psi x\Vert < r_{2}\). Since \(0\in P\) and \(r_{1}>0\), hence \(P(\mu ,r_{1})\neq \emptyset \). By assuming \(x\in \partial P(\mu ,r_{1})\), we have \(0\leq x(t)\leq r_{1}\), \(\forall t\in {}[ t_{0},T]\). By assumption (iii), we have

$$\begin{aligned} \mu (\Psi x) &=\max_{t\in {}[ t_{0},T]}\Psi x(t) \\ &> \frac{m_{f}r_{1}}{R_{1}} \frac{(T-t_{0})^{\alpha }}{\Gamma (\alpha +1)}+ \frac{m_{h_{1}}r_{1}(T-t_{0})^{\delta _{1}}}{m_{1}R_{1}\Gamma (\delta _{1}+1)} \\ &\quad {}+\frac{(T-t_{0})^{\rho _{0}}\Gamma (2-\rho _{0})}{n_{0}} \biggl( \frac{m_{h_{0}}r_{1}(T-t_{0})^{\delta _{0}}}{R_{1}\Gamma (\delta _{0}+1)}+ \frac{ \vert m_{0} \vert m_{h_{1}}r_{1}(T-t_{0})^{\delta _{1}}}{m_{1}R_{1}\Gamma (\delta _{1}+1)} \biggr) \\ &\quad{} + \frac{ \vert n_{1} \vert (T-t_{0})^{\alpha -\rho _{1}}m_{f}r_{1}}{m_{1}\Gamma (\alpha -\rho _{1}+1)R_{1}}. \end{aligned}$$

Hence, \(\mu (\Psi x)>r_{1}\). All the conditions of Theorem 2.5 are established, and the desired result follows. □

5 Hyers–Ulam stability

The notion of the stability of functional differential equations was first introduced by Ulam [50], and then it was extended by Hyers [51]. Later on, this type of stability and its generalization were called of Hyers–Ulam (HU) and Hyers–Ulam–Rassias (HUR) type, respectively. Investigation of the UH and GUH stability has been given a special attention in studying all fractional differential equations. Here, we discuss the Hyers–Ulam (HU) and Hyers–Ulam-Rassias (HUR) stability results about the hybrid FBVP (1) on the interval \([t_{0},T]\).

Definition 5.1

System (1) is Hyers–Ulam stable whenever for every \(\epsilon >0\) and \(y\in {C([t_{0},T],\mathbb{R})}\) satisfying

$$ \bigl\vert D^{\alpha } \bigl[y(t)-g \bigl(t,y(t) \bigr) \bigr]-f \bigl(t,y(t) \bigr) \bigr\vert \leq \epsilon ,\quad t\in {}[ t_{0},T], \alpha \in (n-1,n), $$
(13)

there exists \(x(t)\) as a solution of (1) such that

$$ \bigl\vert x(t)-y(t) \bigr\vert \leq {C}\epsilon , \quad t\in {}[ t_{0},T], $$

where C is independent of both y and x.

Definition 5.2

System (1) is Hyers–Ulam–Rassias stable if \(\forall y\in {C([t_{0},T],\mathbb{R} )}\) satisfying

$$ \bigl\vert D^{\alpha } \bigl[y(t)-g \bigl(t,y(t) \bigr) \bigr]-f \bigl(t,y(t) \bigr) \bigr\vert \leq \varphi (t),\quad t\in {}[ t_{0},T], $$
(14)

where \(\varphi :[t_{0},T]\rightarrow \mathbb{R}\) is continuous, there is \(x(t)\) as a solution of (1), provided

$$ \bigl\vert x(t)-y(t) \bigr\vert \leq {C}\varphi (t),\quad t\in {}[ t_{0},T], $$

where C is independent of both y and x.

