Skip to main content

On Caputo–Hadamard type coupled systems of nonconvex fractional differential inclusions

Abstract

This research article is mainly concerned with the existence of solutions for a coupled Caputo–Hadamard of nonconvex fractional differential inclusions equipped with boundary conditions. We derive our main result by applying Mizoguchi–Takahashi’s fixed point theorem with the help of \(\mathcal{P}\)-function characterizations.

Introduction

In the previous two decades, fractional calculus has earned sizeable importance owing to diverse applications in scientific and engineering problems. Fractional-order boundary value problems, in particular, have became a rapidly growing area due to features of fractional derivatives which make the systems of fractional-order practical and realistic than the corresponding classical systems. For some current work, we suggest [110]. There are numerous definitions of fractional differentiation operators in the literature, the most common is the classical Riemann–Liouville type fractional derivative after which a beneficial alternative has been introduced to cope with disadvantages caused by the Riemann–Liouville expression, the so-called Caputo derivative. Fractional derivatives within the frame of Hadamard type differ from the Riemann–Liouville type and the Caputo type due to the appearance of a logarithmic function in the definition of the Hadamard derivatives. One can find manifold monographs and articles devoted exclusively to the theory of fractional derivatives, not merely on mathematical subjects but also physics, applied sciences, engineering, etc.; see [1114].

This article involves the so-called Caputo–Hadamard fractional derivatives which modifies the Hadamard derivative into a more beneficial type using Caputo approach [15, 16]

Differential inclusions are found to be of great advantage as the field of study for these inclusions covers theoretical treatment, inequalities, and applications in a variety of disciplines in physical and industrial sciences. Examples cover optimal control systems [17], isothermal dynamics with stochastic velocities [18], control problems [19] and sweeping processes [20]. The study of fractional-order differential inclusions was first launched by Sayed and Ibrahim [21]. Since then the literature on fractional-order differential inclusions has found various qualitative results. We refer the reader to Ref. [2225] for the recent advancement on the topic.

The study of coupled systems of fractional-order differential equations has also received great attention as such systems emerge in a diversity of problems of biological phenomena and environmental issues. For details and examples, the reader is referred to [2628] and the references mentioned therein.

Recently, a class of coupled fractional-order differential inclusion was discussed in [29], of the form

$$ \begin{gathered} {^{c}}\mathcal{D} ^{\gamma }w(y)\in W \bigl(y,w(y), z(y) \bigr), \quad y\in J=[0,T], \\ {^{c}}\mathcal{D} ^{\zeta }z(y)\in Z \bigl(y,w(y), z(y) \bigr) \quad y\in J=[0,T], \end{gathered} $$
(1.1)

subject to the coupled boundary condition

$$ \begin{gathered} w(0) = \nu _{1} z(T), \quad \quad w'(0)= \nu _{2} z'(T), \\ z(1) = \mu _{1} w(T), \quad\quad z'(0)=\mu _{2} w'(T), \end{gathered} $$
(1.2)

where \({^{c}}\mathcal{D}^{z}\) is the Caputo–Liouville fractional derivative of order \(1< z\leq 2\), \(z\in (\gamma , \zeta )\), W and Z are given multivalued maps. The authors investigated the existence criteria for solutions by applying standard fixed-point theorems for multivalued maps.

Motivated by the above and inspired by the work in [2628], in this paper, we study the following coupled fractional differential inclusions:

$$ \begin{gathered} {^{H c}}\mathcal{D} ^{\gamma }w(y)\in W \bigl(y,w(y), z(y) \bigr), \quad y\in J=[1,T], \\ {^{H c}}\mathcal{D} ^{\zeta }z(y)\in Z \bigl(y,w(y), z(y) \bigr), \quad y\in J=[1,T], \end{gathered} $$
(1.3)

with uncoupled boundary conditions of the form

$$ \begin{gathered} w(1) = 0, \quad\quad \delta w(T)= \delta w(1)=0, \\ z(1) = 0, \quad\quad \delta z(T)=\delta z(1)=0, \end{gathered} $$
(1.4)

where \({^{H c}}\mathcal{D}^{r}\) is the Caputo–Hadamard fractional derivative of order \(1 < r \leq 2\), \(r\in (\gamma , \zeta )\), \(\delta = y\frac{d}{dy}\), and \(W, Z: [1,T]\times \mathbb{R}\times \mathbb{R} \to \mathcal{L}( \mathbb{R})\) are multivalued maps, \(\mathcal{L}(\mathbb{R})\) is the family of all nonempty subsets.

The objective of the present paper is to establish new existence criteria of solutions for the problem (1.3)–(1.4) by applying Mizoguchi–Takahashi’s fixed point theorem for multivalued maps. To the best of our knowledge, the application of fixed-point theorem due to Mizoguchi and Takahashi to the framework of the current problem is new and has not been investigated elsewhere.

The article is designed as follows. Some introductory materials that we need in the sequel are presented in the next section. The main results are derived in Sect. 3. An example is provided to illustrate the theory in Sect. 4.

Axillary results

Let J be a finite interval on \(\mathbb{R}\). We denote by \(\Sigma = C([1,T], \mathbb{R})\) the set of continuous functions on \([1,T]\) supplied with the norm \(\Vert w \Vert = \max_{\theta \in [1,T]} \vert w(\theta ) \vert \). The product set \((\Sigma \times \Sigma , \Vert (w,z) \Vert )\) is a Banach space endowed with the norm

$$ \bigl\Vert (w,z) \bigr\Vert = \Vert w \Vert + \Vert z \Vert . $$

We define \(\mathit{AC}^{n}_{\delta }([1,T], \mathbb{R})\) as

$$ \mathit{AC}^{n}_{\delta } \bigl([1,T], \mathbb{R} \bigr)= \biggl\{ w:[1,T] \to \mathbb{R} \text{ and } \delta ^{n-1}w(y)\in \mathit{AC} \bigl([1,T], \mathbb{R} \bigr), \delta =y \frac{d}{dy} \biggr\} , $$

where \(\mathit{AC}([1,T], \mathbb{R})\) is the set of absolute continuous functions from J into \(\mathbb{R}\). \(L^{1}([1,T], \mathbb{R})\) is the set of those Lebesgue measurable functions \(w: [1,T]\to \mathbb{R}\) with the norm

$$ \Vert w \Vert _{1}= \int _{1}^{T} \bigl\vert w(y) \bigr\vert \,dy. $$

Now we recall some essential outlines on multivalued maps [30]. For a normed space \(( \Sigma , {\Vert \cdot \Vert } )\), let

$$\begin{aligned}& \mathcal{CL}(\Sigma )= \bigl\{ Q\in \mathcal{L}(\Sigma ): Q\text{ is closed} \bigr\} , \\& \mathcal{K}(\Sigma )= \bigl\{ Q\in \mathcal{L}(\Sigma ): Q\text{ is compact} \bigr\} , \\& \mathcal{CB}(\Sigma )= \bigl\{ Q\in \mathcal{L}(\Sigma ): Q\text{ is closed and bounded} \bigr\} . \end{aligned}$$

A multivalued operator \(\mathfrak{G}\to \mathcal{CL}(\mathbb{R})\) is said to be measurable if for every \(\varsigma \in \mathbb{R}\), the function

$$ y\to \inf \bigl\{ \vert \varsigma -z \vert , z\in \mathfrak{G}(y) \bigr\} , $$

is measurable.

