Skip to main content

Solvability for generalized nonlinear two dimensional functional integral equations via measure of noncompactness

Abstract

In this article, we provide the existence result for functional integral equations by using Petryshyn’s fixed point theorem connecting the measure of noncompactness in a Banach space. The results enlarge the corresponding results of several authors. We present fascinating examples of equations.

Introduction

FIEs play a very significant role in many areas of fixed point theory, and they have many applications in various areas of mathematical physics, engineering, mathematical biology, population dynamics, natural science, and mechanics (see [1, 7, 15, 19, 20, 26, 33]). It has been seen that integral equations have a large number of applications to finding the existence solution of integro-differential equations, differential equations, and fractional differential equations. Recently, many authors have used the MNC technique associated with Darbo’s fixed point theorem [3] to examine the existence and uniqueness results of various types of FIEs. The details of this type of work can be found in these articles (see [46, 8, 9, 1114, 17, 18, 24, 25, 30, 32, 34, 35] and the references therein).

In this work, we use Petryshyn’s fixed point theorem [29] instead of Darbo’s fixed point theorem to establish the existence of solutions for the following FIE:

$$\begin{aligned} z(s, \zeta ) = & G(s, \zeta ) + F \biggl(s, \zeta , f \bigl(s, \zeta , z(s, \zeta )\bigr), \int _{0}^{s} \int _{0}^{\zeta }g\bigl(s, \zeta , \xi , \eta , z( \xi , \eta )\bigr)\,d\eta \,d\xi , \\ & {} \int _{0}^{c} \int _{0}^{d}h\bigl(s, \zeta , \xi , \eta , z(\xi , \eta )\bigr)\,d\eta \,d\xi \biggr), \end{aligned}$$
(1)

where \((s, \zeta ) \in I = [0, c]\times [0, d]\). Recently several authors used Petryshyn’s fixed point theorem to find the existence of solutions for nonlinear FIEs in Banach spaces as well as Banach algebra (for instance see [10, 21, 22, 31] and the references therein). The following statements explain the main causes why we use equation (1) and what is the perfection of our work. The first is that the conditions in various papers will be analyzed, and the second reason is that this paper unifies the relevant work in this area. The third condition is the bounded condition shows that the “sublinear condition” that has been discussed in several literature works does not have a significant role.

The paper is divided into five sections including the introduction. In Sect. 2, we present some preliminaries and define the concept of MNC. Section 3 states and proves an existence result for equations including condensing operators using Petryshyn’s fixed point theorem. In Sect. 4 we give examples that test the utilization of this kind of FIE. Finally, Sect. 5 concludes the paper.

Preliminaries

In this work, X is a real Banach space and \(B_{\tilde{r}} \) denotes closed ball center at 0 with radius and \(\partial B_{r} = \{ z \in X: \|z\| = \tilde{r} \}\) for the sphere in X around 0 with radius \(\tilde{r} > 0\). MNCs are valuable tools in the analysis of existence in the operator equations and theory of fixed point in X.

Definition 2.1

([23])

Let \(Y\in M_{X}\) and

$$ \mu (Y) = \inf \Biggl\{ \epsilon > 0 : Y = \bigcup_{i = 1}^{n} Y_{i} \text{ with }\operatorname{diam} Y_{i} \leq \epsilon , i = 1,2,\ldots,n \Biggr\} . $$

Hence, \(0 \leq \vartheta (Y) < \infty \). \(\vartheta (Y)\) is called the Kuratowski MNC.

Definition 2.2

([16])

The Hausdorff MNC

$$ \vartheta (Y) = \inf \{ \epsilon > 0 : \text{there exists a finite $\epsilon $-net for Y in $X$ } \} , $$
(2)

where from a finite ϵ-net for Y in X that means a set \(\{z_{1}, z_{2},\ldots,z_{n}\}\subset X\) such that the ball \(B_{\epsilon }(X, z_{1}), B_{\epsilon }(X, z_{2}),\ldots,B_{\epsilon }(X, z_{n}) \) over Y. These MNCs are mutually equivalent in the sense that

$$ \vartheta (Y) \leq \hat{\beta }(Y)\leq 2\vartheta (Y) $$

for a bounded set \(Y \subset X\).

Theorem 2.1

Let \(Y, \hat{Y} \in M_{X}\) and \(\lambda \in \mathbb{R}\). Then

  1. (i)

    \(\vartheta (Y) = 0\) if and only if \(Y \in M_{X}\);

  2. (ii)

    \(Y \subseteq \hat{Y}\) implies \(\vartheta (Y) \leq \vartheta (\hat{Y})\);

  3. (iii)

    \(\vartheta (\operatorname{Conv} Y) = \vartheta (Y)\);

  4. (iv)

    \(\vartheta (Y \cup \hat{Y}) = \max \{ \vartheta (Y), \vartheta ( \hat{Y}) \}\);

  5. (v)

    \(\vartheta (\lambda Y) = |\lambda | \vartheta (Y)\);

  6. (vi)

    \(\vartheta (Y + \hat{Y}) \leq \vartheta (Y) + \vartheta (\hat{Y})\).

Here, we consider the Banach space \(C(I, \mathbb{R})\) with the usual norm

$$ \Vert z \Vert = \max \bigl\{ \bigl\vert z(s, \zeta ) \bigr\vert : (s, \zeta ) \in I \bigr\} . $$

Let \(X \in C(I, \mathbb{R})\). Given \(\epsilon > 0\), the modulus of continuity of \(z \in Y\) is defined as

$$ \omega (z, \epsilon ) = \sup \bigl\{ \bigl\vert z(s, \zeta ) - z(\hat{s}, \hat{\zeta }) \bigr\vert : s, \hat{s} \in [0, c], \zeta , \hat{\zeta }\in [0, d], \vert s - \hat{s} \vert \leq \epsilon , \vert \zeta - \hat{\zeta } \vert \leq \epsilon \bigr\} . $$

Further

$$ \omega (Y, \epsilon ) = \sup \bigl\{ \omega (z, \epsilon ): z \in Y \bigr\} ,\qquad \omega _{0} (Y) = \lim_{\epsilon \rightarrow 0} \omega (Y, \epsilon ). $$

Theorem 2.2

([21])

The Hausdorff MNC is similar to

$$ \mu (Y) = \lim_{\epsilon \rightarrow 0} \sup \omega (z, \epsilon ) $$
(3)

for all bounded set \(Y \subset C(I, \mathbb{R})\).

Theorem 2.3

([27])

Let \(H : X \rightarrow X \) be a continuous mapping of X. H is called a k set contraction if, for all \(D \subset X\) with D bounded, \(H(D) \) is bounded and \(\hat{\beta } (HD) \leq k \hat{\beta }(D)\), \(k \in (0,1)\). If \(\hat{\beta }(HD) < \hat{\beta }(D)\) for all \(\hat{\beta }(D) > 0\), then H is called densifying or condensing map.

Theorem 2.4

([29])

Let \(H : B_{\tilde{r}} \rightarrow X \) be a condensing function which fulfills the boundary condition if \(H(z) = kz\) for some \(z\in \partial B_{r}\), then \(k \leq 1\). Then \(F(H)\) in \(B_{\tilde{r}}\) is nonempty, where \(F(H)\) is the set of fixed points of H.

