Theory and Modern Applications

# Some trapezoid and midpoint type inequalities via fractional $$(p,q)$$-calculus

## Abstract

Fractional calculus is the field of mathematical analysis that investigates and applies integrals and derivatives of arbitrary order. Fractional q-calculus has been investigated and applied in a variety of research subjects including the fractional q-trapezoid and q-midpoint type inequalities. Fractional $$(p,q)$$-calculus on finite intervals, particularly the fractional $$(p,q)$$-integral inequalities, has been studied. In this paper, we study two identities for continuous functions in the form of fractional $$(p,q)$$-integral on finite intervals. Then, the obtained results are used to derive some fractional $$(p,q)$$-trapezoid and $$(p,q)$$-midpoint type inequalities.

## Introduction

The ordinary calculus of Newton and Leibniz is well known to be investigated extensively and intensively to produce a large number of related formulas and properties as well as applications in a variety of fields ranging from natural sciences to social sciences. In the early eighteenth century, the well-known mathematician Leonhard Euler (1707–1783) established quantum calculus or q-calculus, which is the study of calculus without limits, in the way of Newton’s work for infinite series. Later, F. H. Jackson initiated a study of q-calculus in a symmetrical manner in 1910 and introduced q-derivative and q-integral in [1], see [2] for more details.

Many physical and mathematical problems have led to the necessity of studying q-calculus; for instance, Fock [3] studied the symmetry of hydrogen atoms using the q-difference equation. In addition, in modern mathematical analysis, q-calculus has lots of applications such as combinatorics, orthogonal polynomials, basic hypergeometric functions, number theory, quantum theory, mechanics, and theory of relativity, see also [424] and the references cited therein. The book by Kac and Cheung [25] covers the basic theoretical concepts of q-calculus.

As one of the major driving forces behind the modern approach of real analysis, inequalities have played a vital role in almost all branches of mathematics along with other fields of science. In 2015, Noor et al. [26] established q-analogue of classical integral identity to obtain q-trapezoid type inequalities for convex functions. Moreover, in 2016, Necmettin, Mehmet, and İmdat [27] proved the correctness of left part of q-Hermite–Hadamard and gave some q-midpoint type integral inequalities through q-differentiable convex function and q-differentiable quasi-convex functions. With these results, many researchers have extended some important topics of q-calculus together with applications in many fields, such as q-integral inequalities, see [2837] for more details.

Since the exploration has been continued to generalize the existing results through creative thoughts and novel techniques of fractional calculus, in 2015, Tariboon, Ntouyas, and Agarwal [38] proposed a new q-shifting operator $${}_{a}\Phi _{q}{(m)}= qm+(1-q)a$$ for studying new concepts of fractional q-calculus. In 2016, Sudsutad, Ntouyas, and Tariboon [39] studied some fractional q-integral inequalities. In 2020, Kunt and Aljasem [40] proved Riemann–Liouville fractional q-trapezoid and q-midpoint type inequalities for convex functions. Furthermore, in 2021, Neang et al. [41] introduced fractional $$(p,q)$$-calculus on finite intervals and proved some well-known integral inequalities.

In 2018, as one of the most attractive areas, Kunt et al. [42] proved $$(p,q)$$-Hermite–Hadamard inequalities and gave some $$(p,q)$$-midpoint type integral inequalities via $$(p,q)$$-differentiable convex and $$(p,q)$$-differentiable quasi-convex functions. In 2019, Latif et al. [43] proved some $$(p,q)$$-trapezoid integral inequalities for convex and quasi-convex functions. Based on these results, many authors have generalized and developed $$(p,q)$$-calculus, which is used efficiently in many fields, and some results on the study of $$(p,q)$$-calculus can be found in [4471].

Motivated by some of the above studies and applications, in this paper, we study two identities for continuous functions in the form of fractional $$(p,q)$$-integral on finite intervals. Then, the obtained results are used to derive some fractional $$(p,q)$$-trapezoid and $$(p,q)$$-midpoint type inequalities.

## Preliminaries

In this section, we recall some well-known facts on fractional $$(p,q)$$-calculus, which can be found in [10, 11, 38, 53, 55]. Throughout this paper, let $$[a,b] \subset \mathbb{R}$$ be an interval with $$a < b$$, and $$0< q< p\leq 1$$ be constants,

\begin{aligned} &[k]_{p,q} = \textstyle\begin{cases} \frac{p^{k}-q^{k}}{p-q}, & k \in \mathbb{N}, \end{cases}\displaystyle \\ &[k]_{p,q}! = \textstyle\begin{cases} [k]_{p,q}[k-1]_{p,q} \cdots [1]_{p,q} = \prod_{i=1}^{k} \frac{p^{i}-q^{i}}{p-q}, & k \in \mathbb{N}, \\ 1,& k=0. \end{cases}\displaystyle \end{aligned}
(2.1)