Next, we shall recall some known results concerning fractional operators.

Definition 2.1

([31])

The fractional-order integral operator of Hadamard type of a function \(f\in L^{1}([1, T], \mathbb{R})\) is given as

$$ {{^{H}}I^{r}}f(y)=\frac{1}{\Gamma (r)} \int _{1}^{y} \biggl(\log \frac{y}{\theta } \biggr)^{r-1}f(\theta )\frac{d\theta }{\theta }, $$
(2.1)

provided the integral exists.

Definition 2.2

([15])

For a given function \(f\in \mathit{AC}^{n}_{\delta }([1,T], \mathbb{R})\), the Caputo–Hadamard fractional derivative of order \(r>0\) is defined as follows:

$$ \bigl({^{H c}}\mathcal{D}^{r} f \bigr) (y)=\frac{1}{\Gamma (n-r)} \int _{1}^{y} \biggl(\log \frac{y}{\theta } \biggr)^{n-r -1} \delta ^{n}f(\theta ) \frac{d\theta }{\theta }, $$
(2.2)

where \(n= [r]+1\), \([r]\) is the integer part of r and \({\Gamma (\cdot )}\) is the Gamma function defined by \(\Gamma (w)=\int _{0}^{\infty }y^{w-1}e^{-y}\,dy\).

If \(r = n\in \mathbb{N}\) we have

$$\begin{aligned} {^{H c}}\mathcal{D}^{r}f(y)= \bigl(\delta ^{n} f \bigr) (y). \end{aligned}$$

Lemma 2.3

([15])

For a given function \(f\in \mathit{AC}^{n}_{\delta } ([1,T], \mathbb{R})\) or \(f\in C^{n}_{\delta } ([1,T], \mathbb{R})\), and \(r \in \mathbb{C}\) we have

$$ {{^{H}}I^{r}} {^{H c}}\mathcal{D}^{r}f(y)=f(y)- \sum_{j=0}^{n-1} \frac{(\delta ^{j} f)(1)}{j!} \bigl( \log (y) \bigr)^{j}, $$
(2.3)

particularly, for \(0 < r <1\), we obtain

$$ {{^{H}}I^{r}} {^{Hc}}\mathcal{D}^{r}f(y)=f(y)-f(1). $$

The following lemma is useful in the forthcoming analysis related to the problem (1.3)–(1.4).

Lemma 2.4

Let \(\rho _{1}, \rho _{2} : [1,T] \rightarrow \mathbb{R}\) be continuous functions, and \(r\in \mathopen ]1,2\mathclose ]\), \(r\in (\gamma , \zeta )\). Then the fractional problem

$$\begin{aligned}& \begin{gathered} {^{H c}}\mathcal{D} ^{\gamma }w(y)= \rho _{1}(y), \quad 1 \leq y \leq T, \\ {^{H c}}\mathcal{D} ^{\zeta }z(y)= \rho _{2}(y), \quad 1 \leq y \leq T, \end{gathered} \end{aligned}$$
(2.4)
$$\begin{aligned}& \begin{gathered} w(1) = 0, \quad\quad \delta w(T)= \delta w(1)=0, \\ z(1) = 0, \quad\quad \delta z(T)=\delta z(1)=0, \end{gathered} \end{aligned}$$
(2.5)

is equivalent to the system of integral equations

$$\begin{aligned}& w(y)= \frac{1}{\Gamma (\gamma )} \int _{1}^{y} \biggl(\log \frac{y}{\theta } \biggr)^{\gamma -1}\rho _{1}(\theta ) \frac{d\theta }{\theta }, \end{aligned}$$
(2.6)
$$\begin{aligned}& z(y)= \frac{1}{\Gamma (\zeta )} \int _{1}^{y} \biggl(\log \frac{y}{\theta } \biggr)^{\zeta -1}\rho _{2}(\theta ) \frac{d\theta }{\theta }. \end{aligned}$$
(2.7)

Proof

Performing the Hadamard operator of order γ on the first equation in (2.4) and using Lemma 2.3, we get

$$ w(t)= c_{1}+c_{2}\log (y)+ {^{H}}I^{\gamma }\rho _{1}(y), $$
(2.8)

where \(c_{1}\), \(c_{2}\) are arbitrary constants. Taking the δ-derivative in (2.8) we get

$$ (\delta w) (y)=c_{2} + {^{H}}I^{\gamma -1} \rho _{1}(y). $$
(2.9)

Using the boundary conditions \((\delta w)(T)=(\delta w)(1)=0\) in (2.9), we get \(c_{2}=0\), then using the condition \(w(1)= 0\) to (2.8), gives us \(c_{1}=0\), therefor we get the solution described in (2.6). In the same manner we solve the second equation of (2.4) for z we get (2.7). This ends the proof. □

Existence results

Let \((\Sigma , \rho )\) be a metric space and \({H_{\rho }(\cdot ,\cdot )}\) denote the Hausdorff metric on \(\mathcal{CB}(\Sigma )\) defined as

$$ H(Q,D):= \max \Bigl\{ \sup_{q\in Q} \rho (q,D), \sup _{d\in D} \rho (d,Q) \Bigr\} , $$

where \(\rho (Q,d)= \inf_{q\in Q}\rho (q,d)\) and \(\rho (q,D)= \inf_{d\in D}\rho (q,d)\). Then \((\mathcal{CB}(\Sigma ), H_{\rho })\) is a metric space [32]. For each \((w,z) \in (\Sigma \times \Sigma )\), define the sets of selections of W, Z by

$$ S_{W,(w,z)}= \bigl\{ \sigma \in L^{1} \bigl([1,T], \mathbb{R} \bigr), \sigma (y) \in W \bigl(y,w(y), z(y) \bigr), \textit{a.e. } y\in [1,T] \bigr\} $$

and

$$ S_{Z,(w,z)}= \bigl\{ \vartheta \in L^{1} \bigl([1,T], \mathbb{R} \bigr), \vartheta (y) \in G \bigl(y,w(y), z(y) \bigr), \textit{a.e. } y\in [1,T] \bigr\} . $$