Main results

Now, we study the main aim of equation (1). Namely, we assume the following assumptions:

  1. (1)

    \(G \in C(I, \mathbb{R})\), \(F\in C(I_{1} \times \mathbb{R}\times \mathbb{R}, \mathbb{R} )\), \(f\in C(I \times \mathbb{R}, \mathbb{R})\), \(g, h\in C(I_{2} \times \mathbb{R}, \mathbb{R})\), where

    $$\begin{aligned} &I = I_{c} \times I_{d}, \qquad I_{1} = \bigl\{ (s, \zeta , f) : 0 \leq s \leq c, 0 \leq \zeta \leq d, \xi \in \mathbb{R}\bigr\} , \\ &I_{2}= \bigl\{ (s, t, \xi , \eta ) \in I^{2} : 0 \leq \xi \leq s \leq c, 0 \leq \eta \leq \zeta \leq d \bigr\} ; \end{aligned}$$
  2. (2)

    There exist nonnegative constants \(k_{1}, k_{2}, k_{3}, k_{4}, k_{1} k_{4} < 1 \) such that

    $$\begin{aligned} &\bigl\vert F(s, \zeta , z, u, x) - F(s, \zeta , \hat{z}, \hat{u}, \hat{x} \bigr\vert \leq k_{1} \vert z - \hat{z} \vert + k_{2} \vert u - \hat{u} \vert + k_{3} \vert x - \hat{x} \vert ; \\ &\bigl\vert f(s, \zeta , z) - f(s, \zeta , \hat{z} \bigr\vert \leq k_{4} \vert z - \hat{z} \vert ; \end{aligned}$$
  3. (3)

    There exists \(\tilde{r} > 0 \) such that the resulting bounded condition is fulfilled

    $$\begin{aligned}& \sup \bigl\{ \bigl\vert G(s, \zeta ) : (s, \zeta ) \in I \bigr\vert + \bigl\vert F(s, \zeta , z, u, x) \bigr\vert : (s, \zeta )\in I, z \in [-\tilde{r}, \tilde{r}], \\& \quad u\in [-cdM_{1}, cdM_{1}], x \in [-cdM_{2}, cdM_{2}] \bigr\} \leq \tilde{r}, \end{aligned}$$

    where

    $$\begin{aligned} &M_{1}= \sup \bigl\{ \bigl\vert g(s, \zeta , \xi , \eta , z) \bigr\vert : \text{for all } (s, \zeta , \xi , \eta ) \in I_{2} \text{ and } z \in [-\tilde{r}, \tilde{r}] \bigr\} , \\ &M_{2}= \sup \bigl\{ \bigl\vert h(s, \zeta , \xi , \eta , z) \bigr\vert : \text{for all } (s, \zeta , \xi , \eta ) \in I_{2}\text{ and }z \in [-\tilde{r}, \tilde{r}] \bigr\} . \end{aligned}$$

Theorem 3.1

Under assumptions (1)(3) with \(k_{1} k_{4} < 1 \), equation (1) has at least one solution in X.

Proof

Define \(H : B_{\tilde{r}} \rightarrow X \) in the following form:

$$\begin{aligned} (Hz) (s, \zeta ) =& G(s, \zeta ) + F \biggl(s, \zeta , f\bigl(s, \zeta , z(s, \zeta )\bigr), \int _{0}^{s} \int _{0}^{\zeta }g\bigl(s, \zeta , \xi , \eta , z( \xi , \eta )\bigr)\,d\eta \,d\xi , \\ &{} \int _{0}^{c} \int _{0}^{d} h\bigl(s, \zeta , \xi , \eta , z(\xi , \eta )\bigr)\,d\eta \,d\xi \biggr). \end{aligned}$$

Now, we show that H is continuous on the ball \(B_{\tilde{r}}\). Take \(\epsilon > 0 \) and \(z, x \in B_{\tilde{r}}\) such that \(\|z - x\| < \epsilon \). We get

$$\begin{aligned}& \bigl\vert (Hz) (s, \zeta ) - (Hx) (s, \zeta ) \bigr\vert \\& \quad = \biggl\vert G(s, \zeta ) + F \biggl(s, \zeta , f\bigl(s, \zeta , z(s, \zeta )\bigr), \int _{0}^{s} \int _{0}^{\zeta }g\bigl(s, \zeta , \xi , \eta , z( \xi , \eta )\bigr)\,d\eta \,d\xi , \\& \qquad {} \int _{0}^{c} \int _{0}^{d}h\bigl(s, \zeta , \xi , \eta , z(\xi , \eta )\bigr)\,d\eta \,d\xi \biggr) \\& \qquad {} - G(s, \zeta ) - F \biggl(s, \zeta , f\bigl(s, \zeta , x(s, \zeta )\bigr), \int _{0}^{s} \int _{0}^{\zeta }g\bigl(s, \zeta , \xi , \eta , x(\xi , \eta )\bigr)\,d\eta \,d\xi , \\& \qquad {} \int _{0}^{c} \int _{0}^{d}h\bigl(s, \zeta , \xi , \eta , x(\xi , \eta )\bigr)\,d\eta \,d\xi \biggr) \biggr\vert \\& \quad \leq k_{1} \bigl\vert f\bigl(s, \zeta , z(s, \zeta )\bigr) - f \bigl(s, \zeta , x(s, \zeta )\bigr) \bigr\vert \\& \qquad {} + k_{2} \int _{0}^{s} \int _{0}^{\zeta } \bigl\vert g\bigl(s, \zeta , \xi , \eta , z( \xi , \eta )\bigr) - g\bigl(s, \zeta , \xi , \eta , x(\xi , \eta )\bigr) \bigr\vert \,d\eta \,d\xi \\& \qquad {} + k_{3} \int _{0}^{c} \int _{0}^{d} \bigl\vert h\bigl(s, \zeta , \xi , \eta , z( \xi , \eta )\bigr) - h\bigl(s, \zeta , \xi , \eta , x(\xi , \eta )\bigr) \bigr\vert \,d\eta \,d\xi \\& \quad \leq k_{1}k_{4} \bigl\vert z(s, \zeta ) - x(s, \zeta ) \bigr\vert + k_{2} cd \omega (g, \epsilon ) + k_{3} cd \omega (h, \epsilon ) \\& \quad \leq k_{1}k_{4} \Vert z - x \Vert + k_{2} cd \omega (g, \epsilon ) + k_{3} cd \omega (h, \epsilon ), \end{aligned}$$

where, for \(\epsilon > 0\), we denote

$$\begin{aligned}& \omega (g, \epsilon ) = \sup \bigl\{ \bigl\vert g(s, \zeta , \xi , \eta , z) - g(s, \zeta , \xi , \eta , x) \bigr\vert : (s, \zeta , \xi , \eta )\in I_{2}, z, x \in [-\tilde{r}, \tilde{r}], \Vert z - x \Vert \leq \epsilon \bigr\} , \\& \omega (h, \epsilon ) = \sup \bigl\{ \bigl\vert h(s, \zeta , \xi , \eta , z) - h(s, \zeta , \xi , \eta , x) \bigr\vert : (s, \zeta , \xi , \eta )\in I_{2}, z, x \in [-\tilde{r}, \tilde{r}], \Vert z - x \Vert \leq \epsilon \bigr\} . \end{aligned}$$

Now, from the uniform continuity of \(g(s, \zeta , \xi , \eta , z)\) and \(h(s, \zeta , \xi , \eta , z)\) on \(I_{2} \times [-\epsilon , \epsilon ] \) respectively, then \(\omega (g, \epsilon )\) and \(\omega (h, \epsilon )\) as \(\epsilon \rightarrow 0\). Hence, we decide that H is continuous on \(B_{\tilde{r}}\).