### Property 2.1

([38])

Let $${}_{a}\Phi _{q}{(m)}= qm+(1-q)a$$. For any $$m, n \in \mathbb{R}$$ and for all positive integers j, k, we have

1. (i)

$${{}_{a}\Phi ^{k}_{q}(m)} = {{}_{a}\Phi _{q^{k}}(m)}$$;

2. (ii)

$${{}_{a}\Phi ^{j}_{q}({{}_{a}\Phi ^{k}_{q}(m)})} = {{}_{a}\Phi ^{k}_{q}({{}_{a} \Phi ^{j}_{q}(m)})} = {{}_{a}\Phi ^{j+k}_{q}(m)}$$;

3. (iii)

$${{}_{a}\Phi _{q}(a)}= a$$;

4. (iv)

$${{}_{a}\Phi ^{k}_{q}(m)}-a = q^{k}(m-a)$$;

5. (v)

$$m-{{}_{a}\Phi ^{k}_{q}(m)} = (1-q^{k})(m-a)$$;

6. (vi)

$${{}_{a}\Phi ^{k}_{q}(m)}= m{\,{}_{a/m}\Phi ^{k}_{q}(1)}$$ for $$m \neq 0$$;

7. (vii)

$${{}_{a}\Phi _{q}(m)}- {{}_{a}\Phi ^{k}_{q}(n)} = q (m- {{}_{a} \Phi ^{k-1}_{q}(n)} )$$.

### Property 2.2

([38])

For any $$\gamma , n, m \in \mathbb{R}$$ with $$n \neq a$$ and $$k \in \mathbb{N} \cup \{0\}$$, we have

1. (i)

$$(n-m)^{(k)}_{a}= (n-a)^{k}{ (\frac{m-a}{n-a};q )}_{k}$$;

2. (ii)

$${(n-m)^{(\gamma )}}_{a}={(n-a)^{\gamma }} \prod_{i=0}^{ \infty }{ \frac{1-{\frac{m-a}{n-a}{q^{i}}}}{1-{\frac{m-a}{n-a}}{q^{\gamma +i}}}}={(n-a)^{ \gamma }} \frac{(\frac{m-a}{n-a};q)_{\infty }}{(\frac{m-a}{n-a}q^{\gamma };q)_{\infty }}$$;

3. (iii)

$$(n-{{}_{a}\Phi ^{k}_{q}(n)} )^{\gamma }_{a} = (n-a)^{\gamma }{\frac{(q^{k};q)_{\infty }}{(q^{\gamma +k};q)_{\infty }}}$$.

For $$m,n \in \mathbb{R}$$, the $$(p,q)$$-analogue of the power function $${}_{a}{(m-n)^{k}_{p,q}}$$ with $$k \in \mathbb{N}\cup \{0\}$$ is defined follows:

\begin{aligned}& {}_{a}{(m-n)^{(0)}_{p,q}}: =1,\qquad {}_{a}{(m-n)^{(k)}_{p,q}}:= \prod_{i=0}^{k-1}{ \bigl({}_{a} \Phi ^{i}_{p}{(m)}-{}_{a} \Phi ^{i}_{q}{(n)} \bigr)}, \end{aligned}
(2.2)
\begin{aligned}& {}_{a}{(m-n)^{(k)}_{p,q}} = {(m-a)^{k}}\prod_{i=0}^{k-1}p^{i} \biggl(1- \biggl(\frac{n-a}{m-a} \biggr){ \biggl(\frac{q}{p} \biggr)^{i}} \biggr). \end{aligned}
(2.3)

More generally, if $$\alpha \in \mathbb{R}$$, then

$${}_{a}{(m-n)^{(\alpha )}_{p,q}}= {(m-a)^{\alpha }} \prod_{i=0}^{ \infty } \frac{p^{i}}{p^{\alpha +i}} \frac{1- (\frac{n-a}{m-a} ) (\frac{q}{p} )^{i}}{1- (\frac{n-a}{m-a} ) (\frac{q}{p} )^{\alpha +i}},$$
(2.4)

or

$${}_{a}{(m-n)^{(\alpha )}_{p,q}}= {(m-a)^{\alpha }p^{\binom{\alpha }{2}}} \prod_{i=0}^{\infty } \frac{1- (\frac{n-a}{m-a} ) (\frac{q}{p} )^{i}}{1- (\frac{n-a}{m-a} ) (\frac{q}{p} )^{\alpha +i}}.$$
(2.5)

### Property 2.3

([41])

For $$\alpha > 0$$, the following formulas hold:

1. (i)

$${}_{a}\Phi ^{k}_{q/p}{(m)} - a = (\frac{q}{p} )^{k}{(m-a)}$$;

2. (ii)

$${}_{a} (m-{}_{a}\Phi ^{k}_{q/p}{(m)} )^{(\alpha )}_{p,q} = {(m-a)^{\alpha }} \prod_{i=0}^{\infty } \frac{p^{i}}{p^{\alpha +i}} \frac{1- (\frac{q}{p} )^{k} (\frac{q}{p} )^{i}}{1- (\frac{q}{p} )^{k} (\frac{q}{p} )^{(\alpha +i)}}= (m-a)^{\alpha } (1- (\frac{q}{p} )^{k} )^{( \alpha )}_{p,q}$$.