For simplification, set

$$\begin{aligned} & \Theta \bigl(y,f \bigl(t,y(t) \bigr) \bigr) \\ &\quad =I^{\alpha }f \bigl(t,y(t) \bigr)+g \bigl(t,y(t) \bigr)-g \bigl(t_{0},y(t_{0}) \bigr) \\ &\qquad {}+\frac{(t-t_{0})\Gamma (2-\rho _{0})}{n_{0}(T-t_{0})^{1-\rho _{0}}} \biggl( I^{\delta _{0}}{h_{0} \bigl(T,x(T) \bigr)}-\frac{m_{0}}{m_{1}}I^{\delta _{1}}{h_{1} \bigl(T,y(T) \bigr)} \biggr) +\frac{1}{m_{1}}I^{\delta _{1}}h_{1}{ \bigl(T,y(T) \bigr)} \\ &\qquad {}+\frac{(t-t_{0})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}} \biggl( \frac{n_{1}m_{0}}{m_{1}n_{0}}I^{\alpha -\rho _{1}}f \bigl(T,y(T) \bigr)-I^{\alpha - \rho _{0}}f \bigl(T,y(T) \bigr) \biggr) \\ &\qquad {}- \frac{n_{1}}{m_{1}}I^{\alpha -\rho _{1}}f \bigl(T,y(T) \bigr) \\ &\qquad {}+\frac{(t-t_{0})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}} \biggl( \frac{n_{1}m_{0}}{m_{1}n_{0}}D^{\rho _{1}}g \bigl(T,y(T) \bigr)-D^{\rho _{0}}g \bigl(T,y(T) \bigr) \biggr) -\frac{n_{1}}{m_{1}}D^{\rho _{1}}g \bigl(T,y(T) \bigr) \\ &\qquad {}+\sum_{k=2}^{n-1} \biggl[ { \frac{n_{1}(T-t_{0})^{k-\rho _{1}}}{m_{1}\Gamma (k-\rho _{1}+1)} \biggl[ {1-\frac{m_{0}}{n_{0}} \frac{(t-t_{0})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}}} \biggr] -\frac{(t-t_{0})^{k}}{k!}} \\ &\qquad {} + \frac{(T-t_{0})^{k-1}(t-t_{0})\Gamma (2-\rho _{0})}{\Gamma (k-\rho _{0}+1)} \biggr] \bigl[ {g^{(k)} \bigl(t_{0},y(t_{0}) \bigr)-I^{\delta _{k}}{h_{k}} \bigl(T,y(T) \bigr)} \bigr] . \end{aligned}$$

Remark 5.1

\(y\in {C([t_{0},T],\mathbb{R} )}\) is a solution of (13) iff we can find \(\hbar \in {C([t_{0},T],\mathbb{R} )}\) so that

  1. (1)

    \(\vert \hbar (t) \vert \leq \epsilon \), \(t\in {}[ t_{0},T]\);

  2. (2)

    y satisfies the equation

    $$ y(t)=\Theta \bigl(y,\hbar (t)+f \bigl(t,y(t) \bigr) \bigr)=\Theta \bigl(y,f \bigl(t,y(t) \bigr) \bigr)+I^{\alpha } \hbar (t). $$
    (15)

A similar remark can be obtained on considering inequality (14).

Lemma 5.3

A function \(y\in {C([t_{0},T],\mathbb{R} )}\) satisfying (13) also satisfies the following integral inequality:

$$ \bigl\vert y(t)-\Theta \bigl(y,f \bigl(t,y(t) \bigr) \bigr) \bigr\vert \leq \frac{ ( T-t_{0} ) ^{\alpha }}{\Gamma (\alpha +1)}\epsilon . $$

Proof

According to Remark 5.1, y satisfies equation (15). As a result,

$$\begin{aligned} \bigl\vert y(t)-\Theta \bigl(y,f \bigl(t,y(t) \bigr) \bigr) \bigr\vert & = \bigl\vert I^{ \alpha }\hbar (t) \bigr\vert \\ & \leq \frac{1}{\Gamma (\alpha )} \int _{t_{0}}^{t}(t-s)^{ \alpha -1} \bigl\vert \hbar (s) \bigr\vert \,ds \\ & \leq \frac{ ( T-t_{0} ) ^{\alpha }}{\Gamma (\alpha +1)} \epsilon . \end{aligned}$$

 □

Theorem 5.4

If [H1] is fulfilled, hybrid system (1) is Hyers–Ulam stable, provided that \(\Delta <1\).

Proof

Take \(\epsilon >0\) and \(y\in {C([t_{0},T],\mathbb{R} )}\) satisfying (13), and let \(x\in {C([t_{0},T],\mathbb{R} )}\) be the unique solution of (1). Thus,