Next, we prove that H fulfills the densifying condition. Select \(\epsilon > 0 \) and take \(z\in Y\), where Y is a bounded subset of X, \((s_{1}, \zeta _{1}), (s_{2}, \zeta _{2}) \in I \) with \(s_{1} \leq s_{2}\), \(\zeta _{1}\leq \zeta _{2}\) such that \(s_{1} - s_{2} \leq \epsilon \), \(\zeta _{1} - \zeta _{2} \leq \epsilon \), we obtain

$$\begin{aligned}& \bigl\vert (Hz) (s_{2}, \zeta _{2}) - (Hz) (s_{1}, \zeta _{1}) \bigr\vert \\& \quad = \biggl\vert G(s_{2}, \zeta _{2}) + F \biggl(s_{2}, \zeta _{2}, f\bigl(s_{2}, \zeta _{2}, z(s_{2}, \zeta _{2})\bigr), \int _{0}^{s_{2}} \int _{0}^{ \zeta _{2}} g\bigl(s_{2}, \zeta _{2}, \xi , \eta , z(\xi , \eta )\bigr)\,d\eta \,d \xi , \\& \qquad {} \int _{0}^{c} \int _{0}^{d}h\bigl(s_{2}, \zeta _{2}, \xi , \eta , z( \xi , \eta )\bigr)\,d\eta \,d\xi \biggr) \\& \qquad {} - G(s_{1}, \zeta _{1}) - F \biggl(s_{1}, \zeta _{1}, f\bigl(s_{1}, \zeta _{1}, z(s_{1}, \zeta _{1})\bigr), \int _{0}^{s_{1}} \int _{0}^{\zeta _{1}}g\bigl(s_{1}, \zeta _{1}, \xi , \eta , z(\xi , \eta )\bigr)\,d\eta \,d\xi , \\& \qquad {} \int _{0}^{c} \int _{0}^{d}h\bigl(s_{1}, \zeta _{1}, \xi , \eta , z( \xi , \eta )\bigr)\,d\eta \,d\xi \biggr) \biggr\vert \\& \quad \leq \omega _{1}(G, \epsilon ) + \biggl\vert F \biggl(s_{2}, \zeta _{2}, f\bigl(s_{2}, \zeta _{2}, z(s_{2}, \zeta _{2})\bigr) , \int _{0}^{s_{2}} \int _{0}^{\zeta _{2}} g\bigl(s_{2}, \zeta _{2}, \xi , \eta , z(\xi , \eta )\bigr)\,d\eta \,d\xi , \\& \qquad {} \int _{0}^{c} \int _{0}^{d}h\bigl(s_{2}, \zeta _{2}, \xi , \eta , z( \xi , \eta )\bigr)\,d\eta \,d\xi \biggr) \\& \qquad {} - F \biggl(s_{2}, \zeta _{2}, f\bigl(s_{2}, \zeta _{2}, z(s_{2}, \zeta _{2})\bigr), \int _{0}^{s_{2}} \int _{0}^{\zeta _{2}} g\bigl(s_{2}, \zeta _{2}, u, \xi , z( \xi , \eta )\bigr)\,d\eta \,d\xi , \\& \qquad {} \int _{0}^{c} \int _{0}^{d}h\bigl(s_{1}, \zeta _{1}, \xi , \eta , z( \xi , \eta )\bigr)\,d\eta \,d\xi \biggr) \biggr\vert \\& \qquad {} + \biggl\vert F \biggl(s_{2}, \zeta _{2}, f\bigl(s_{2}, \zeta _{2}, z(s_{2}, \zeta _{2})\bigr), \int _{0}^{s_{2}} \int _{0}^{\zeta _{2}} g\bigl(s_{2}, \zeta _{2}, u, \xi , z( \xi , \eta )\bigr)\,d\eta \,d\xi , \\& \qquad {} \int _{0}^{c} \int _{0}^{d}h\bigl(s_{1}, \zeta _{1}, \xi , \eta , z( \xi , \eta )\bigr)\,d\eta \,d\xi \biggr) \vert ) \\& \qquad {} - F \biggl(s_{2}, \zeta _{2}, f\bigl(s_{2}, \zeta _{2}, z(s_{2}, \zeta _{2})\bigr), \int _{0}^{s_{1}} \int _{0}^{\zeta _{1}} g\bigl(s_{1}, \zeta _{1}, u, \xi , z( \xi , \eta )\bigr)\,d\eta \,d\xi , \\& \qquad {} \int _{0}^{c} \int _{0}^{d}h\bigl(s_{1}, \zeta _{1}, \xi , \eta , z( \xi , \eta )\bigr)\,d\eta \,d\xi \biggr\vert \\& \qquad {} + \biggl\vert F \biggl(s_{2}, \zeta _{2}, f \bigl(s_{2}, \zeta _{2}, z(s_{2}, \zeta _{2})\bigr), \int _{0}^{s_{1}} \int _{0}^{\zeta _{1}} g\bigl(s_{1}, \zeta _{1}, u, \xi , z(\xi , \eta )\bigr)\,d\eta \,d\xi , \\& \qquad {} \int _{0}^{c} \int _{0}^{d}h\bigl(s_{1}, \zeta _{1}, \xi , \eta , z( \xi , \eta )\bigr)\,d\eta \,d\xi \biggr) \\& \qquad {} - F \biggl(s_{2}, \zeta _{2}, f\bigl(s_{1}, \zeta _{1}, z(s_{1}, \zeta _{1})\bigr), \int _{0}^{s_{1}} \int _{0}^{\zeta _{1}} g\bigl(s_{1}, \zeta _{1}, u, \xi , z( \xi , \eta )\bigr)\,d\eta \,d\xi , \\& \qquad {} \int _{0}^{c} \int _{0}^{d}h\bigl(s_{1}, \zeta _{1}, \xi , \eta , z( \xi , \eta )\bigr)\,d\eta \,d\xi \biggr) \biggr\vert \\& \qquad {} + \biggl\vert F \biggl(s_{2}, \zeta _{2}, f \bigl(s_{1}, \zeta _{1}, z(s_{1}, \zeta _{1})\bigr), \int _{0}^{s_{1}} \int _{0}^{\zeta _{1}} g\bigl(s_{1}, \zeta _{1}, u, \xi , z(\xi , \eta )\bigr)\,d\eta \,d\xi , \\& \qquad {} \int _{0}^{c} \int _{0}^{d}h\bigl(s_{1}, \zeta _{1}, \xi , \eta , z( \xi , \eta )\bigr)\,d\eta \,d\xi \biggr) \\& \qquad {} - F \biggl(s_{1}, \zeta _{1}, f\bigl(s_{1}, \zeta _{1}, z(s_{1}, \zeta _{1})\bigr), \int _{0}^{s_{1}} \int _{0}^{\zeta _{1}} g\bigl(s_{1}, \zeta _{1}, u, \xi , z( \xi , \eta )\bigr)\,d\eta \,d\xi , \\& \qquad {} \int _{0}^{c} \int _{0}^{d}h\bigl(s_{1}, \zeta _{1}, \xi , \eta , z( \xi , \eta )\bigr)\,d\eta \,d\xi \biggr) \biggr\vert \\& \quad \leq k_{3} \biggl\vert \int _{0}^{c} \int _{0}^{d} h\bigl(s_{2}, \zeta _{2}, u, \xi , z(u, \xi )\bigr)\,d\eta \,d\xi - \int _{0}^{c} \int _{0}^{d} h\bigl(s_{1}, \zeta _{1}, u, \xi , z(u, \xi )\bigr)\,d\eta \,d\xi \biggr\vert \\& \qquad {} + k_{2} \biggl\vert \int _{0}^{s_{2}} \int _{0}^{\zeta _{2}} g\bigl(s_{2}, \zeta _{2}, \xi , \eta , z(\xi , \eta )\bigr)\,d\eta \,d\xi - \int _{0}^{s_{1}} \int _{0}^{t_{1}} g\bigl(s_{1}, \zeta _{1}, \xi , \eta , z(\xi , \eta )\bigr)\,d\eta \,d\xi \biggr\vert \\& \qquad {} + k_{1} \bigl\vert f\bigl(s_{2}, \zeta _{2}, z(s_{2}, \zeta _{2})\bigr) - f\bigl(s_{2}, \zeta _{2}, z(s_{1}, \eta _{1})\bigr) \bigr\vert + k_{1} \bigl\vert f\bigl(s_{2}, \zeta _{2}, z(s_{1}, \zeta _{1})\bigr) \\& \qquad {} - s\bigl(s_{1}, \zeta _{1}, z(s_{1}, \zeta _{1})\bigr) \bigr\vert + \omega _{1}(G, \epsilon ) + \omega _{1}(F, \epsilon ) \\& \quad \leq k_{3} \int _{0}^{c} \int _{0}^{d} \bigl\vert h\bigl(s_{2}, \zeta _{2}, \xi , \eta , z(\xi , \eta )\bigr) - h\bigl(s_{1}, \zeta _{1}, \xi , \eta , z(\xi , \eta )\bigr) \bigr\vert \,d\eta \,d \xi \\& \qquad {} + k_{2} \int _{0}^{s_{1}} \int _{0}^{\zeta _{1}} \bigl\vert g\bigl(s_{2}, \zeta _{2}, \xi , \eta , z(\xi , \eta )\bigr) - g\bigl(s_{1}, \zeta _{1}, \xi , \eta , z( \xi , \eta )\bigr) \bigr\vert \,d\eta \,d\xi \\& \qquad {} + k_{2} \int _{s_{1}}^{s_{2}} \int _{0}^{\zeta _{1}} \bigl\vert g\bigl(s_{2}, \zeta _{2}, \xi , \eta , z(\xi , \eta )\bigr) \bigr\vert \,d\eta \,d \xi + \omega _{1}(G, \epsilon ) + \omega _{1}(F, \epsilon ) \\& \qquad {} + k_{2} \int _{0}^{s_{1}} \int _{\zeta _{1}}^{\zeta _{2}} \bigl\vert g\bigl(s_{2}, \zeta _{2}, \xi , \eta , z(\xi , \eta )\bigr) \bigr\vert \,d\eta \,d \xi + k_{1}k_{4} \bigl\vert z(s_{2}, \zeta _{2}) - z(s_{1}, \zeta _{1}) \bigr\vert \\& \qquad {} + k_{2} \int _{s_{1}}^{s_{2}} \int _{\zeta _{1}}^{\zeta _{2}} \bigl\vert g\bigl(s_{2}, \zeta _{2}, \xi , \eta , z(\xi , \eta )\bigr) \bigr\vert \,d\eta \,d \xi + k_{1} \omega _{1}(f, \epsilon ), \end{aligned}$$