### Definition 2.1

([72])

If $$f : [a,b] \rightarrow \mathbb{R}$$ is a continuous function, then the $$(p,q)$$-derivative of f on $$[a,\frac{1}{p}(b-a)+a ]$$ at x is defined by

\begin{aligned}& _{a}D_{p,q} f (x) = \frac{f(px+(1-p)a)-f(qx+(1-q)a)}{(p-q)(x-a)}, \quad x \neq a, \\& {}_{a}D_{p,q} f (a) = \lim_{x \to a}{{}_{a}D_{p,q}f(x)}. \end{aligned}
(2.6)

Obviously, a function f is $$(p,q)$$-differentiable on $$[a,\frac{1}{p}(b-a)+a ]$$ if $$_{a}D_{p,q}f(x)$$ exists for all $$x \in [a,\frac{1}{p}(b-a)+a ]$$. In Definition 2.1, if $$a=0$$, then $$_{0}D_{p,q}f = D_{p,q}f$$, where $$D_{p,q}f$$ is defined by

$$D_{p,q} f (x) =\frac{f(px)-f(qx)}{(p-q)x}, \quad x \neq 0.$$
(2.7)

Furthermore, if $$p=1$$ in (2.7), then it reduces to $$D_{q}f$$, which is q-derivative of the function f, see [25, 73] for more details.

### Definition 2.2

([72])

If $$f : [a,b] \to \mathbb{R}$$ is a continuous function, then the $$(p,q)$$-integral is defined by

$$\int _{a}^{x}{f(t)} \,{}_{a}d_{p,q}t = (p-q) (x-a)\sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}} f \biggl(\frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr)$$
(2.8)

for $$x \in [a,\frac{1}{p}(b-a)+a ]$$. If $$a=0$$ and $$p=1$$ in (2.8), then we have the classical q-integral, see [25] for more details.

### Theorem 2.1

([72])

The following formulas hold for $$t \in [a,b]$$:

1. (i)

$${{}_{a}D_{p,q}\int _{a}^{t}{f(s)} \,{}_{a} d_{p,q}s} = {f(t)}$$;

2. (ii)

$$\int _{a}^{b}\,{}_{a}D_{p,q}{f(s)}\,{}_{a}d_{p,q}s= f(t)-f(a)$$;

3. (iii)

$$\int _{c}^{t}\,{}_{a}D_{p,q}{f(s)}\,{}_{a}d_{p,q}s= f(t)-f(c)$$ for $$c \in (a,t)$$.

### Theorem 2.2

([72])

If $$f, g: [a,b]\to \mathbb{R}$$ are continuous functions and $$\lambda \in \mathbb{R}$$, then the following formulas hold:

1. (i)

$$\int _{a}^{t} [f(s)+g(s) ]\,{}_{a}d_{p,q}s= \int _{a}^{t}{f(s)}\,{}_{a}d_{p,q}s+ \int _{a}^{t}{g(s)}\,{}_{a}d_{p,q}s$$;

2. (ii)

$$\int _{a}^{t}{\lambda f(s)}\,{}_{a}d_{p,q}s= \lambda \int _{a}^{t}{f(s)}\,{}_{a}d_{p,q}s$$;

3. (iii)

$$\int _{a}^{t}{f(ps+(1-p)a)}\,{}_{a}D_{p,q}{g(s)}\,{}_{a}d_{p,q}s= (fg ){(s)}|^{t}_{a}- \int _{a}^{t}{g(qs+(1-q)a)}\,{}_{a}D_{p,q}{(f(s))}\,{}_{a}d_{p,q}s$$.