$$\begin{aligned} & \bigl\vert y(t)-x(t) \bigr\vert \\ &\quad \leq \frac{1}{\Gamma (\alpha )} \int _{t_{0}}^{t}(t-s)^{\alpha -1} \bigl\vert f \bigl(s,y(s) \bigr)-f \bigl(s,x(s) \bigr) \bigr\vert \,ds+ \bigl\vert g \bigl(t,y(t) \bigr)-g \bigl(t,x(t) \bigr) \bigr\vert \\ &\qquad {} + \bigl\vert g \bigl(t_{0},y(t_{0}) \bigr)-g \bigl(t_{0},x(t_{0}) \bigr) \bigr\vert \\ &\qquad {} +\frac{(t-t_{0})\Gamma (2-\rho _{0})}{n_{0}(T-t_{0})^{1-\rho _{0}}} \biggl[ \frac{1}{\Gamma (\delta _{0})} \int _{t_{0}}^{T}(T-s)^{\delta _{0}-1} \bigl\vert h_{0} \bigl(s,y(s) \bigr)-h_{0} \bigl(s,x(s) \bigr) \bigr\vert \,ds \\ &\qquad {} -\frac{m_{0}}{m_{1}\Gamma (\delta _{1})} \int _{t_{0}}^{T}(T-s)^{\delta _{1}-1} \bigl\vert h_{1} \bigl(s,y(s) \bigr)-h_{1} \bigl(s,x(s) \bigr) \bigr\vert \,ds \biggr] \\ &\qquad {} +\frac{1}{m_{1}\Gamma (\delta _{1})} \int _{t_{0}}^{T}(T-s)^{\delta _{1}-1} \bigl\vert h_{1} \bigl(s,y(s) \bigr)-h_{1} \bigl(s,x(s) \bigr) \bigr\vert \,ds \\ &\qquad {} +\frac{(t-t_{0})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}} \biggl[ \frac{n_{1}m_{0}}{m_{1}n_{0}\Gamma (\alpha -\rho _{1})} \int _{t_{0}}^{T}(T-s)^{\alpha -\rho _{1}-1} \bigl\vert f \bigl(s,y(s) \bigr)-f \bigl(s,x(s) \bigr) \bigr\vert \,ds \\ &\qquad {} +\frac{1}{\Gamma (\alpha -\rho _{0})} \int _{t_{0}}^{T}(T-s)^{ \alpha -\rho _{0}-1} \bigl\vert f \bigl(s,y(s) \bigr)-f \bigl(s,x(s) \bigr) \bigr\vert \,ds \biggr] \\ &\qquad {} -\frac{n_{1}}{m_{1}\Gamma (\alpha -\rho _{1})} \int _{t_{0}}^{T}(T-s)^{\alpha -\rho _{1}-1} \bigl\vert f \bigl(s,y(s) \bigr)-f \bigl(s,x(s) \bigr) \bigr\vert \,ds \\ &\qquad {} +\frac{(t-t_{0})\Gamma (2-\rho _{0})}{(T-t_{0})^{1-\rho _{0}}}\biggl[ \frac{n_{1}m_{0}}{m_{1}n_{0}\Gamma (2-\rho _{1})} \int _{t_{0}}^{T}(T-s)^{1- \rho _{1}} \bigl\vert g^{{\prime \prime }} \bigl(s,y(s) \bigr)-g^{{\prime \prime }} \bigl(s,x(s) \bigr) \bigr\vert \,ds \\ &\qquad {} +\frac{1}{\Gamma (1-\rho _{0})} \int _{t_{0}}^{T}(T-s)^{- \rho _{0}} \bigl\vert g^{{\prime }} \bigl(s,y(s) \bigr)-g^{{\prime }} \bigl(s,x(s) \bigr) \bigr\vert \,ds\biggr] \\ &\qquad {} -\frac{n_{1}}{m_{1}\Gamma (2-\rho _{1})} \int _{t_{0}}^{T}(T-s)^{1- \rho _{1}} \bigl\vert g^{{\prime \prime }} \bigl(s,y(s) \bigr)-g^{{\prime \prime }} \bigl(s,x(s) \bigr) \bigr\vert \,ds \\ &\qquad {} +\sum_{k=2}^{n-1} \bigl\vert \xi _{k}(t) \bigr\vert \bigl\vert {g^{(k)} \bigl(t_{0},x(t_{0}) \bigr)-g^{(k)} \bigl(t_{0},y(t_{0}) \bigr)} \bigr\vert \\ &\qquad {} +\frac{1}{\Gamma (\delta _{k})} \int _{t_{0}}^{T}(T-s)^{\delta _{k}-1} \bigl\vert h_{k} \bigl(s,y(s) \bigr)-h_{k} \bigl(s,x(s) \bigr) \bigr\vert \,ds + \frac{(T-t_{0})^{\alpha }}{\Gamma (\alpha +1)}\epsilon \\ &\quad \leq \frac{C_{f}(T-t_{0})^{\alpha }}{\Gamma (\alpha +1)} \Vert y-x \Vert +2C_{g} \Vert y-x \Vert \\ &\qquad {} +\frac{(T-t_{0})^{\rho _{0}}\Gamma (2-\rho _{0})}{n_{0}} \biggl[ \frac{(T-t_{0})^{\delta _{0}}C_{h_{0}}}{\Gamma (\delta _{0}+1)}- \frac{m_{0}(T-t_{0})^{\delta _{1}}C_{h_{1}}}{m_{1}\Gamma (\delta _{1}+1)} \biggr] \Vert y-x \Vert \\ &\qquad {} - \frac{(T-t_{0})^{\delta _{1}}C_{h_{1}}}{m_{1}\Gamma (\delta _{1}+1)} \Vert y-x \Vert \\ &\qquad {} +(T-t_{0})^{\rho _{0}}\Gamma (2-\rho _{0})C_{f} \biggl[ \frac{n_{1}m_{0}(T-t_{0})^{\alpha -\rho _{1}}}{m_{1}n_{0}\Gamma (\alpha -\rho _{1}+1)}+ \frac{(T-t_{0})^{\alpha -\rho _{0}}}{\Gamma (\alpha -\rho _{0}+1)} \biggr] \Vert y-x \Vert \\ &\qquad {} - \frac{n_{1}(T-t_{0})^{\alpha -\rho _{1}}C_{f}}{m_{1}\Gamma (\alpha -\rho _{1}+1)} \Vert y-x \Vert \\ &\qquad {} +(T-t_{0})^{\rho _{1}}\Gamma (2-\rho _{0}) \biggl[ \frac{n_{1}m_{0}C_{g^{(2)}}(T-t_{0})^{2-\rho _{1}}}{m_{1}n_{0}\Gamma (3-\rho _{1})}+\frac{(T-t_{0})^{1-\rho _{0}}C_{g^{(1)}}}{\Gamma (2-\rho _{0})} \biggr] \Vert y-x \Vert \\ &\qquad {} - \frac{n_{1}C_{g^{(2)}}(T-t_{0})^{2-\rho _{1}}}{m_{1}\Gamma (3-\rho _{1})} \Vert y-x \Vert \\ &\qquad {} +\sum_{k=2}^{n-1}M_{\xi _{k}} \biggl[ C_{g^{(k)}}+ \frac{(T-t_{0})^{\delta _{k}}C_{h_{k}}}{\Gamma (\delta _{k}+1)} \biggr] \Vert y-x \Vert +\frac{(T-t_{0})^{\alpha }}{\Gamma (\alpha +1)}\epsilon \\ &\quad =\Delta \Vert y-x \Vert + \frac{(T-t_{0})^{\alpha }}{\Gamma (\alpha +1)}\epsilon . \end{aligned}$$