Definition 3.1

([33])

We call a function \(\phi : \mathbb{R}^{+}_{0}\to [0,\frac{1}{2}) \) a \(\mathcal{P}\)-function if it satisfies the conditions

$$ \lim \sup_{\theta \to y^{+}} \phi (\theta )< \frac{1}{2}, \quad \text{for every } y \in \mathbb{R}^{+}_{0}. $$
(3.1)

Definition 3.2

([34, 35])

We call a function \(\alpha : \mathbb{R}^{+}_{0} \to [0,1)\) an \(\mathcal{MT}\)-function or (\(\mathcal{R}\)-function) if it fulfills the Mizoguchi–Takahashi’s condition i.e.

$$ \lim \sup_{\theta \to y^{+}} \alpha (\theta )< 1, \quad \text{for every } y \in \mathbb{R}^{+}_{0}. $$

Remark 3.3

  • \(\phi : \mathbb{R}^{+}_{0}\to [0,\frac{1}{2})\) is a \(\mathcal{P}\)-function if and only if

    • for any nonincreasing sequence \((z_{n})_{n\geq 1}\in \mathbb{R}^{+}_{0}\) we obtain \(0 \leq \sup_{n\geq 1} \phi (z_{n}) <\frac{1}{2}\);

    • if ϕ is a function of semi-contractive factor, that is, for any strictly decreasing sequence \((z_{n})_{n\geq 1} \subset \mathbb{R}^{+}_{0}\) we have \(0 \leq \sup_{n\geq 1} \phi (z_{n}) <\frac{1}{2}\) [33];

    • any function defined as \(\kappa (y)= \frac{\phi (y)}{2}+\frac{1}{4}\) is also considered as a \(\mathcal{P}\)-function.

  • \(\alpha : \mathbb{R}^{+}_{0}\to [0,1)\) is an \(\mathcal{MT}\)-function if and only if ϕ is a function of contractive factor, that is, for any strictly decreasing sequence \((z_{n})_{n\geq 1} \subset \mathbb{R}^{+}_{0} \) we have \(0 \leq \sup_{n\geq 1} \alpha (z_{n}) <1\).

  • If we define \(\alpha (y)=2\phi (y)\) for all \(y\in \mathbb{R}^{+}_{0}\) then α is truly an \(\mathcal{MT}\)-function. For more details about \(\mathcal{MT}\)-functions see [35, 36].

Theorem 3.4

([34])

Let \(\alpha : \mathbb{R}^{+}_{0}\to [0,1)\) be an \(\mathcal{MT}\)-function, and \(\Lambda : \Sigma \to \mathcal{CB}(\Sigma )\) be a multivalued map, where \((\Sigma ,\rho )\) is a complete metric space. Assume that

$$ H_{\rho }(\Lambda w, \Lambda z)\leq \alpha \bigl(\rho (w,z) \bigr)\rho (w,z), \quad \textit{for all } w , z \in \Sigma . $$

Then Λ has a fixed point.

Mizoguchi–Takahashi’s fixed point theorem [34] is a positive answer to the conjecture of Reich [37].

Definition 3.5

A function \((w,z)\in \mathit{AC}^{2}_{\delta } ([1,T], \mathbb{R})\times \mathit{AC}^{2}_{\delta } ([1,T], \mathbb{R})\) is called a solution of the coupled system (1.3) if there exist functions \((\sigma , \vartheta ) \in L^{1}([1,T], \mathbb{R})\times L^{1}([1,T], \mathbb{R}) \) such that \(\sigma (y) \in W(y,w(y),z(y))\), and \(\vartheta (y) \in Z(y,w(y),z(y))\), a.e. \(y\in [1,T]\), and w, z satisfy conditions (1.4) with

$$ w(y)= \frac{1}{\Gamma (\gamma )} \int _{1}^{y} \biggl(\log \frac{y}{\theta } \biggr)^{\gamma -1}\sigma (\theta ) \frac{d\theta }{\theta }, \quad y\in [1,T], $$
(3.2)

and

$$ z(y)= \frac{1}{\Gamma (\zeta )} \int _{1}^{y} \biggl(\log \frac{y}{\theta } \biggr)^{\zeta -1}\vartheta (\theta ) \frac{d\theta }{\theta }, \quad y\in [1,T]. $$
(3.3)

We define the operators \(\mathcal{N}_{1}, \mathcal{N}_{2} : \Sigma \times \Sigma \to \mathcal{L}(\Sigma \times \Sigma ) \) associated with the problem (1.3)–(1.4) by

$$ \mathcal{N}_{1}(w,z): \biggl\{ f_{1}\in \Sigma \times \Sigma : f_{1}(y)= \frac{1}{\Gamma (\gamma )} \int _{1}^{y} \biggl(\log \frac{y}{\theta } \biggr)^{\gamma -1}\sigma (\theta )\frac{d\theta }{\theta }, \sigma \in S_{W,(w,z)} \biggr\} $$
(3.4)

and

$$ \mathcal{N}_{2}(w,z): \biggl\{ f_{2}\in \Sigma \times \Sigma : f_{2}(y)= \frac{1}{\Gamma (\beta )} \int _{1}^{y} \biggl(\log \frac{y}{\theta } \biggr)^{\zeta -1}\vartheta (\theta )\frac{d\theta }{\theta }, \vartheta \in S_{Z,(w,z)} \biggr\} . $$
(3.5)

Then we define an operator \(\mathcal{N}: \Sigma \times \Sigma \to \mathcal{L}(\Sigma \times \Sigma )\)

$$ \mathcal{N}(w,z) (y)= \begin{bmatrix} \mathcal{N}_{1}(w,z)(y) \\ \mathcal{N}_{2}(w,z)(y) \end{bmatrix}, $$
(3.6)

where \(\mathcal{N}_{1}\) and \(\mathcal{N}_{2}\) are, respectively, defined by (3.4) and (3.5).