where

$$\begin{aligned} &\omega _{1}(f, \epsilon ) = \sup \bigl\{ \bigl\vert f(s, \zeta , z) - f(\hat{s}, \hat{\zeta }, z) \bigr\vert : \vert s - \hat{s} \vert \leq \epsilon , \vert \zeta - \hat{\zeta } \vert \leq \epsilon , z\in [-\tilde{r}, \tilde{r}] \bigr\} , \\ &\omega _{1}(g, \epsilon )= \sup \bigl\{ \bigl\vert g(s, \zeta , \xi , \eta , z) - g( \hat{s}, \hat{\zeta }, \xi , \eta , z) \bigr\vert : \vert s - \hat{s} \vert \leq \epsilon , \vert \zeta - \hat{\zeta } \vert \leq \epsilon , \\ &\hphantom{\omega _{1}(g, \epsilon )=}{} (s, \zeta , \xi , \eta ) \in I_{2}, z \in [-\tilde{r}, \tilde{r}] \bigr\} , \\ &\omega _{1}(h, \epsilon ) = \sup \bigl\{ \bigl\vert h(s, \zeta , \xi , \eta , z) - h( \hat{s}, \hat{\zeta }, \xi , \eta , z) \bigr\vert : \vert s - \hat{s} \vert \leq \epsilon , \vert \zeta - \hat{\zeta } \vert \leq \epsilon , \\ &\hphantom{\omega _{1}(h, \epsilon ) =}{}(s, \zeta , \xi , \eta ) \in I_{2}, z \in [-\tilde{r}, \tilde{r}] \bigr\} , \\ &\omega _{1}(F, \epsilon )= \sup \bigl\{ \bigl\vert F(s, \zeta , z, u, x) - s( \hat{s}, \hat{\zeta }, z, u, x) \bigr\vert : \vert s - \hat{s} \vert \leq \epsilon , \vert \zeta - \hat{\zeta } \vert \leq \epsilon , z_{1} \in [-\tilde{r}, \tilde{r}], \\ &\hphantom{\omega _{1}(F, \epsilon )=}{} u \in [-cdM_{1}, cdM_{1}], x \in [-cdM_{2}, cdM_{2}] \bigr\} . \end{aligned}$$

Then, using the above relation, we get

$$\begin{aligned}& \bigl\vert (Hz) (s_{2}, \zeta _{2}) - (Hz) (s_{1}, \zeta _{1}) \bigr\vert \\& \quad \leq k_{1}k_{4} \bigl\vert z(s_{2}, v_{2}) - z(s_{1}, \zeta _{1}) \bigr\vert + k_{1} \omega _{1}(f, \epsilon ) + \omega _{1}(F, \epsilon ) \\& \qquad {} + k_{3}c\,d\omega _{1}(h, \epsilon ) + k_{2}c \,d\omega (g, \epsilon ) + \epsilon k_{2}\,dM_{1} + \epsilon k_{2}cM_{1} + \epsilon ^{2}k_{2}M_{1}. \end{aligned}$$