Hence,

$$ \Vert y-x \Vert \leq \frac{(T-t_{0})^{\alpha }}{(1-\Delta )\Gamma (\alpha +1)}\epsilon :=C \epsilon , $$

where

$$ C=\frac{(T-t_{0})^{\alpha }}{(1-\Delta )\Gamma (\alpha +1)}. $$

Hence, system (1) is Hyers–Ulam stable. □

Remark 5.2

The Hyers–Ulam-Rassias stability can be established in a similar manner.

6 Example

In this portion, we give an example to defend our pivot results of the theory attained above.

Example 6.1

Due to (1), regard the following fractional hybrid differential system:

$$ \textstyle\begin{cases} D^{2.5}(x(t)-g(t,x(t)))=f(t,x(t)),\quad t\in (0,1), \\ -x(0)+D^{0.5}x(1)=I^{2}h_{0}(1,x(1)), \\ x(0)-D^{1.5}x(1)=I^{2}h_{1}(1,x(1)), \\ x^{(2)}(0)=I^{2}h_{2}(1,x(1)),\end{cases} $$
(16)

where \(\alpha =2.5\), \(\rho _{0}=0.5\), \(\rho _{1}=1.5\), and \(\delta _{0}=\delta _{1}=\delta _{2}=2\). Since the functions f, \(h_{k}\), \(g^{(k)}\), \(k=0,1,2\), are Lipschitz with \({C}_{f}={C}_{h_{k}}={C}_{g^{(k)}}=0.01\). Therefore, we find that

$$ \Delta =0.126< 1. $$

Hence, problem (16) has a unique solution by Theorem 3.3. Moreover, using Theorem 5.4, system (16) is Hyers–Ulam (–Rassias) stable with \(C=2.39\).

Let us, in particular, assume that

$$\begin{aligned}& f(t,x) ={{h_{0}(t,x)}}={{h_{1}(t,x)}}= \textstyle\begin{cases} 0.4,&x\leq 1, \\ 0.39+\frac{x}{100},&1\leq x\leq 5, \\ 2.56x-12.36,&5\leq x\leq 6, \\ 3,&x\geq 6, \end{cases}\displaystyle \\& g(t,x) = {0.1e}^{t},\qquad h_{2}(t,x)=e^{t}. \end{aligned}$$