Theorem 3.6

Let \(\phi _{1}, \phi _{2}: \mathbb{R}^{+}_{0}\to [0,\frac{1}{2})\) be two \(\mathcal{P}\)-functions, and define α on \(\mathbb{R}^{+}_{0}\) by \(\alpha (y)=\phi _{1}(y)+\phi _{2}(y)\). Assume that the following hypotheses hold:

  1. (H1)

    \(W,Z :[1,T]\times \mathbb{R}^{2}\to \mathcal{K}(\mathbb{R})\) are measurable multi-functions for all \(w, z \in \mathbb{R}\).

  2. (H2)

    For w, , z, and \(\bar{z} \in \mathbb{R}\), we have

    $$ \begin{gathered} H_{\rho } \bigl(W \bigl(y,w(y), z(y) \bigr), W \bigl(y,\bar{w}(y), \bar{z}(y) \bigr) \bigr)\\\quad \leq \frac{\Gamma (\gamma +1)}{(\log (T))^{\gamma }} \phi _{1} \bigl( \vert w-\bar{w} \vert + \vert z- \bar{z} \vert \bigr) \bigl( \vert w- \bar{w} \vert + \vert z-\bar{z} \vert \bigr)\end{gathered} $$

    and

    $$\begin{gathered} H_{\rho } \bigl(Z \bigl(y,w(y), z(y) \bigr), Z \bigl(y,\bar{w}(y), \bar{z}(y) \bigr) \bigr)\\\quad \leq \frac{\Gamma (\zeta +1)}{(\log (T))^{\zeta }} \phi _{2} \bigl( \vert w-\bar{w} \vert + \vert z- \bar{z} \vert \bigr) \bigl( \vert w- \bar{w} \vert + \vert z-\bar{z} \vert \bigr),\end{gathered} $$

    for all \(y\in [1, T]\).

If α verifies the Mizoguchi–Takahashi’s condition, the problem (1.3)(1.4) has at least one solution on \([1, T] \).

Proof

We shall show that \(\mathcal{N}:\Sigma \times \Sigma \to \mathcal{L}(\Sigma \times \Sigma )\) given in (3.6) has a fixed point. First we show that \(\mathcal{N}\) is a closed subset of \(\mathcal{L}(\Sigma \times \Sigma )\) for each \((w, z)\in \Sigma \times \Sigma \).

Let \((f_{n}, \bar{f}_{n}) \in \mathcal{N}(w_{n}, z_{n})\) be a sequence such that \((f_{n},\bar{f}_{n}) \to (f, \bar{f})\) in \(\Sigma \times \Sigma \) whenever \(n\to +\infty \). Then there exist a \(\sigma _{n} \in S_{W,(w_{n},z_{n})} \), and \(\vartheta _{n} \in S_{Z,(w_{n},z_{n})}\) such that, for each \(y\in [1,T]\), we get

$$\begin{aligned}& \begin{gathered} f_{n}(y)= \frac{1}{\Gamma (\gamma )} \int _{1}^{y} \biggl(\log \frac{y}{\theta } \biggr)^{\gamma -1}\sigma _{n}(\theta ) \frac{d\theta }{\theta }, \\ \bar{f}_{n}(y)= \frac{1}{\Gamma (\zeta )} \int _{1}^{y} \biggl(\log \frac{y}{\theta } \biggr)^{\zeta -1}\vartheta _{n}(\theta ) \frac{d\theta }{\theta }. \end{gathered} \end{aligned}$$

By compactness of W and Z, the sequences \((\sigma _{n})_{n \geq 1}\) and \((\vartheta _{n})_{n \geq 1}\) have sub-sequences, still denoted by \((\sigma _{n})_{n \geq 1}\) and \((\vartheta _{n})_{n \geq 1}\) which converge strongly to \(\sigma \in L^{1}([1,T], \mathbb{R})\) and \(\vartheta \in L^{1}([1,T], \mathbb{R})\), respectively. Indeed for every \(\varpi \in W(y,w(y),z(y))\), we get

$$ \bigl\vert \sigma _{n}(y)-\sigma (y) \bigr\vert \leq \bigl\vert \sigma _{n}(y)-\varpi \bigr\vert + \vert \varpi - \sigma \vert , $$

which implies

$$\begin{aligned} \bigl\vert \sigma _{n}(y)-\sigma (y) \bigr\vert &\leq H_{\rho } \bigl(W(y,w_{n},z_{n}), W(y,w,z) \bigr) \\ &\leq \frac{\Gamma (\gamma +1)}{(\log (T))^{\gamma }} \phi _{1} \bigl( \vert w_{n}-w \vert + \vert z_{n}-z \vert \bigr) \bigl( \vert w_{n}-w \vert + \vert z_{n}-z \vert \bigr). \end{aligned}$$

Since \(\Vert (w_{n}-w,z_{n}-z) \Vert \to 0 \), we have \(\phi _{1}( \Vert w_{n}-w,z_{n}-z \Vert )( \Vert w_{n}-w,z_{n}-z \Vert )\to 0 \) and hence \(\sigma \in S_{W,(w,z)}\). By the same process we show \(\vartheta \in S_{Z,(w,z)}\). Thus, for each \(y\in J\)

$$ f_{n}(y) \to f(y)=\frac{1}{\Gamma (\gamma )} \int _{1}^{y} \biggl( \log \frac{y}{\theta } \biggr)^{\gamma -1}\sigma (\theta ) \frac{d\theta }{\theta } $$

and

$$ \bar{f}_{n}(y) \to \bar{f}(y)=\frac{1}{\Gamma (\zeta )} \int _{1}^{y} \biggl(\log \frac{y}{\theta } \biggr)^{\zeta -1}\vartheta (\theta ) \frac{d\theta }{\theta }. $$

So \((f,\bar{f})\in \mathcal{N}(w,z)\) and \(\mathcal{N}\) is a closed map.