For $$t \in \mathbb{R}\setminus \{0,-1,-2,\dots \}$$, the $$(p,q)$$-gamma function is defined by

$$\Gamma _{p,q}(t)= \frac{ (p-q )_{p,q}^{(t-1)}}{(p-q)^{t-1}},$$
(2.9)

and an equivalent definition of (2.9) is given in [56] as

$$\Gamma _{p,q}{(t)} = p^{\frac{t(t-1)}{2}} \int _{0}^{\infty }x^{t-1}E^{-qx}_{p,q}\, d_{p,q}x,$$
(2.10)

where

$$E^{-qx}_{p,q} = \sum_{n=0}^{\infty } \frac{q^{\binom{n}{2}}}{[n]_{p,q}} (-qx )^{n}.$$

Obviously, $$\Gamma _{p,q}{(t+1)}= [t]_{p,q}\Gamma _{p,q}{(t)}$$. For $$s, t > 0$$, the definition of the $$(p,q)$$-beta function is defined by

$$B_{p,q}{(s,t)}= \int _{0}^{1}{u^{s-1}}_{0} \bigl(1-{}_{0} \Phi _{q}{(u)} \bigr)^{(t-1)}_{p,q}\,{}_{0}d_{p,q}u,$$
(2.11)

and (2.11) can also be written as

$$B_{p,q}{(s,t)} =p^{ (t-1 ) (2s+t-2 )/2} \frac{\Gamma _{p,q}{(s)}\Gamma _{p,q}{(t)}}{\Gamma _{p,q}{(s+t)}},$$
(2.12)

see [74, 75] for more details.

### Definition 2.3

([41])

Let f be a function defined on $$[a,b]$$, and let $$\alpha > 0$$. The Riemann–Liouville fractional $$(p,q)$$-integral is defined by

\begin{aligned} & \bigl({}_{a}I^{\alpha }_{p,q}f \bigr) (t) \\ &\quad = \frac{1}{p^{\binom{\alpha }{2}}\Gamma _{p,q}{(\alpha )}} \int _{a}^{t}{ \,{}_{a} \bigl(t-{}_{a}\Phi _{q}(s) \bigr)^{(\alpha -1)}_{p,q}} {f \biggl( \frac{s}{p^{\alpha -1}}+ \biggl(1-\frac{1}{p^{\alpha -1}} \biggr)a \biggr)}\,{}_{a}d_{p,q}s \\ &\quad =\frac{(p-q)(t-a)}{p^{\binom{\alpha }{2}}{}\Gamma _{p,q}{(\alpha )}} \sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}}{\,{}_{a} \bigl( t-{}_{a}\Phi ^{n+1}_{q/p}{(t)} \bigr)^{( \alpha -1)}_{p,q}}f \biggl(\frac{q^{n}}{p^{\alpha +n}}t+ \biggl(1- \frac{q^{n}}{p^{\alpha +n}} \biggr)a \biggr) \end{aligned}
(2.13)

for $$t\in [a,p^{\alpha }(b-a)+a ]$$.

### Theorem 2.3

([41])

If $$f:[a,b] \to \mathbb{R}$$ is a convex differentiable function and $$\alpha > 0$$, then we have

\begin{aligned} f \biggl( \frac{ ( [\alpha +1]_{p,q}-p^{\alpha } )a+p^{\alpha }b}{[\alpha +1]_{p,q}} \biggr) &\leq \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl({}_{a}I^{\alpha }_{p,q}f(s) \bigr) \bigl(p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr) \\ &\leq \frac{ ( [\alpha +1]_{p,q} - p^{\alpha } )f(a) +p^{\alpha }f(b)}{[\alpha +1]_{p,q}}. \end{aligned}
(2.14)

## Main results

In this section, we give two identities for continuous functions in the form of fractional Riemann–Liouville $$(p,q)$$-integral type which will be used to prove the fractional Riemann–Liouville $$(p,q)$$-trapezoid and $$(p,q)$$-midpoint type inequalities.

### Lemma 3.1

Let $$f: [a,b] \to \mathbb{R}$$ be a continuous function and $$\alpha > 0$$. If $${}_{a}D_{p,q}f$$ is $$(p,q)$$-integrable on $$(a,\frac{1}{p}(b-a)+a )$$, then the following equality holds:

\begin{aligned} &\frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{ \alpha } \bigr)a \bigr)- \frac{ ( [\alpha +1]_{p,q} - p^{\alpha } )f(a) +p^{\alpha }f(b)}{[\alpha +1]_{p,q}} \\ &\quad = \frac{(b-a)}{[\alpha +1]_{p,q}} \int _{0}^{1} \bigl( [\alpha +1]_{p,q} \bigl( 1- \Phi _{q}(t) \bigr)^{\alpha }_{p,q}- p^{\alpha } \bigr) \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t. \end{aligned}
(3.1)