One can find figures of the functions \(f(t,x)\) and \(g(t,x)\) in [52]. The calculations of the basic conditions give the following:

$$ \textstyle\begin{cases} m_{0},n_{1}\leq 0,\quad m_{1},n_{0}>0, \\ \frac{\Gamma (3-\rho _{1})}{\Gamma (3-\rho _{0})}=0.667< 1= \frac{n_{1}m_{0}}{m_{1}n_{0}}(T-t_{0})^{\rho _{0}-\rho _{1}}, \\ f(t,x)\geq 0, \\ g(t,x(t))\geq g(t_{0},x(t_{0}))=0.1\geq 0,\quad t\in {}[ 0,1], \\ \frac{n_{1}m_{0}}{m_{1}n_{0}}I^{\alpha -\rho _{1}}f(T,x(T))=I^{1}f(1,x(1) \geq I^{2}f(1,x(1)), \\ g(0.83,x(0.83))\leq \frac{n_{1}m_{0}}{m_{1}n_{0}}D^{\rho _{1}}g(T,x(T))=D^{1.5}g(T,x(T)) \\ \hphantom{g(0.83,x(0.83))}=I^{0.5}g^{{\prime \prime }}(1,x(1))=I^{0.5}g^{{\prime }}(1,x(1))=D^{0.5}g(T,x(T)) \geq 0, \\ 0\leq {g^{{\prime \prime }}(0,x(0))=0.1\leq 0.7183=I^{\delta _{2}}{h_{2}}(1,x(1))}.\end{cases} $$

Moreover, it is obvious that condition [H3] is also valid. To continue our investigation, we need to justify the conditions of Theorem 4.3. Let \(r_{1}=1\), \(r_{2}=5\), and \(r_{3}=6\). Also assume that

$$\begin{aligned}& \tau = 0.5, \\& m_{f} = m_{h_{0}}=m_{h_{1}}=M_{f}=M_{g}=M_{h_{0}}=M_{h_{1}} \\& \hphantom{m_{f}} = M_{h_{2}}=n_{f}=n_{h_{1}}=n_{h_{0}}=1. \end{aligned}$$

Then we find that

$$ \textstyle\begin{cases} \vert \xi _{2}(t) \vert \leq M_{\xi _{2}}=0.89327, \\ R_{1}=1.3m_{f}+0.443m_{h_{0}}+0.943m_{h_{1}}=2.686, \\ R_{2}=2.63M_{f}+ ( 2+1.88623K ) M_{g}+0.443M_{h_{0}}+0.943M_{h_{1}} +2.68M_{h_{2}}=10.6, \\ R_{3}=1.0532n_{f}+0.722n_{h_{1}}+0.222n_{h_{0}}=1.997.\end{cases}$$

Therefore, hypotheses (i)–(iii) are satisfied, since if \(t\in {}[ 0.5,1]\) and \(x\geq 6\), we have

$$ \textstyle\begin{cases} f(t,x)>n_{f}\frac{r_{3}}{R_{3}}=3, \\ h_{k}(t,x)>n_{h_{k}}\frac{r_{3}}{R_{3}}=3,\quad k=0,1.\end{cases}$$

For \((t,x)\in {}[ 0,1]\times {}[ 0,5]\), we obtain

$$ \textstyle\begin{cases} f(t,x)\leq M_{f}\frac{r_{2}}{R_{2}}\leq 0.472, \\ h_{k}(t,x)\leq M_{h_{k}}\frac{r_{2}}{R_{2}}\leq 0.472,\quad k=0,1.\end{cases}$$

Finally, \(\forall (t,x)\in {}[ 0,1]\times {}[ 0,1]\), we get

$$ \textstyle\begin{cases} f(t,x)>m_{f}\frac{r_{1}}{R_{1}}>0.3723, \\ h_{k}(t,x)>m_{h_{k}}\frac{r_{1}}{R_{1}}>0.3723,\quad k=0,1.\end{cases}$$

Therefore, using Theorem 4.3, for system (16), the existence of at least two positive solutions \(x_{1}\) and \(x_{2}\) is guaranteed provided \(1<\Vert x_{1}\Vert \) with \(\Vert x_{1}\Vert <5\) and \(5<\Vert x_{2}\Vert \) with \(\min_{t\in {}[ 0.5,1]}x(t)<6\).

7 Conclusion

The fractional integro-differential boundary problem of a hybrid system is a generalization of many existing problems. Many basic expressions are gathered in this model such as hybrid model, fractional derivatives of any order, fractional intro-differential boundary conditions, etc. Based on some well-known fixed point theorems of operator theory and the technique of fractional nonlinear differential systems, the existence and uniqueness criteria for the considered system (1) have been obtained. To do this, we used some notions on cones and verified some inequalities. Likewise, under specific assumptions and conditions, we have found the Hyers–Ulam stability result regarding solutions of hybrid system (1). The future research may continue to develop many qualitative properties of a modified system with the very recent fractional derivatives containing nonsingular kernels.