Applying limit as \(\delta \rightarrow 0\),

$$ \omega (Hz,\epsilon ) \leq k_{1}k_{4}\omega (z, \epsilon ). $$

This gives the following relation:

$$ \vartheta (HY) \leq k_{1}k_{4}\vartheta (Y), $$

hence H is a condensing map. Now, let \(z\in \partial B_{\tilde{r}}\), and if \(Hz = kz\), then \(\|Hz\| = k\|z\| = k\tilde{r} \), and by (3), we obtain

$$\begin{aligned} \bigl\vert Hz(s, \zeta ) \bigr\vert = & G(s, \zeta ) + F \biggl(s, \zeta , f\bigl(s, \zeta , z(s, \zeta )\bigr), \int _{0}^{s} \int _{0}^{\zeta }g\bigl(s, \zeta , \xi , \eta , z( \xi , \eta )\bigr)\,d\eta \,d\xi , \\ &{} \int _{0}^{c} \int _{0}^{d}h\bigl(s, \zeta , \xi , \eta , z(\xi , \eta )\bigr)\,d\eta \,d\xi \biggr) \\ \leq & r \end{aligned}$$

for all \((s, \zeta )\in I\). Hence \(\|Hz\| \leq \tilde{r}\) i.e. \(k \leq 1\). □

Corollary 3.2

Let

  1. (1)

    \(G \in C(I, \mathbb{R})\), \(F\in C(I_{1} \times \mathbb{R}\times \mathbb{R}, \mathbb{R} )\), \(g, h\in C(I_{2} \times \mathbb{R}, \mathbb{R})\), where

    $$\begin{aligned}& I = I_{c} \times I_{d},\qquad I_{1} = \bigl\{ (s, \zeta , z) : 0 \leq s \leq c, 0 \leq \zeta \leq d, s\in \mathbb{R}\bigr\} , \\& I_{2} = \bigl\{ (s, \zeta , \xi , \eta ) \in I^{2} : 0 \leq \xi \leq s \leq c, 0 \leq \eta \leq \zeta \leq d \bigr\} ; \end{aligned}$$
  2. (2)

    There exist nonnegative constants \(k_{1}, k_{2}, k_{3}, k_{4} \in (0, 1) \) such that

    $$ \bigl\vert F(s, \zeta , z, u, x) - F(s, \zeta , \hat{z}, \hat{u}, \hat{x} \bigr\vert \leq k_{1} \vert z - \hat{z} \vert + k_{2} \vert u - \hat{u} \vert + k_{3} \vert x - \hat{u} \vert ; $$
  3. (3)

    There exists \(\tilde{r} > 0 \) such that resulting bounded fulfills

    $$\begin{aligned}& \sup \bigl\{ \bigl\vert G(s, \zeta ) : (s, \zeta ) \in I \bigr\vert + \bigl\vert F(s, \zeta , z_{1}, z_{2}, z_{3}) \bigr\vert : (s, \zeta )\in I, z_{1} \in [-\tilde{r}, \tilde{r}], \\& \quad z_{2}\in [-cdM_{1}, cdM_{1}], z_{3} \in [-cdM_{2}, cdM_{2}] \bigr\} \leq r, \end{aligned}$$

    here

    $$\begin{aligned}& M_{1} = \sup \bigl\{ \bigl\vert g(s, \zeta , \xi , \eta , z) \bigr\vert : \textit{for all } (s, \zeta , \xi , \eta ) \in I_{2}\textit{ and }z\in [- \tilde{r}, \tilde{r}]\bigr\} , \\& M_{2} = \sup \bigl\{ \bigl\vert h(s, \zeta , \xi , \eta , z) \bigr\vert : \textit{for all } (s, \zeta , \xi , \eta ) \in I_{2}\textit{ and }z\in [- \tilde{r}, \tilde{r}]\bigr\} . \end{aligned}$$

Then

$$\begin{aligned} z(s, \zeta ) = & G(s, \zeta ) + F \biggl(s, \zeta , z(s, \zeta ), \int _{0}^{s} \int _{0}^{\zeta }g\bigl(s, \zeta , \xi , \eta , z(\xi , \eta )\bigr)\,d\eta \,d\xi , \\ &{} \int _{0}^{c} \int _{0}^{d}h\bigl(s, \zeta , \xi , \eta , z(\xi , \eta )\bigr)\,d\eta \,d\xi \biggr), \end{aligned}$$
(4)

has at least one solution in X.

Proof

The proof is linked to the beginning Theorem 3.1 and the details that follow. □

Corollary 3.3

Let

\((S_{1})\):

\(F\in C(I \times \mathbb{R}\times \mathbb{R}, \mathbb{R} )\), \(f\in C(I_{1}, \mathbb{R})\), \(g\in C(I_{2} \times \mathbb{R}, \mathbb{R})\), \(h\in C(I_{2} \times \mathbb{R}, \mathbb{R})\);

\((S_{2})\):

There exist nonnegative constants μ and ν such that

$$ \bigl\vert f(s, \zeta , 0) \bigr\vert \leq \mu ;\qquad \bigl\vert F(s, \zeta , 0, 0) \bigr\vert \leq \nu ; $$
\((S_{3})\):

There exist nonnegative constants \(k_{1}, k_{2}, k_{3} \in (0, 1) \) such that

$$\begin{aligned}& \bigl\vert f(s, \zeta , z) - f(s, \zeta , \hat{z} \bigr\vert \leq k_{1} \vert z - \hat{z} \vert \\& \bigl\vert F(s, \zeta , z, u) - F(s, \zeta , \hat{z}, \hat{u} \bigr\vert \leq k_{2} \vert z - \hat{z} \vert + k_{3} \vert u - \hat{u} \vert ; \end{aligned}$$
\((S_{4})\):

There exist nonnegative constants \(c_{1}\), \(c_{2}\), \(d_{1}\), and \(d_{2}\) such that

$$ \bigl\vert g(s, \zeta , \xi , \eta , z) \bigr\vert \leq c_{1} + c_{2} \vert z \vert , \qquad \bigl\vert h(s, \zeta , \xi , \eta , z) \bigr\vert \leq d_{1} + d_{2} \vert z \vert ; $$
\((S_{5})\):

\(k_{1} + k_{2}cdc_{2} + k_{3}cdd_{2} < 1\).

Then the equation

$$\begin{aligned} z(s, \zeta ) =& f\bigl(s, \zeta , z(s, \zeta )\bigr) + F \biggl(s, \zeta , \int _{0}^{s} \int _{0}^{\zeta }g\bigl(s, \zeta , \xi , \eta , z(\xi , \eta )\bigr)\,d\eta \,d\xi , \\ &{} \int _{0}^{c} \int _{0}^{d} h\bigl(s, \zeta , \xi , \eta , z(\xi , \eta )\bigr)\,d\eta \,d\xi \biggr) \end{aligned}$$
(5)

has at least one solution in X.