### Proof

By simple computation and using Definition 2.3, we have

\begin{aligned} A_{1} &= \frac{b-a}{p^{\binom{\alpha }{2}}} \int _{0}^{1} \bigl(1- {}_{0} \Phi _{q}(t) \bigr)_{p,q}^{(\alpha )} \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \\ &= \frac{b-a}{p^{\binom{\alpha }{2}}} \int _{0}^{1} \bigl(1- {}_{0} \Phi _{q}(t) \bigr)_{p,q}^{(\alpha )} \frac{f ( (1-pt)a +ptb ) -f ( (1-qt)a +qtb )}{(p-q)(b-a)t} \,{}_{0}d_{p,q}t \\ &= \frac{1}{p^{\binom{\alpha }{2}}(p-q)} \int _{0}^{1} \bigl(1- {}_{0} \Phi _{q}(t) \bigr)_{p,q}^{(\alpha )} \frac{f ( (1-pt)a +ptb )}{t} \,{}_{0}d_{p,q}t \\ &\quad {} - \frac{1}{p^{\binom{\alpha }{2}}(p-q)} \int _{0}^{1} \bigl(1- {}_{0} \Phi _{q}(t) \bigr)_{p,q}^{(\alpha )} \frac{f ( (1-qt)a +qtb )}{t} \,{}_{0}d_{p,q}t \\ &=\frac{1}{p^{\binom{\alpha }{2}}} \sum_{n= 0}^{\infty } \frac{q^{n}}{p^{n+1}} \bigl(1- {}_{0}\Phi ^{n+1}_{q/p}(1) \bigr)_{p,q}^{( \alpha )} \frac{f ( (1-{}_{0}\Phi ^{n}_{q/p}(1) )a +{}_{0}\Phi ^{n}_{q/p}(1) b )}{\frac{q^{n}}{p^{n+1}}} \\ & \quad {} -\frac{1}{p^{\binom{\alpha }{2}}}\sum_{n= 0}^{\infty } \frac{q^{n}}{p^{n+1}} \bigl(1- {}_{0}\Phi ^{n+1}_{q/p}(1) \bigr)_{p,q}^{( \alpha )} \frac{f ( (1-{}_{0}\Phi ^{n+1}_{q/p}(1) )a +{}_{0}\Phi ^{n+1}_{q/p}(1) b )}{\frac{q^{n}}{p^{n+1}}} \\ &= \sum_{n=0}^{\infty } \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n+1}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n}b \biggr)} \\ &\quad {} - \sum_{n=0}^{\infty } \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n+1}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n+1} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n+1}b \biggr)} \\ &= \sum_{n=0}^{\infty } \biggl( 1- \biggl( \frac{q}{p} \biggr)^{\alpha +n} \biggr) \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n}b \biggr)} \\ &\quad {} - \sum_{n=0}^{\infty } \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n+1} \biggr) \frac{ ( (\frac{q}{p} )^{n+2}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n+1}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n+1} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n+1}b \biggr)} \\ &=\sum_{n=0}^{\infty } \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n}b \biggr)} \\ &\quad {} -\sum_{n=0}^{\infty } \frac{ ( (\frac{q}{p} )^{n+2}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n+1}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n+1} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n+1}b \biggr)} \\ &\quad {} - \Biggl[\sum_{n=0}^{\infty } \biggl(\frac{q}{p} \biggr)^{ \alpha +n} \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n}b \biggr)} \\ &\quad {} - \sum_{n=0}^{\infty } \biggl( \frac{q}{p} \biggr)^{n+1} \frac{ ( (\frac{q}{p} )^{n+2}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n+1}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n+1} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n+1}b \biggr)} \Biggr] \\ &= \frac{ ( (\frac{q}{p} )^{1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha }; \frac{q}{p} )_{\infty }}f{(b)} -f(a) - \Biggl[\sum_{n=0}^{\infty } \biggl(\frac{q}{p} \biggr)^{\alpha +n} \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n}b \biggr)} \\ &\quad {} - \sum_{n=1}^{\infty } \biggl( \frac{q}{p} \biggr)^{n} \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n}b \biggr)} \Biggr] \\ &= \frac{ ( (\frac{q}{p} )^{1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha }; \frac{q}{p} )_{\infty }}f{(b)} -f(a) - \Biggl[\sum_{n=0}^{\infty } \biggl(\frac{q}{p} \biggr)^{\alpha +n} \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n}b \biggr)} \\ & \quad {} - \sum_{n=0}^{\infty } \biggl( \frac{q}{p} \biggr)^{n} \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n } \biggr)a + \biggl( \frac{q}{p} \biggr)^{n }b \biggr)} + \frac{ ( (\frac{q}{p} )^{1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha }; \frac{q}{p} )_{\infty }}f{(b)} \Biggr] \\ &= -f(a) + \biggl(1- \biggl( \frac{q}{p} \biggr)^{\alpha } \biggr)\sum_{n=0}^{ \infty } \biggl( \frac{q}{p} \biggr)^{n} \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n}b \biggr)} \\ &= -f(a) + \frac{[\alpha ]_{p,q}(p-q)}{p^{\alpha }}\sum_{n=0}^{ \infty } \biggl(\frac{q}{p} \biggr)^{n} \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n}b \biggr)} \\ &= -f(a) + \frac{[\alpha ]_{p,q}\Gamma _{p,q}(\alpha )}{p^{\alpha ^{2}}(b-a)^{\alpha }} \frac{(p-q)p^{\alpha }(b-a)}{p^{\binom{\alpha }{2}}\Gamma _{p,q}(\alpha )} \sum _{n=0}^{\infty }\frac{q^{n}}{p^{n+1}} p^{\alpha (\alpha -1)}(b-a)^{ \alpha -1}p^{\binom{\alpha -1}{2}} \\ &\quad {} \times \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{(\alpha -1)+(n+1)}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl( \frac{q}{p} \biggr)^{n} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n}b \biggr)} \\ &= -f(a) + \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \biggl[ \frac{1}{p^{\binom{\alpha }{2}}\Gamma _{p,q}(\alpha )} \int _{a}^{{}_{a} \Phi _{p^{\alpha }}(b)} \,{}_{a} \bigl({}_{a}\Phi _{p^{\alpha }}(b)-{}_{a} \Phi _{q}(t) \bigr)_{p,q}^{(\alpha -1)} \\ & \quad {} \times f \biggl( \frac{t}{p^{\alpha -1} }+ \biggl(1- \frac{1}{p^{\alpha -1}} \biggr)a \biggr)\,{}_{a}d_{p,q}t \biggr] \\ &= -f(a) + \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}} (b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{ \alpha } \bigr)a \bigr), \end{aligned}
(3.2)