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Herrmann, R.: Fractional Calculus. An Introduction for Physicists. World Scientific, Singapore (2011)

    Book  Google Scholar 

  2. Lakshmikantham, V., Leela, S., Vasundhara, D.J.: Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, London (2009)

    MATH  Google Scholar 

  3. Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018). https://doi.org/10.1016/j.cnsns.2018.04.019

    Article  MATH  Google Scholar 

  4. Ahmad, M., Zada, A., Alzabut, J.: Hyers–Ulam stability of a coupled system of fractional differential equations of Hilfer–Hadamard type. Demonstr. Math. 52(1), 283–295 (2019). https://doi.org/10.1515/dema-2019-0024

    Article  MathSciNet  MATH  Google Scholar 

  5. Ahmad, M., Zada, A., Alzabut, J.: Stability analysis of a nonlinear coupled implicit switched singular fractional differential system with p-Laplacian. Adv. Differ. Equ. 2019, 436 (2019). https://doi.org/10.1186/s13662-019-2367-y

    Article  MathSciNet  Google Scholar 

  6. Riaz, U., Zada, A., Ali, Z., Ahmad, M., Xu, J., Fu, Z.: Analysis of nonlinear coupled systems of impulsive fractional differential equations with Hadamard derivatives. Math. Probl. Eng. 2019, Article ID 5093572 (2019). https://doi.org/10.1155/2019/5093572

    Article  MathSciNet  MATH  Google Scholar 

  7. Baleanu, D., Aydogan, S.M., Mohammadi, H., Rezapour, S.: On modelling of epidemic childhood diseases with the Caputo-Fabrizio derivative by using the Laplace Adomian decomposition method. Alex. Eng. J. 59(5), 3029–3039 (2020). https://doi.org/10.1016/j.aej.2020.05.007

    Article  Google Scholar 

  8. Bachir, F.S., Abbas, S., Benbachir, M., Benchora, M.: Hilfer–Hadamard fractional differential equations; existence and attractivity. Adv. Theory Nonlinear Anal. Appl. 5(1), 49–57 (2021). https://doi.org/10.31197/atnaa.848928

    Article  Google Scholar 

  9. Baitiche, Z., Derbazi, C., Benchora, M.: ψ-Caputo fractional differential equations with multi-point boundary conditions by topological degree theory. Res. Nonlinear Anal. 3(4), 167–178 (2020)

    Google Scholar 

  10. Tuan, H.T., Mohammadi, H., Rezapour, S.: A mathematical model for COVID-19 transmission by using the Caputo fractional derivative. Chaos Solitons Fractals 140, 110107 (2020). https://doi.org/10.1016/j.chaos.2020.110107

    Article  MathSciNet  Google Scholar 

  11. Thabet, S.T.M., Etemad, S., Rezapour, S.: On a coupled Caputo conformable system of pantograph problems. Turk. J. Math. 45(1), 496–519 (2021). https://doi.org/10.3906/mat-2010-70

    Article  MathSciNet  Google Scholar 

  12. Mohammadi, H., Kumar, S., Rezapour, S., Etemad, S.: A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 144, 110668 (2021). https://doi.org/10.1016/j.chaos.2021.110668

    Article  MathSciNet  Google Scholar 

  13. Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020). https://doi.org/10.1016/j.chaos.2020.109705

    Article  MathSciNet  Google Scholar 

  14. Rezapour, S., Ntouyas, S.K., Iqbal, M.Q., Hussain, A., Etemad, S., Tariboon, J.: An analytical survey on the solutions of the generalized double- order ϕ-integrodifferential equation. J. Funct. Spaces 2021, Article ID 6667757 (2021). https://doi.org/10.1155/2021/6667757

    Article  MathSciNet  MATH  Google Scholar 

  15. Shah, K., Khan, R.A.: Iterative scheme for a coupled system of fractional-order differential equations with three-point boundary conditions. Math. Methods Appl. Sci. 41(3), 1047–1053 (2018). https://doi.org/10.1002/mma.4122

    Article  MathSciNet  MATH  Google Scholar 

  16. Matar, M.M.: Existence of solution for fractional neutral hybrid differential equations with finite delay. Rocky Mt. J. Math. 50(6), 2141–2148 (2020). https://doi.org/10.1216/rmj.2020.50.2141

    Article  MathSciNet  MATH  Google Scholar 

  17. Matar, M.M.: Qualitative properties of solution for hybrid nonlinear fractional differential equations. Afr. Math. 30, 1169–1179 (2019). https://doi.org/10.1007/s13370-019-00710-2

    Article  MathSciNet  MATH  Google Scholar 

  18. Baleanu, D., Etemad, S., Rezapour, S.: On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators. Alex. Eng. J. 59(5), 3019–3027 (2020). https://doi.org/10.1016/j.aej.2020.04.053