Proof

Let \(\tilde{r} = \frac{N_{2}}{1-N_{1}} \), where \(N_{1} = k_{1} + k_{2}cdc_{2} + k_{3}cdd_{2}\), \(N_{2} = \mu + k_{2}cdc_{1} + k_{3}cdd_{1} + \nu \), and

$$ G(s, \zeta ) = 0,\qquad F(s, \zeta , z, u, x) = z + F(s, \zeta , u, x), $$

where

$$\begin{aligned}& z = f\bigl(s, \zeta , z(s, \zeta )\bigr),\qquad u = \int _{0}^{s} \int _{0}^{\zeta } g\bigl(s, \zeta , \xi , \eta , z(\xi , \eta )\bigr)\,d\eta \,d\xi , \\& x = \int _{0}^{c} \int _{0}^{d} h\bigl(s, \zeta , \xi , \eta , z(\xi , \eta )\bigr)\,d\eta \,d\xi . \end{aligned}$$

(2) is conducted by \((S_{2})\). Now, we show that \((S_{3})\) is also fulfilled, we have

$$\begin{aligned} \bigl\vert z(s, \zeta ) \bigr\vert =& \biggl\vert f\bigl(s, \zeta , z(s, \zeta )\bigr) + F \biggl(s, \zeta , \int _{0}^{s} \int _{0}^{\zeta }g\bigl(s, \zeta , \xi , \eta , z( \xi , \eta )\bigr)\,d\eta \,d\xi ,\\ &{} \int _{0}^{c} \int _{0}^{d}h\bigl(s, \zeta , \xi , \eta , z(\xi , \eta )\bigr)\,d\eta \,d\xi \biggr) \biggr\vert , \\ \leq & \bigl\vert f\bigl(s, \zeta , z(r, \zeta )\bigr) - f(s, \zeta , 0) \bigr\vert + \bigl\vert f(s, \zeta , 0) \bigr\vert \\ &{}+ k_{2} \biggl\vert \int _{0}^{s} \int _{0}^{\zeta }g\bigl(s, \zeta , \xi , \eta , z(\xi , \eta )\bigr)\,d\eta \,d\xi \biggr\vert \\ &{} + k_{3} \biggl\vert \int _{0}^{c} \int _{0}^{d}h\bigl(s, \zeta , \xi , \eta , z( \xi , \eta )\bigr)\,d\eta \,d\xi \biggr\vert + \bigl\vert F(s, \zeta , 0, 0) \bigr\vert , \\ \leq & k_{1} \Vert z \Vert + \mu + k_{2}cd \bigl(c_{1} + c_{2} \Vert z \Vert \bigr) + k_{3}cd\bigl(d_{1} + d_{2} \Vert z \Vert \bigr) + \nu , \\ \leq & (k_{1} + k_{2}cdc_{2} + k_{3}cdd_{2}) \Vert z \Vert + \mu + k_{2}cdc_{1} + k_{3}cdd_{1} + \nu \end{aligned}$$

for all \((s, \zeta ) \in I\); consequently,

$$ \sup \bigl\vert F(s, \zeta , z, u, x) \bigr\vert \leq N_{1}r + N_{2} = N_{1} \frac{N_{2}}{1-N_{1}} + N_{2} = \tilde{r}. $$

 □

Corollary 3.4

([9])

Let

\((E_{1})\):

\(F\in C(I_{1} \times \mathbb{R}, \mathbb{R} )\), \(g\in C(I_{2} \times \mathbb{R}, \mathbb{R})\);

\((E_{2})\):

There exist nonnegative constants \(m_{1} \) and \(m_{2}\) such that \(|A(s, \zeta )| \leq m_{1}\); \(|F(s, \zeta , 0, 0)| \leq m_{2}\);

\((E_{3})\):

There exist nonnegative constants \(k_{1}, k_{2} \in (0, 1) \) such that

$$ |F(s, \zeta , z, u) - F(s, \zeta , \hat{z}, \hat{u}| \leq k_{1} \vert z - \hat{z} \vert + k_{2} \vert u - \hat{u} \vert ; $$
\((E_{4})\):

There exist nonnegative constants \(h_{1}\) and \(h_{2}\) such that \(|g(s, \zeta , \xi , \eta , z)| \leq h_{1} + h_{2}|z|\);

\((E_{5})\):

\(k_{1} + k_{2}cdh_{2} < 1\).

Then the equation

$$ z(s, \zeta ) = A(s, \zeta ) + F \biggl(s, \zeta , z(s, \zeta ), \int _{0}^{r} \int _{0}^{\zeta } g\bigl(s, \zeta , \xi , \eta , z(\xi , \eta )\bigr)\,d\eta d \xi \biggr) $$
(6)

has at least one solution in X.

Proof

Let \(\tilde{r} = \frac{F_{2}}{1-F_{1}} \), where \(F_{1} = k_{1} + k_{2}cdh_{2}\), \(F_{2} = k_{2}cdh_{1} + m_{2} + m_{1}\),

and

$$ F(s, \zeta , z, u, x) = F(s, \zeta , z, u), $$

where

$$ z = z(s, \zeta ),\qquad u = \int _{0}^{s} \int _{0}^{t}g\bigl(s, \zeta , \xi , \eta , z(\xi , \eta )\bigr)\,d\eta \,d\xi . $$

\((T_{2})\) is handled by \((E_{2})\). Now, we show that \((E_{3})\) is also fulfilled. We have

$$\begin{aligned} \bigl\vert z(s, \zeta ) \bigr\vert =& \biggl\vert A(s, \zeta ) + F \biggl(s, \zeta , z(s, \zeta ), \int _{0}^{s} \int _{0}^{\zeta }g\bigl(s, \zeta , \xi , \eta , z( \xi , \eta )\bigr)\,d\eta \,d\xi \biggr) \biggr\vert , \\ \leq & \biggl\vert F \biggl(s, \zeta , z(s, \zeta ), \int _{0}^{s} \int _{0}^{ \zeta } g\bigl(s, \zeta , \xi , \eta , z(\xi , \eta )\bigr)\,d\eta \,d\xi \biggr) - F(s, \zeta , 0, 0) \biggr\vert \\ &{} + \bigl\vert F(s, \zeta , 0, 0) \bigr\vert + \bigl\vert A(s, \zeta ) \bigr\vert , \\ \leq & k_{1} \bigl\vert z(s, \zeta ) \bigr\vert + k_{2} \biggl\vert \int _{0}^{s} \int _{0}^{ \zeta } g\bigl(s, \zeta , \xi , \eta , z(\xi , \eta )\bigr)\,d\eta \,d\xi \biggr\vert \\ & {}+ \bigl\vert F(s, \zeta , 0, 0) \bigr\vert + \bigl\vert A(s, \zeta ) \bigr\vert , \\ \leq & k_{1} \Vert z \Vert + k_{2}cd \bigl(h_{1} + h_{2} \vert z \vert \bigr) + m_{2} + m_{1}, \\ \leq & (k_{1} + k_{2}cdh_{2}) \Vert z \Vert + k_{2}cdh_{1} + m_{2} + m_{1} \end{aligned}$$

for all \((s, \zeta ) \in I\); consequently,

$$ \sup \bigl\vert F(s, \zeta , z, u, x) \bigr\vert \leq F_{1} \tilde{r} + F_{2} = F_{1} \frac{F_{2}}{1-F_{1}} + F_{2} = \tilde{r}. $$