Next for \(w, \bar{w}, z, \bar{z}\in \Sigma \), we show

$$ H_{\rho } \bigl(\mathcal{N}(w,z),\mathcal{N}(\bar{w},\bar{w}) \bigr)\leq \alpha \bigl( \Vert w- \bar{w} \Vert + \Vert z-\bar{z} \Vert \bigr) \bigl( \Vert w-\bar{w} \Vert + \Vert z-\bar{z} \Vert \bigr). $$

Let \(((w, \bar{w}), (z, \bar{z}))\in \Sigma \times \Sigma \), and \((f_{1}, \bar{f}_{2})\in \mathcal{N}(w,z)\). Then there exist \(\sigma _{1}(y)\in S_{W, (w,z)}\) and \(\vartheta _{1}(y)\in S_{Z, (w,z)}\) such that, for each \(y\in [1,T]\),

$$ f_{1}(y)=\frac{1}{\Gamma (\gamma )} \int _{1}^{y} \biggl(\log \frac{y}{\theta } \biggr)^{\gamma -1}\sigma _{1}(\theta ) \frac{d\theta }{\theta } $$

and

$$ \bar{f}_{1}(y)=\frac{1}{\Gamma (\zeta )} \int _{1}^{y} \biggl(\log \frac{y}{\theta } \biggr)^{\zeta -1}\vartheta _{1}(\theta ) \frac{d\theta }{\theta }. $$

From (H2) it follows that

$$ H_{\rho } \bigl(W(y,w,z), W(y,\bar{w}, \bar{z}) \bigr)\leq \frac{\Gamma (\gamma +1)}{(\log (T))^{\gamma }} \phi _{1} \bigl( \vert w-\bar{w} \vert + \vert z- \bar{z} \vert \bigr) \bigl( \vert w-\bar{w} \vert + \vert z-\bar{z} \vert \bigr) $$

and

$$ H_{\rho } \bigl(Z(y,w, z), Z(y,\bar{w}, \bar{z}) \bigr)\leq \frac{\Gamma (\zeta +1)}{(\log (T))^{\zeta }} \phi _{2} \bigl( \vert w-\bar{w} \vert + \vert z- \bar{z} \vert \bigr) \bigl( \vert w-\bar{w} \vert + \vert z-\bar{z} \vert \bigr), $$

Thus, there exist \(\varrho \in W(y,\bar{w}, \bar{z})\) and \(\varpi \in Z(y,\bar{w}, \bar{z})\) provided that

$$ \bigl\vert \sigma _{1}(y)-\varrho \bigr\vert \leq \frac{\Gamma (\gamma +1)}{(\log (T))^{\gamma }} \phi _{1} \bigl( \vert w-\bar{w} \vert + \vert z- \bar{z} \vert \bigr) \bigl( \vert w-\bar{w} \vert + \vert z-\bar{z} \vert \bigr), \quad y\in [1,T], $$

and

$$ \bigl\vert \vartheta _{1}(y)-\varpi \bigr\vert \leq \frac{\Gamma (\zeta +1)}{(\log (T))^{\zeta }} \phi _{2} \bigl( \vert w-\bar{w} \vert + \vert z- \bar{z} \vert \bigr) \bigl( \vert w-\bar{w} \vert + \vert z-\bar{z} \vert \bigr), \quad y\in [1,T]. $$

Define \(U_{1}, U_{2}: [1, T]\to \mathcal{L}(\mathbb{R})\) given by

$$ U_{1}(y)= \biggl\{ \varrho \in \mathbb{R}: \bigl\vert \sigma _{1}(y)-\varrho \bigr\vert \leq \frac{\Gamma (\gamma +1)}{(\log (T))^{\gamma }} \phi _{1} \bigl( \vert w-\bar{w} \vert + \vert z- \bar{z} \vert \bigr) \bigl( \vert w-\bar{w} \vert + \vert z-\bar{z} \vert \bigr) \biggr\} $$

and

$$ U_{2}(y)= \biggl\{ \varpi \in \mathbb{R}: \bigl\vert \vartheta _{1}(y)-\varpi \bigr\vert \leq \frac{\Gamma (\zeta +1)}{(\log (T))^{\zeta }} \phi _{2} \bigl( \vert w-\bar{w} \vert + \vert z- \bar{z} \vert \bigr) \bigl( \vert w-\bar{w} \vert + \vert z-\bar{z} \vert \bigr) \biggr\} . $$

Since \(U_{1}(y) \cap W(y, \bar{w}, \bar{z})\) and \(U_{2}(y) \cap Z(y, \bar{w}, \bar{z})\) are two measurable operators [38], we can find a measurable selection \(\sigma _{2}(y)\) for \(U_{1}(y) \cap W(y, \bar{w}, \bar{z})\) and a measurable selection \(\vartheta _{2}(y)\) for \(U_{2}(y) \cap Z(y, \bar{w}, \bar{z})\). Thus \(\sigma _{2}(y)\in W(y,\bar{w}(y), \bar{z}(y))\), \(\vartheta _{2}(y)\in Z(y,\bar{w}(y), \bar{z}(y))\), and for each \(y\in [1,T]\), we have

$$ \bigl\vert \sigma _{1}(y)-\sigma _{2}(y) \bigr\vert \leq \frac{\Gamma (\gamma +1)}{(\log (T))^{\gamma }} \phi _{1} \bigl( \vert w-\bar{w} \vert + \vert z- \bar{z} \vert \bigr) \bigl( \vert w-\bar{w} \vert + \vert z- \bar{z} \vert \bigr) $$

and

$$ \bigl\vert \vartheta _{1}(y)-\vartheta _{2}(y) \bigr\vert \leq \frac{\Gamma (\zeta +1)}{(\log (T))^{\zeta }} \phi _{2} \bigl( \vert w-\bar{w} \vert + \vert z- \bar{z} \vert \bigr) \bigl( \vert w-\bar{w} \vert + \vert z-\bar{z} \vert \bigr). $$

We define \(f_{2}(y)\) for each \(y\in [1,T]\), as follows:

$$ f_{2}(y)=\frac{1}{\Gamma (\gamma )} \int _{1}^{y} \biggl(\log \frac{y}{\theta } \biggr)^{\gamma -1}\sigma _{2}(\theta ) \frac{d\theta }{\theta } $$

and

$$ \bar{f}_{2}(y)=\frac{1}{\Gamma (\zeta )} \int _{1}^{y} \biggl(\log \frac{y}{\theta } \biggr)^{\zeta -1}\vartheta _{2}(\theta ) \frac{d\theta }{\theta }. $$