    Article  Google Scholar 

  19. Baleanu, D., Mohammadi, H., Rezapour, S.: Analysis of the model of HIV-1 infection of CD4+ T-cell with a new approach of fractional derivative. Adv. Differ. Equ. 2020, 71 (2020). https://doi.org/10.1186/s13662-020-02544-w

    Article  MathSciNet  Google Scholar 

  20. Amara, A.: Existence results for hybrid fractional differential equations with three-point boundary conditions. AIMS Math. 5(2), 1074–1088 (2020). https://doi.org/10.3934/math.2020075

    Article  MathSciNet  Google Scholar 

  21. Tuan, H.T., Ganji, R.M., Jafari, H.: A numerical study of fractional rheological models and fractional Newell-Whitehead-Segel equation with non-local and non-singular kernel. Chinese J. Phys. 68, 308–320 (2020). https://doi.org/10.1016/j.cjph.2020.08.019

    Article  MathSciNet  Google Scholar 

  22. Matar, M.M.: Approximate controllability of fractional nonlinear hybrid differential systems via resolvent operators. J. Math. 2019, Article ID 8603878 (2019). https://doi.org/10.1155/2019/8603878

    Article  MathSciNet  MATH  Google Scholar 

  23. Baleanu, D., Etemad, S., Rezapour, S.: A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 64 (2020). https://doi.org/10.1186/s13661-020-01361-0

    Article  MathSciNet  Google Scholar 

  24. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)

    Book  Google Scholar 

  25. Nikan, O., Jafari, H., Golbabai, A.: Numerical analysis of the fractional evolution model for heat flow in materials with memory. Alex. Eng. J. 59(4), 2627–2637 (2020). https://doi.org/10.1016/j.aej.2020.04.026

    Article  Google Scholar 

  26. Ganji, R.M., Jafari, H., Baleanu, D.: A new approach for solving multi variable orders differential equations with Mittag-Leffler kernel. Chaos Solitons Fractals 130, 109405 (2020). https://doi.org/10.1016/j.chaos.2019.109405

    Article  MathSciNet  Google Scholar 

  27. Abdeljawad, T., Karapinar, E., Pada, S.K., Mlaiki, N.: Solutions of boundary value problems on extended-Branciari b-distance. J. Inequal. Appl. 2020, 103 (2020). https://doi.org/10.1186/s13660-020-02373-1

    Article  MathSciNet  Google Scholar 

  28. Jarad, F., Alqudah, M.A., Abdeljawad, T.: On more general forms of proportional fractional operators. Open Math. 18(1), 167–176 (2020). https://doi.org/10.1515/math-2020-0014

    Article  MathSciNet  MATH  Google Scholar 

  29. Aksuy, U., Karapinar, E., Erhan, I.M.: Fixed point theorems in complete modular metric spaces and an application to anti-periodic boundary value problems. Filomat 31(17), 5475–5488 (2017). https://doi.org/10.2298/FIL1717475A

    Article  MathSciNet  Google Scholar 

  30. Lazreg, J.E., Abbas, S., Benchohra, M., Karapinar, E.: Impulsive Caputo–Fabrizio fractional differential equations in b-metric spaces. Open Math. 19(1), 167–176 (2021). https://doi.org/10.1515/math-2021-0040

    Article  MathSciNet  Google Scholar 

  31. Karapinar, E., Fulga, A., Rashid, M., Shahid, L., Aydi, H.: Large contractions on quasi-metric spaces with an application to nonlinear fractional differential equations. Mathematics 7(5), 444 (2019). https://doi.org/10.3390/math7050444

    Article  Google Scholar 

  32. Alqahtani, B., Aydi, H., Karapinar, E., Rakocevic, V.: A solution for Volterra fractional integral equations by hybrid contractions. Mathematics 7(8), 694 (2019). https://doi.org/10.3390/math7080694

    Article  Google Scholar 

  33. Abdeljawad, T., Agarwal, R.P., Karapinar, E., Kumari, P.S.: Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space. Symmetry 11(5), 686 (2019). https://doi.org/10.3390/sym11050686

    Article  MATH  Google Scholar 

  34. Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solutions of fractional differential equations via Geraghty type hybrid contractions. Appl. Comput. Math. Int. J. 20(2), 313–333 (2021)

    Google Scholar 

  35. Baleanu, D., Sajjadi, S.S., Jajarmi, A., Defterli, O., Asad, J.H.: The fractional dynamics of a linear triatomic molecule. Rom. Rep. Phys. 73(1), 105 (2021)

    Google Scholar 

  36. Jajarmi, A., Baleanu, D.: On the fractional optimal control problems with a general derivative operator. Asian J. Control 23(2), 1062–1071 (2021). https://doi.org/10.1002/asjc.2282