and

\begin{aligned} A_{2}&= \frac{p^{\alpha }(b-a)}{[\alpha +1]_{p,q}} \int _{0}^{1} \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \\ &=\frac{p^{\alpha }(b-a)}{[\alpha +1]_{p,q}} \int _{0}^{1} \frac{f ( (1-pt)a +ptb ) -f ( (1-qt)a +qtb )}{(p-q)(b-a)t} \,{}_{0}d_{p,q}t \\ &= \biggl[\frac{p^{\alpha }}{(p-q)[\alpha +1]_{p,q}} \int _{0}^{1} \frac{f ( (1-pt)a +ptb )}{t} \,{}_{0}d_{p,q}t \\ & \quad {} -\frac{p^{\alpha }}{(p-q)[\alpha +1]_{p,q}} \int _{0}^{1} \frac{f ( (1-qt)a +qtb )}{t} \,{}_{0}d_{p,q}t \biggr] \\ &= \frac{p^{\alpha }}{[\alpha +1]_{p,q}} \Biggl[\sum_{n=0}^{\infty } f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n}b \biggr)} \\ & \quad {} - \sum_{n=0}^{\infty }f{ \biggl( \biggl( 1- \biggl( \frac{q}{p} \biggr)^{n+1 } \biggr)a + \biggl(\frac{q}{p} \biggr)^{n+1}b \biggr)} \Biggr] \\ &=\frac{p^{\alpha }f(b)-p^{\alpha }f(a) }{[\alpha +1]_{p,q}}. \end{aligned}
(3.3)

From (3.2) and (3.3), we obtain

\begin{aligned} &\frac{(b-a)}{[\alpha +1]_{p,q}} \int _{0}^{1} \biggl( \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}} } \bigl( 1-{}_{0} \Phi _{q}(s) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr) \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \\ &\quad = A_{1}-A_{2} \\ &\quad =\frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{ \alpha } \bigr)a \bigr)- \frac{ ( [\alpha +1]_{p,q} - p^{\alpha } )f(a) +p^{\alpha }f(b)}{[\alpha +1]_{p,q}}. \end{aligned}
(3.4)

Thus the proof is completed. □

### Remark 3.1

If $$\alpha =1$$, then (3.1) reduces to Lemma 3.2 in [43] as

\begin{aligned} &\frac{1}{p(b-a)} \int _{a}^{pb+(1-p)a} f(x) \,{}_{a}d_{p,q}x- \frac{pf(a)+qf(a)}{p+q} \\ &\quad = \frac{q(b-a)}{p+q} \int _{0}^{1} \bigl( 1- (p+q)t \bigr) \,{}_{a}D_{p,q}f \bigl( tb + (1-t)a \bigr) \,{}_{a}d_{p,q}t. \end{aligned}
(3.5)

If $$p=1$$, then (3.1) reduces to Lemma 5.2 in [40] as

\begin{aligned} &\frac{\Gamma _{q}(\alpha +1)}{ (b-a)^{\alpha }} \bigl( {}_{a}I^{ \alpha }_{ q}f \bigr) (b)- \frac{ ( [\alpha +1]_{ q} -1 )f(a) + f(b)}{[\alpha +1]_{ q}} \\ &\quad = \frac{(b-a)}{[\alpha +1]_{ q}} \int _{0}^{1} \bigl( [\alpha +1]_{ q} \bigl( 1- \Phi _{q}(t) \bigr)^{(\alpha )}_{ q}- 1 \bigr) \,{}_{a}D_{ q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{ q}t. \end{aligned}
(3.6)

Moreover, if $$q \to 1$$ and $$\alpha =1$$, then (3.6) reduces to

$$\frac{f(a) +f(b)}{2} - \frac{1}{b-a} \int _{a}^{b} f(x)\,dx = \frac{b-a}{2} \int _{0}^{1} (1-2t)f' \bigl(ta +(1-t)b \bigr) \,dt,$$
(3.7)

which can be found in [76].