Then for \(y \in [1,T]\)

$$\begin{aligned} & \bigl\vert f_{1}(y)-f_{2}(y) \bigr\vert \\ &\quad \leq \frac{1}{\Gamma (\gamma )} \int _{1}^{y} \biggl(\log \frac{y}{\theta } \biggr)^{\gamma -1} \bigl\vert \sigma _{1}(\theta )- \sigma _{2}(\theta ) \bigr\vert \frac{d\theta }{\theta } \\ &\quad \leq \frac{1}{\Gamma (\gamma )} \int _{1}^{y} \biggl(\log \frac{y}{\theta } \biggr)^{\gamma -1} \frac{d\theta }{\theta } \frac{\Gamma (\gamma +1)}{(\log (T))^{\gamma }} \phi _{1} \bigl( \vert w-\bar{w} \vert + \vert z- \bar{z} \vert \bigr) \bigl( \vert w-\bar{w} \vert + \vert z-\bar{z} \vert \bigr) \\ &\quad \leq \frac{(\log (T))^{\gamma }}{\Gamma (\gamma +1)} \frac{\Gamma (\gamma +1)}{(\log (T))^{\gamma }} \phi _{1} \bigl( \vert w-\bar{w} \vert + \vert z- \bar{z} \vert \bigr) \bigl( \vert w-\bar{w} \vert + \vert z-\bar{z} \vert \bigr) \\ &\quad \leq \phi _{1} \bigl( \vert w-\bar{w} \vert + \vert z-\bar{z} \vert \bigr) \bigl( \vert w-\bar{w} \vert + \vert z-\bar{z} \vert \bigr) \end{aligned}$$

and

$$\begin{aligned} & \bigl\vert \bar{f}_{1}(y)-\bar{f}_{2}(y) \bigr\vert \\ &\quad \leq \frac{1}{\Gamma (\beta )} \int _{1}^{y} \biggl(\log \frac{y}{\theta } \biggr)^{\zeta -1} \bigl\vert \vartheta _{1}( \theta )-\vartheta _{2}(\theta ) \bigr\vert \frac{d\theta }{\theta } \\ &\quad \leq \frac{1}{\Gamma (\zeta )} \int _{1}^{y} \biggl(\log \frac{y}{\theta } \biggr)^{\zeta -1} \frac{d\theta }{\theta } \frac{\Gamma (\zeta +1)}{(\log (T))^{\zeta }} \phi _{2} \bigl( \vert w-\bar{w} \vert + \vert z- \bar{z} \vert \bigr) \bigl( \vert w-\bar{w} \vert + \vert z-\bar{z} \vert \bigr) \\ &\quad \leq \frac{(\log (T))^{\zeta }}{\Gamma (\zeta +1)} \frac{\Gamma (\beta +1)}{(\log (T))^{\zeta }} \phi _{2} \bigl( \vert w-\bar{w} \vert + \vert z- \bar{z} \vert \bigr) \bigl( \vert w-\bar{w} \vert + \vert z-\bar{z} \vert \bigr) \\ &\quad \leq \phi _{2} \bigl( \vert w-\bar{w} \vert + \vert z-\bar{z} \vert \bigr) \bigl( \vert w-\bar{w} \vert + \vert z-\bar{z} \vert \bigr). \end{aligned}$$

Therefore,

$$\begin{aligned}& \Vert f_{1}-f_{2} \Vert \leq \phi _{1} \bigl( \Vert w-\bar{w} \Vert + \Vert z-\bar{z} \Vert \bigr) \bigl( \Vert w- \bar{w} \Vert + \Vert z-\bar{z} \Vert \bigr), \\& \Vert \bar{f}_{1}-\bar{f}_{2} \Vert \leq \phi _{2} \bigl( \Vert w-\bar{w} \Vert + \Vert z-\bar{z} \Vert \bigr) \bigl( \Vert w-\bar{w} \Vert + \Vert z-\bar{z} \Vert \bigr). \end{aligned}$$

It follows that

$$\begin{aligned} & H_{\rho } \bigl(\mathcal{N}(w,z), \mathcal{N}(\bar{w},\bar{z}) \bigr) \\ &\quad \leq \bigl(\phi _{1} \bigl( \Vert w-\bar{w} \Vert + \Vert z- \bar{z} \Vert \bigr)+ \phi _{2} \bigl( \Vert w-\bar{w} \Vert + \Vert z- \bar{z} \Vert \bigr) \bigr) \bigl( \Vert w-\bar{w} \Vert + \Vert z-\bar{z} \Vert \bigr) \\ &\quad \leq \alpha \bigl( \Vert w-\bar{w} \Vert + \Vert z-\bar{z} \Vert \bigr) \bigl( \Vert w-\bar{w} \Vert + \Vert z- \bar{z} \Vert \bigr), \end{aligned}$$

for all \(w ,\bar{w}, z, \bar{z} \in \Sigma \). By hypothesis, since the function α fulfilled the Mizoguchi–Takahashi’s condition it is an \(\mathcal{MT}\)-function, and by Lemma 3.4\(\mathcal{N}\) has a fixed point \((w^{*}, z^{*})\in \Sigma \times \Sigma \) that is a solution to the system (1.3)–(1.4). The proof is now complete. □

Example

Consider the following coupled Caputo–Hadamard fractional differential inclusions with separated boundary conditions:

$$ \textstyle\begin{cases} {^{Hc}}\mathcal{D}^{\gamma }w(y) \in W(y,w(y), z(y)), \quad y\in J=[1,2], 1 < \gamma \leq 2, \\ {^{Hc}}\mathcal{D}^{\zeta }z(y) \in Z(y,w(y), z(y)), \quad y\in J=[1,2], 1 < \zeta \leq 2, \\ w(1) =0 \quad\quad \delta w(2)=\delta w(1)=0, \\ z(1) =0 \quad\quad \delta z(2)=\delta z(1)=0. \end{cases} $$
(4.1)

Here \(W, Z: [1,2]\times \mathbb{R}^{2} \to \mathcal{L}(\mathbb{R})\) are multivalued maps given by

$$\begin{aligned}& W \bigl(y, w(y), z(y) \bigr)= \biggl[ 0, \frac{1}{3}\log \bigl\vert z(y) \bigr\vert + \frac{1}{(y+2)} \frac{ \vert w(y) \vert }{1+ \vert w(y) \vert } \biggr]. \end{aligned}$$
(4.2)
$$\begin{aligned}& Z \bigl(y, w(y), z(y) \bigr)= \biggl[ 0, \frac{1}{6} \arctan ^{2} \bigl( \bigl\vert w(y) \bigr\vert \bigr)+ \frac{\arctan ( \vert z(y) \vert )}{(2y+4)(1+ \vert z(y) \vert )} \biggr]. \end{aligned}$$
(4.3)