 □

Applications

Example 4.1

$$ z(s, \zeta ) = g(s, \zeta ) + \int _{0}^{s} \int _{0}^{\zeta }P(s, \zeta , \xi , \eta )Q\bigl(\xi , \eta , z(\xi , \eta )\bigr)\,d\eta \,d\xi $$

for \(v = g(s, \zeta ) \) and \(h(s, \zeta , \xi , \eta , z(\xi , \eta )) = P(s, \zeta , \xi , \eta )Q( \xi , \eta , z(\xi , \eta ))\), which may be regarded as a two dimensional generalization of the famous Hammerstein type FIE (see [28])

$$ z(s, \zeta ) = g(s, \zeta ) + \int _{0}^{1} \int _{0}^{1}h\bigl(s, \zeta , \xi , \eta , z(\xi , \eta )\bigr)\,d\eta \,d\xi , $$

which is the famous two dimensional Fredholm FIE examined (e.g. [2]).

Example 4.2

Consider the following two dimensional-FIE:

$$\begin{aligned} z(s, \zeta ) = &\frac{s^{2}}{2(1 + s^{2}\zeta ^{2})}e^{-s^{2}\zeta } + \frac{1}{2} \biggl(\frac{1 + s\zeta ^{2}}{3 + 4 s^{2}\zeta ^{2}} \biggr) \cos z(s, \zeta ) + \frac{1}{2} \int _{0}^{s} \int _{0}^{\zeta }\xi \eta ^{2}\cos z(\xi , \eta )\,d\eta \,d\xi \\ &{}+\frac{1}{2} \int _{0}^{1} \int _{0}^{1} \arctan \biggl( \frac{ \vert z(\xi , \eta ) \vert }{1 + \vert z(\xi , \eta ) \vert } \biggr)\,d\eta \,d\xi \end{aligned}$$
(7)

for \((s, \zeta ) \in I = [0, 1]\times [0, 1]\). Here, we put

$$\begin{aligned}& F(s, \zeta , z, u, \eta ) = \frac{1}{2}z_{+} \frac{1}{2}u + \frac{1}{2}\eta , \\& f(s, \zeta , z) = \frac{1 + s\zeta ^{2}}{3 + 4s^{2}\zeta ^{2}}\cos z(s, \zeta ), \\& g(s, \zeta , \xi , \eta , z) = \xi \eta ^{2}\cos z(\xi , \eta ), \\& h(s, \zeta , \xi , \eta , z) = \arctan \biggl( \frac{ \vert z(\xi , \eta ) \vert }{1 + \vert z(\xi , \eta ) \vert } \biggr). \end{aligned}$$

It can clearly be noticed that F, f, g, h are continuous functions on the respective domain and

$$\begin{aligned}& \bigl\vert F(s, \zeta , z, u, x) - F(s, \zeta , \hat{z}, \hat{u}, \hat{x} ) \bigr\vert \leq \frac{1}{2} \vert z - \hat{z} \vert + \frac{1}{2} \vert u - \hat{u} \vert + \frac{1}{2} \vert x - \hat{x} \vert , \\& |f(s, \zeta , z) - f(s, \zeta , \hat{z}| \leq \frac{1}{3} \vert z - \hat{z} \vert . \end{aligned}$$

Here, \(k_{1} = k_{2} = k_{3} = k_{4} = \frac{1}{2}\). It is seen that these functions satisfy (1) and (2). Now, we check that (3) also holds. Take \(r = 3\), then we get \(M_{1} = M_{2} \leq 1 \) and

$$\begin{aligned}& \sup \bigl\{ \bigl\vert G(s, \zeta ) + F(s, \zeta , z, u, \eta ) \bigr\vert : s, \zeta \in [0, 1], z \in [-3, 3], u, \eta \in [-1, 1]\bigr\} \\& \quad \leq \sup \biggl\vert \biggl(\frac{s^{2}}{2(1 + s^{2}\zeta ^{2})}e^{-s^{2} \zeta } + \frac{1 + s\zeta ^{2}}{2(3 + 2 s^{2}\zeta ^{2})}\cos z(s, \zeta ) + \frac{1}{2} \int _{0}^{s} \int _{0}^{\zeta }\xi \eta ^{2} \cos z(\xi , \eta )\,d\eta \,d\xi \\& \qquad {}+\frac{1}{2} \int _{0}^{1} \int _{0}^{1} \arctan \biggl( \frac{ \vert z(\xi , \eta ) \vert }{1 + \vert z(\xi , \eta ) \vert } \biggr)\,d\eta \,d\xi \biggr) \biggr\vert \\& \quad \leq 3. \end{aligned}$$

All assumptions (1)–(3) are satisfied. Hence, by Theorem 3.1, equation (7) has at least one solution in \(C(I)\).

Conclusion

By unifying and enlarging the earlier results of [9, 11, 18, 35] and using Petryshyn’s fixed point Theorem 3.1, in the third section, we obtained a new method to prove the existence of solutions for some functional integral equations. The merit of Theorem 3.1 among the others (Darbo’s and Schauder’s fixed point theorems) lies in that in applying the theorem, one does not need to confirm that the involved operator maps a closed convex subset onto itself. For future work, the interested researchers can obtain the existence of solution of equation (1) in different Banach function spaces e.g. Sobolev space, Hölder space, etc.

Availability of data and materials

Not applicable.

References

  1. Amar, A.B., Jeribi, A., Mnif, M.: Some fixed point theorems and application to biological model. Numer. Funct. Anal. Optim. 29(1–2), 1–23 (2008)

    MathSciNet  Article  Google Scholar 

  2. Babaaghaie, A., Maleknejad, K.: A new approach for numerical solution of two-dimensional nonlinear Fredholm integral equations in the most general kind of kernel, based on Bernstein polynomials and its convergence analysis. J. Comput. Appl. Math. 344, 482–494 (2018)

    MathSciNet  Article  Google Scholar 

  3. Banaś, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. Dekker, New York (1980)

    MATH  Google Scholar 

  4. Banaś, J., Lecko, M.: Fixed points of the product of operators in Banach algebra. Panam. Math. J. 12, 101–109 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Banaś, J., Rzepka, B.: On existence and asymptotic stability of solutions of a nonlinear integral equation. J. Math. Anal. Appl. 284, 165–173 (2003)

    MathSciNet  Article  Google Scholar 

  6. Banaś, J., Sadarangani, K.: Solutions of some functional integral equations in Banach algebra. Math. Comput. Model. 38, 245–250 (2003)

    MathSciNet  Article  Google Scholar 

  7. Baradol, P., Gopal, D., Radenovic, S.: Computational fixed points in graphical rectangular metric spaces and an application to integral equation. J. Comput. Appl. Math. 375, 112805 (2020)