### Theorem 3.1

Let $$f: [a,b] \to \mathbb{R}$$ be a continuous function, $$\alpha > 0$$, and $${}_{a}D_{p,q}f$$ be $$(p,q)$$-integrable on $$(a,\frac{1}{p}(b-a)+a )$$. If $$\vert {}_{a}D_{p,q}f \vert$$ is convex on

$$\biggl(a,\frac{1}{p}(b-a)+a \biggr),$$

then the following Riemann–Liouville fractional $$(p,q)$$-trapezoid type inequality holds:

\begin{aligned} & \biggl\vert \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr)- \frac{ ( [\alpha +1]_{p,q} - p^{\alpha } )f(a) +p^{\alpha }f(b)}{[\alpha +1]_{p,q}} \biggr\vert \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \bigl( \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert B_{1} + \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert B_{2} \bigr), \end{aligned}
(3.8)

where

$$B_{1}= \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert (1-t ) \,{}_{0}d_{p,q}t$$

and

$$B_{2}= \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert t \,{}_{0}d_{p,q}t.$$

### Proof

Using Lemma 3.1 and the convexity of $$\vert {}_{a}D_{p,q}f \vert$$, we have

\begin{aligned} & \biggl\vert \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2} }(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{ \alpha } \bigr)a \bigr)- \frac{ ( [\alpha +1]_{p,q} - p^{\alpha } )f(a) +p^{\alpha }f(b)}{[\alpha +1]_{p,q}} \biggr\vert \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert \,{}_{0}d_{p,q}t \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert \\ &\qquad {} \times \bigl[ \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert (1-t) + \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert t \bigr] \,{}_{0}d_{p,q}t \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \biggl[ \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert (1-t) \biggr] \,{}_{0}d_{p,q}t \\ & \qquad {} +\frac{(b-a)}{[\alpha +1]_{p,q}} \biggl[ \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert t \biggr] \,{}_{0}d_{p,q}t. \end{aligned}

This completes the proof. □

### Remark 3.2

If $$p=1$$, then (3.8) reduces to

\begin{aligned} & \biggl\vert \frac{\Gamma _{ q}(\alpha +1)}{ (b-a)^{\alpha }} \bigl( {}_{a}I^{ \alpha }_{ q}f \bigr) (b)- \frac{ ( [\alpha +1]_{ q} - 1 )f(a) + f(b)}{[\alpha +1]_{ q}} \biggr\vert \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{ q}} \bigl( \bigl\vert {}_{a}D_{ q}f(a) \bigr\vert \delta _{1} + \bigl\vert {}_{a}D_{ q}f(b) \bigr\vert \delta _{2} \bigr), \end{aligned}
(3.9)

where

$$\delta _{1}= \int _{0}^{1} \bigl\vert [\alpha +1]_{ q} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)_{ q}^{(\alpha )} - 1 \bigr\vert (1-t ) \,{}_{0}d_{ q}t$$

and

$$\delta _{2}= \int _{0}^{1} \bigl\vert [\alpha +1]_{ q} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)_{ q}^{(\alpha )}- 1 \bigr\vert t \,{}_{0}d_{ q}t,$$

which appeared in [40].

### Theorem 3.2

Let $$f: [a,b] \to \mathbb{R}$$ be a continuous function, $$\alpha > 0$$, and $${}_{a}D_{p,q}f$$ be $$(p,q)$$-integrable on $$(a,\frac{1}{p}(b-a)+a )$$. If $$\vert {}_{a}D_{p,q}f \vert ^{r}$$ is convex on $$(a,\frac{1}{p}(b-a)+a )$$ for $$r\geq 0$$, then the following Riemann–Liouville fractional $$(p,q)$$-trapezoid type inequality holds:

\begin{aligned} & \biggl\vert \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr)- \frac{ ( [\alpha +1]_{p,q} - p^{\alpha } )f(a) +p^{\alpha }f(b)}{[\alpha +1]_{p,q}} \biggr\vert \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}}B^{1-1/r}_{3} \bigl( \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r}B_{1} + \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r}B_{2} \bigr)^{1/r}, \end{aligned}
(3.10)

where $$B_{1}$$ and $$B_{2}$$ are given in Theorem 3.1and

$$B_{3}= \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert \,{}_{0}d_{p,q}t.$$