Choose \(\mathcal{P}\)-functions by

$$ \phi _{1}(u)= \textstyle\begin{cases} \frac{u}{3} &0\leq u < \frac{3}{2}, \\ 0 &u \geq \frac{3}{2} , \end{cases} $$

and \(\phi _{2}(u)= \frac{\phi _{1}(u)}{2}+\frac{1}{4}\) for all \(u\in [0,\infty )\). It is obvious that \(\phi _{i}(u)\), \(i=1,2\), are \(\mathcal{P}\)-functions. Consider a sequence \(\{\epsilon _{n}\} \subset [1,2]\subset [0, \infty )\) given by

$$ \epsilon _{n}= \textstyle\begin{cases} \frac{3n}{2} &n < 1, \\ 0 &n \geq 1 . \end{cases} $$

We obtain

$$\begin{aligned} H_{\rho } \bigl(W(y, w,z), W(y, \bar{w}, \bar{z}) \bigr)&\leq \biggl\vert \frac{1}{3} \bigl( \log (z)-\log (\bar{z}) \bigr) \biggr\vert + \biggl\vert \frac{1}{(y+2)} \frac{w-\bar{w}}{(1+w)(1+\bar{w})} \biggr\vert \\ &\leq \frac{1}{3} \bigl( \vert z-\bar{z} \vert + \vert w-\bar{w} \vert \bigr) \\ &< \frac{\Gamma (\gamma +1)}{\log (2)} \phi _{1} \bigl( \Vert w-\bar{w} \Vert + \Vert z- \bar{z} \Vert \bigr) \bigl( \Vert w-\bar{w} \Vert + \Vert z- \bar{z} \Vert \bigr) \end{aligned}$$

and

$$\begin{aligned} H_{\rho } \bigl(Z(y, w,z), Z(y, \bar{w}, \bar{z}) \bigr) \leq &\biggl\vert \frac{1}{6} \bigl( \arctan ^{2}(w)-\arctan ^{2}( \bar{w}) \bigr) \biggr\vert + \biggl\vert \frac{1}{2y+4} \frac{\arctan (z)-\arctan (\bar{z})}{(1+z)(1+\bar{z})} \biggr\vert \\ \leq &\frac{1}{6} \bigl( \vert w-\bar{w} \vert + \vert z-\bar{z} \vert \bigr) \\ < & \frac{\Gamma (\zeta +1)}{\log (2)} \phi _{2} \bigl( \Vert w-\bar{w} \Vert + \Vert z- \bar{z} \Vert \bigr) \bigl( \Vert w-\bar{w} \Vert + \Vert z- \bar{z} \Vert \bigr) . \end{aligned}$$

Hence the condition (H2) holds for w, z, and \(\bar{w} \in \mathbb{R}\) a.e. \(1<\gamma , \zeta \leq 2\). We see that \((\epsilon _{n})_{n\in \mathbb{N}}\) is a strictly decreasing sequence; then

$$\begin{aligned}& 0\leq \sup_{n\in \mathbb{N}} \bigl(\phi _{1}(\epsilon _{n}) \bigr)< \frac{1}{2} \quad \text{and} \quad 0\leq \sup _{n\in \mathbb{N}} \bigl(\phi _{2}( \epsilon _{n}) \bigr)= \frac{1}{2}\sup_{n\in \mathbb{N}} \bigl(\phi _{1}( \epsilon _{n}) \bigr)+\frac{1}{4}< \frac{1}{2}, \\& \sup_{n \in \mathbb{N}} \alpha (\epsilon _{n})= \sup _{n\in \mathbb{N}} \bigl(\phi _{1}(\epsilon _{n})+\phi _{2}(\epsilon _{n}) \bigr)< \frac{1}{2}+ \frac{1}{2}< 1. \end{aligned}$$

It ensures that α is a function of a contractive factor, and thus verifies the Mizoguchi–Takahashi’s condition. We showed that all the hypotheses of Theorem 3.6 are fulfilled, then the system (4.1) with W and Z provided by (4.2) and (4.3) has at least one solution on \([1,2]\).

Conclusions

This paper was focused on the existence theory of solutions for coupled fractional differential inclusions involving Caputo–Hadamard type fractional derivative equipped with uncoupled boundary conditions. We make use of Mizoguchi–Takahashi’s fixed point theorem for multivalued maps to reach the desired results, which are well illustrated with the aid of an example. The technique developed in the present work can also be used to give results for boundary value problems of coupled fractional differential inclusions consisting of different types of fractional derivatives along with a variety of boundary value conditions.

Availability of data and materials

Not applicable.

References

  1. Benchohra, M., Bouriah, S., Nieto, J.J.: Terminal value problem for differential equations with Hilfer–Katugampola fractional derivative. Symmetry 11(5), 67 (2019)

    Article  Google Scholar 

  2. Karapinar, E., Abdeljawad, T., Jarad, F.: Applying new fixed point theorems on fractional and ordinary differential equations. Adv. Differ. Equ. 2019(1), 421 (2019)

    MathSciNet  Article  Google Scholar 

  3. Haq, F., Shah, K., Al-Mdallal, Q.M., Jarad, F.: Application of a hybrid method for systems of fractional order partial differential equations arising in the model of the one-dimensional Keller–Segel equation. Eur. Phys. J. Plus 134(9), 461 (2019)

    Article  Google Scholar 

  4. Belmor, S., Ravichandran, C., Jarad, F.: Nonlinear generalized fractional differential equations with generalized fractional integral conditions. J. Taibah Univ. Sci. (2020). https://doi.org/10.1080/16583655.2019.1709265

    Article  Google Scholar 

  5. Panda, S.K., Ravichandran, C., Hazarika, B.: Results on system of Atangana–Baleanu fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems. Chaos Solitons Fractals 142, 110390 (2021)

    MathSciNet  Article  Google Scholar 

  6. Panda, S.K., Abdeljawad, T., Ravichandran, C.: Novel fixed point approach to Atangana–Baleanu fractional and \(L^{p}\)-Fredholm integral equations. Alex. Eng. J. 59(4), 1959–1970 (2020)

    Article  Google Scholar 

  7. Panda, S.K.: Applying fixed point methods and fractional operators in the modelling of novel coronavirus 2019-nCoV/SARS-CoV-2. Results Phys. 19, 103433 (2020)

    Article  Google Scholar 

  8. Ardjouni, A., Djoudi, A.: Existence and uniqueness of solutions for nonlinear implicit Caputo–Hadamard fractional differential equations with nonlocal conditions. Adv. Theory Nonlinear Anal. Appl. 3(1), 46–52 (2019)

    MATH  Google Scholar 

  9. Ardjouni, A., Djoudi, A.: Existence and uniqueness of solutions for nonlinear hybrid implicit Caputo–Hadamard fractional differential equations. Results Nonlinear Anal. 2(3), 136–142 (2019)