    MathSciNet  Article  Google Scholar 

  8. Das, A., Hazarika, B., Arab, R., Mursaleen, M.: Applications of a fixed point theorem for the existence of solutions of nonlinear functional integral equations in two variables. Rend. Circ. Mat. Palermo 2(68), 139–152 (2019)

    MathSciNet  Article  Google Scholar 

  9. Das, A., Hazarika, B., Kumam, P.: Some new generalization of Darbo’s fixed point theorem and its application on integral equations. Mathematics 7(3), 214 (2019)

    Article  Google Scholar 

  10. Deep Deepmala, A., Ezzati, R.: Application of Petryshyn’s fixed point theorem to solvability for functional integral equations. Appl. Math. Comput. 395, 125878 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Deep Deepmala, A., Rabbani, M.: A numerical method for solvability of some non-linear functional integral equations. Appl. Math. Comput. 402, 125637 (2021)

    MathSciNet  Google Scholar 

  12. Deep Deepmala, A., Roshan, J.R., Nisar, K.S., Abdeljawad, T.: An extension of Darbo’s fixed point theorem for a class of system of nonlinear integral equations. Adv. Differ. Equ. 2020, 483 (2020)

    MathSciNet  Article  Google Scholar 

  13. Deepmala, Pathak, H.K.: A study on some problems on existence of solutions for some nonlinear functional-integral equations. Acta Math. Sci. 33(5), 1305–1313 (2013)

    MathSciNet  Article  Google Scholar 

  14. Dhage, B.C.: On α-condensing mappings in Banach algebras. Math. Stud. 63, 146–152 (1994)

    MathSciNet  MATH  Google Scholar 

  15. Fabiano, N., Nikolic, N., Shanmugam, T., Radenovic, S., Citakovic, N.: Tenth order boundary value problem solution existence by fixed point theorem. J. Inequal. Appl. 2020, 166 (2020)

    MathSciNet  Article  Google Scholar 

  16. Goldenstein, L.S., Markus, A.S.: On the measure of non-compactness of bounded sets and of linear operators. In: Studies in Algebra and Math. Anal., pp. 45–54. Izdat. Karta Moldovenjaske, Kishinev (1965) (Russian)

    Google Scholar 

  17. Hazarika, B., Arab, R., Nashine, H.K.: Applications of measure of noncompactness and modified simulation function for solvability of nonlinear functional integral equations. Filomat 33(17), 5427–5439 (2019)

    MathSciNet  Article  Google Scholar 

  18. Hazarika, B., Srivastava, H.M., Arab, R., Rabbani, M.: Application of simulation function and measure of noncompactness for solvability of nonlinear functional integral equations and introduction to an iteration algorithm to find solution. Appl. Math. Comput. 360, 131–146 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Hussain, S., Latif, M.A., Alomari, M.: Generalized double-integral Ostrowski type inequalities on time scales. Appl. Math. Lett. 24(8), 1461–1467 (2011)

    MathSciNet  Article  Google Scholar 

  20. Jeribi, A.: A nonlinear problem arising in the theory of growing cell populations. Nonlinear Anal., Real World Appl. 3(1), 85–105 (2002)

    MathSciNet  Article  Google Scholar 

  21. Kazemi, M., Ezzati, R.: Existence of solutions for some nonlinear two dimensional Volterra integral equations via measures of noncompactness. Appl. Math. Comput. 275, 165–171 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Kazemi, M., Ezzati, R.: Existence of solutions for some nonlinear Volterra integral equations via Petryshyn’s fixed point theorem. Int. J. Anal. Appl. 9, 1–12 (2018)

    MATH  Google Scholar 

  23. Kuratowski, K.: Sur les espaces completes. Fundam. Math. 15, 301–335 (1934)

    Article  Google Scholar 

  24. Maleknejad, K., Mollapourasl, R., Nouri, K.: Study on existence of solutions for some nonlinear functional integral equations. Nonlinear Anal. 69, 2582–2588 (2008)

    MathSciNet  Article  Google Scholar 

  25. Maleknejad, K., Nouri, K., Mollapourasl, R.: Existence of solutions for some nonlinear integral equations. Commun. Nonlinear Sci. Numer. Simul. 14, 2559–2564 (2009)

    MathSciNet  Article  Google Scholar 

  26. Manam, S.R.: Multiple integral equations arising in the theory of water waves. Appl. Math. Lett. 24(8), 1369–1373 (2011)

    MathSciNet  Article  Google Scholar 

  27. Nussbaum, R.D.: The fixed point index and fixed point theorem for k set contractions, Thesis (Ph.D), – The University of Chicago, Proquest LLC, Ann Arbor, (1969)

  28. Pachpatte, B.G.: Multidimensional Integral Equations and Inequalities. Atlantis Press, Paris (2011)

    Book  Google Scholar 

  29. Petryshyn, W.V.: Structure of the fixed points sets of k-set-contractions. Arch. Ration. Mech. Anal. 40, 312–328 (1970–1971)

  30. Rabbani, M., Arab, R., Hazarika, B.: Solvability of nonlinear quadratic integral equation by using simulation type condensing operator and measure of noncompactness. Appl. Math. Comput. 349, 102–117 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Rabbani, M., Deep Deepmala, A.: On some generalized non-linear functional integral equations of two variables via measures of noncompactness and numerical method to solve it. Math. Sci., 1–8 (2021)

  32. Roshan, J.R.: Existence of solutions for a class of system of functional integral equation via measure of noncompactness. J. Comput. Appl. Math. 313, 129–141 (2017)

    MathSciNet  Article  Google Scholar 

  33. Sarwar, M., Bahadur Zada, M., Radenovic, S.: Rational type inequality with applications to Volterra–Hammerstein nonlinear integral equations. Int. J. Nonlinear Sci. Numer. Simul. 15(5), 465–473 (2020). https://doi.org/10.1515/ijnsns-2018-0367

    Article  Google Scholar 

  34. Sen, M., Saha, D., Agarwal, R.P.: A Darbo’s fixed point theory approach towards the existence of a functional integral equation in a Banach algebra. Appl. Math. Comput. 358, 111–118 (2019)

    MathSciNet  Article  Google Scholar 

  35. Srivastava, H.M., Das, A., Hazarika, B., Kutbi, M.A., Mohiuddine, S.A.: Existence of solution for nonlinear functional integral equations of two variables in Banach algebra. Symmetry 11(5), 674 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Research Group Program under grant number RGP. 2/5/42.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally and they read and approved the final manuscript for publication.

Corresponding author

Correspondence to Kottakkaran Sooppy Nisar.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Singh, B., Nisar, K.S. et al. Solvability for generalized nonlinear two dimensional functional integral equations via measure of noncompactness. Adv Differ Equ 2021, 372 (2021). https://doi.org/10.1186/s13662-021-03506-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-021-03506-6

MSC

  • 45A05
  • 45H05

Keywords

  • Petryshyn’s fixed point theorem
  • Measure of noncompactness (in short MNC)
  • Functional integral equation (in short FIE)