    Article  Google Scholar 

  37. Sajjadi, S.S., Baleanu, D., Jajarmi, A., Pirouz, H.M.: A new adaptive synchronization and hyperchaos control of a biological snap oscillator. Chaos Solitons Fractals 138, 109919 (2020). https://doi.org/10.1016/j.chaos.2020.109919

    Article  MathSciNet  Google Scholar 

  38. Baleanu, D., Ghanbari, B., Asad, J.H., Jajarmi, A., Pirouz, H.M.: Planar system-masses in an equilateral triangle: numerical study within fractional calculus. Comput. Model. Eng. Sci. 124(3), 953–968 (2020). https://doi.org/10.32604/cmes.2020.010236

    Article  Google Scholar 

  39. Jajarmi, A., Baleanu, D.: A new iterative method for the numerical solution of high-order nonlinear fractional boundary value problems. Front. Phys. 8, 220 (2020). https://doi.org/10.3389/fphy.2020.00220

    Article  Google Scholar 

  40. Aydogan, S.M., Baleanu, D., Mousalou, A., Rezapour, S.: On high order fractional integro-differential equations including the Caputo–Fabrizio derivative. Bound. Value Probl. 2018, 90 (2018). https://doi.org/10.1186/s13661-018-1008-9

    Article  MathSciNet  MATH  Google Scholar 

  41. Baleanu, D., Mousalou, A., Rezapour, S.: On the existence of solutions for some infinite coefficient-symmetric Caputo–Fabrizio fractional integro-differential equations. Bound. Value Probl. 2017, 145 (2017). https://doi.org/10.1186/s13661-017-0867-9

    Article  MathSciNet  MATH  Google Scholar 

  42. Baleanu, D., Rezapour, S., Saberpour, Z.: On fractional integro-differential inclusions via the extended fractional Caputo–Fabrizio derivation. Bound. Value Probl. 2019, 79 (2019). https://doi.org/10.1186/s13661-019-1194-0

    Article  MathSciNet  Google Scholar 

  43. Avery, R., Anderson, D., Henderson, J.: Some fixed point theorems of Leggett–Williams type. Rocky Mt. J. Math. 41(2), 371–386 (2011)

    Article  MathSciNet  Google Scholar 

  44. Devi, A., Kumar, A., Baleanu, D., Khan, A.: On stability analysis and existence of positive solutions for a general non-linear fractional differential equations. Adv. Differ. Equ. 2020, 300 (2020). https://doi.org/10.1186/s13662-020-02729-3

    Article  MathSciNet  Google Scholar 

  45. Dong, X., Bai, Z., Zhang, W.: Positive solutions for nonlinear eigenvalue problems with conformable fractional differential derivatives. J. Shandong Univ. Sci. Technol. Nat. Sci. 2016(3), 85–91 (2016)

    Google Scholar 

  46. Sun, A., Su, Y., Yuan, Q., Li, T.: Existence of solutions to fractional differential equations with fractional-order derivative terms. J. Appl. Anal. Comput. 11(1), 486–520 (2021). https://doi.org/10.11948/20200072

    Article  MathSciNet  Google Scholar 

  47. Alsaedi, A., Luca, R., Ahmad, B.: Existence of positive solutions for a system of singular fractional boundary value problems with p-Laplacian operators. Mathematics 8(11), 1890 (2020). https://doi.org/10.3390/math8111890

    Article  Google Scholar 

  48. Al-Sadi, W., Zhenyou, H., Alkhazzan, A.: Existence and stability of a positive solution for nonlinear hybrid fractional differential equations with singularity. J. Taibah Univ. Sci. 13(1), 951–960 (2019). https://doi.org/10.1080/16583655.2019.1663783

    Article  Google Scholar 

  49. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Philadelphia (1993)

    MATH  Google Scholar 

  50. Ulam, S.M.: A Collection of Mathematical Problems. Interscience, New York (1960)

    MATH  Google Scholar 

  51. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27(4), 222–224 (1941). https://doi.org/10.1073/pnas.27.4.222

    Article  MathSciNet  MATH  Google Scholar 

  52. Boutiara, A., Etemad, S., Alzabut, J., Hussain, A., Subramanian, M., Rezapour, S.: On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria. Adv. Differ. Equ. 2021, 367 (2021). https://doi.org/10.1186/s13662-021-03525-3

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The fifth and sixth authors would like to thank Azarbaijan Shahid Madani University. The authors would like to thank dear referees for their constructive and valuable comments.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Akbar Zada or Shahram Rezapour.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matar, M.M., abu Jarad, M., Ahmad, M. et al. On the existence and stability of two positive solutions of a hybrid differential system of arbitrary fractional order via Avery–Anderson–Henderson criterion on cones. Adv Differ Equ 2021, 423 (2021). https://doi.org/10.1186/s13662-021-03576-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-021-03576-6

MSC

Keywords