    MATH  Google Scholar 

  10. Karapinar, E., Binh, H.D., Luc, N.H., Can, N.H.: On continuity of the fractional derivative of the time-fractional semilinear pseudo-parabolic systems. Adv. Differ. Equ. 2021, 70 (2021)

    MathSciNet  Article  Google Scholar 

  11. Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Composition of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 269(2), 387–400 (2002)

    MathSciNet  Article  Google Scholar 

  12. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific, Singapore (2010)

    Book  Google Scholar 

  13. Kilbas, A., Trujillo, J.: Hadamard-type integrals as G-transforms. Integral Transforms Spec. Funct. 14(5), 413–427 (2003)

    MathSciNet  Article  Google Scholar 

  14. Podlubny, I., Chechkin, A., Skovranek, T., Chen, Y., Jara, B.M.V.: Matrix approach to discrete fractional calculus II: partial fractional differential equations. J. Comput. Phys. 228(8), 3137–3153 (2009)

    MathSciNet  Article  Google Scholar 

  15. Jarad, F., Abdeljawad, T., Baleanu, D.: Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 142 (2012)

    MathSciNet  Article  Google Scholar 

  16. Gambo, Y.Y., Jarad, F., Baleanu, D., Abdeljawad, T.: On Caputo modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2014(1), 10 (2014)

    MathSciNet  Article  Google Scholar 

  17. Mordukhovich, B.S., Wang, L.: Optimal control of neutral functional-differential inclusions. SIAM J. Control Optim. 43(1), 111–136 (2004)

    MathSciNet  Article  Google Scholar 

  18. Makarova, A.V.: On solvability of stochastic differential inclusions with current velocities II. Glob. Stoch. Anal. 2(1), 101–112 (2012)

    MATH  Google Scholar 

  19. Jafarian, M.: Robust consensus of unicycles using ternary and hybrid controllers. Int. J. Robust Nonlinear Control 27(17), 4013–4034 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Ben-Naim, E., Knight, J.B., Nowak, E.R., Jaeger, H.M., Nagel, S.R.: Slow relaxation in granular compaction. Phys. D: Nonlinear Phenom. 123(1–4), 380–385 (1998)

    Google Scholar 

  21. Sayed, E., Ibrahim, A.G.: Multivalued fractional differential equations of arbitrary orders. Appl. Math. Comput. 68, 15–25 (1995)

    MathSciNet  MATH  Google Scholar 

  22. Yang, D., Bai, C.: Existence of solutions for anti-periodic fractional differential inclusions involving ψ-Riesz–Caputo fractional derivative. Mathematics 7(7), 630 (2019)

    Article  Google Scholar 

  23. Ahmad, B., Ntouyas, S.K.: Existence results for fractional differential inclusions arising from real estate asset securitization and HIV models. Adv. Differ. Equ. 2013(1), 216 (2013)

    MathSciNet  Article  Google Scholar 

  24. Graef, J.R., Guerraiche, N., Hamani, S.: Initial value problems for fractional functional differential inclusions with Hadamard type derivatives in Banach spaces. Math. Appl. 13, 27–40 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Ibrahim, A.G.: Differential equations and inclusions of fractional order with impulse effects in Banach spaces. Bull. Malays. Math. Sci. Soc. 43(1), 69–109 (2020)

    MathSciNet  Article  Google Scholar 

  26. Zhai, C., Ren, J.: A coupled system of fractional differential equations on the half-line. Bound. Value Probl. 2019(1), 117 (2019)

    MathSciNet  Article  Google Scholar 

  27. Alsaedi, A., Baleanu, D., Etemad, S., Rezapour, S.: On coupled systems of time-fractional differential problems by using a new fractional derivative. J. Funct. Spaces 2016, Article ID 4626940 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Ali, Z., Zada, A., Shah, K.: On Ulam’s stability for a coupled systems of nonlinear implicit fractional differential equations. Bull. Malays. Math. Sci. Soc. 42(5), 2681–2699 (2019)

    MathSciNet  Article  Google Scholar 

  29. Ahmad, B., Ntouyas, S.K., Alsaedi, A.: Coupled systems of fractional differential inclusions with coupled boundary conditions. Electron. J. Differ. Equ. 2019, 69 (2019)

    MathSciNet  Article  Google Scholar 

  30. Hu, S., Papageorgiou, N.: Handbook of Multivalued Analysis, Volume I: Theory. Kluwer Academic, Dordrecht (1997)

    Book  Google Scholar 

  31. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Book  Google Scholar 

  32. Kisielewicz, M.: Differential Inclusions and Optimal Control. Kluwer Academic, Dordrecht (1991)

    MATH  Google Scholar 

  33. Pathak, H.K., Agarwal, R.P., Cho, Y.J.: Coincidence and fixed points for multi-valued mappings and its application to nonconvex integral inclusions. J. Comput. Appl. Math. 283, 201–217 (2015)

    MathSciNet  Article  Google Scholar 

  34. Mizoguchi, N., Takahashi, W.: Fixed point theorems for multivalued mappings on complete metric space. J. Math. Anal. Appl. 141, 177–188 (1989)

    MathSciNet  Article  Google Scholar 

  35. Du, W.-S.: Some new results and generalizations in metric fixed point theory. Nonlinear Anal. 73, 1439–1446 (2010)

    MathSciNet  Article  Google Scholar 

  36. Du, W.-S.: Coupled fixed point theorems for nonlinear contractions satisfied Mizoguchi–Takahashi’s condition in quasiordered metric spaces. Fixed Point Theory Appl. 2010, Article ID 876372 (2010)

    MathSciNet  Article  Google Scholar 

  37. Reiche, S.: Some fixed point problems. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. 57, 194–198 (1974)

    MathSciNet  Google Scholar 

  38. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580. Springer, Berlin (1977)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the administration of their institutions for their support.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equally made contributions in this paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Fahd Jarad or Thabet Abdeljawad.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belmor, S., Jarad, F. & Abdeljawad, T. On Caputo–Hadamard type coupled systems of nonconvex fractional differential inclusions. Adv Differ Equ 2021, 377 (2021). https://doi.org/10.1186/s13662-021-03534-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-021-03534-2

Keywords

  • Hadamard fractional integral
  • Hadamard–Caputo fractional derivative
  • \(\mathcal{MT}\)-function
  • \(\mathcal{P}\)-function
  • Mizoguchi–Takahashi’s condition