### Proof

Using Lemma 3.1, the convexity of $$\vert {}_{a}D_{p,q}f \vert ^{r}$$, and the power mean inequality, we have

\begin{aligned} & \biggl\vert \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr)- \frac{ ( [\alpha +1]_{p,q} - p^{\alpha } )f(a) +p^{\alpha }f(b)}{[\alpha +1]_{p,q}} \biggr\vert \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert \,{}_{0}d_{p,q}t \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \biggl( \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert \,{}_{0}d_{p,q}t \biggr)^{1-1/r} \\ &\qquad {} \times \biggl( \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert ^{r} \,{}_{0}d_{p,q}t \biggr)^{1/r} \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \biggl( \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert \,{}_{0}d_{p,q}t \biggr)^{1-1/r} \\ &\qquad {} \times \biggl( \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0}\Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert \bigl[ \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r}(1-t) \\ &\qquad {}+ \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} t \bigr] \,{}_{0}d_{p,q}t \biggr)^{1/r} \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \biggl( \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert \,{}_{0}d_{p,q}t \biggr)^{1-1/r} \\ & \qquad {} \times \biggl[ \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert (1-t) \,{}_{0}d_{p,q}t \\ &\qquad {} + \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert (1-t) \,{}_{0}d_{p,q}t \biggr]^{1/r}. \end{aligned}

Therefore, the proof is completed. □

### Remark 3.3

If $$\alpha =1$$, then (3.10) reduces to

\begin{aligned} & \biggl\vert \frac{1}{p(b-a)} \int _{a}^{pb+(1-p)a} f(x) \,{}_{a}d_{p,q}x- \frac{pf(a)+qf(a)}{p+q} \biggr\vert \\ &\quad = \frac{q(b-a)}{p+q} \biggl[ \frac{2(p+q-1)}{(p+q)^{2}} \biggr]^{1-1/r} \bigl[\lambda _{1}(p,q) \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} + \lambda _{2}(p,q) \bigl\vert \,{}_{a}D_{p,q}f(a) \bigr\vert ^{r} \bigr]^{1/r}, \end{aligned}
(3.11)

where

$$\lambda _{1}(p,q)= \frac{q [(p^{3}-2+2p)+ (2p^{2}+2)q + pq^{2} pq^{2} ] + 2p^{2}-2p}{(p+q)^{3}(p^{2}+pq+q^{2})}$$

and

\begin{aligned} \lambda _{2}(p,q)&= \frac{1}{(p+q)^{3}(p^{2}+pq+q^{2})} \bigl\{ q \bigl[ \bigl(5p^{3}-4p^{2}-2p+2 \bigr) + \bigl(6p^{2}-4p-2 \bigr)q \\ &\quad {} + (5p-2)q^{2}+2q^{3} \bigr]+ \bigl(2p^{4}-2p^{3}-2p^{3}-2p^{2}+2p \bigr) \bigr\} , \end{aligned}

which appeared in [43].

Moreover, if $$p=1$$, then (3.10) reduces to

\begin{aligned} & \biggl\vert \frac{\Gamma _{ q}(\alpha +1)}{(b-a)^{\alpha }} \bigl( {}_{a}I^{ \alpha }_{ q}f \bigr) (b)- \frac{ ( [\alpha +1]_{ q} - 1 )f(a) + f(b)}{[\alpha +1]_{ q}} \biggr\vert \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{ q}}M^{1-1/r}_{3} \bigl( \bigl\vert {}_{a}D_{ q}f(a) \bigr\vert ^{r}M_{1} + \bigl\vert {}_{a}D_{ q}f(b) \bigr\vert ^{r}M_{2} \bigr)^{1/r}, \end{aligned}
(3.12)

where $$\delta _{1}$$ and $$\delta _{2}$$ are given in Remark 3.2 and

$$\delta _{3}= \int _{0}^{1} \bigl\vert [\alpha +1]_{ q} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)_{ q}^{(\alpha )} - 1 \bigr\vert \,{}_{0}d_{ q}t,$$

which appeared in [40].

### Theorem 3.3

Let $$f: [a,b] \to \mathbb{R}$$ be a continuous function, $$\alpha > 0$$ and $${}_{a}D_{p,q}f$$ be $$(p,q)$$-integrable on $$(a,\frac{1}{p}(b-a)+a )$$. If $$\vert {}_{a}D_{p,q}f \vert ^{r}$$ is convex on $$[a,\frac{1}{p}(b-a)+a ]$$ for $$r > 1$$ and $$1/r +1/p = 1$$, then the following Riemann–Liouville fractional $$(p,q)$$-trapezoid type inequality holds:

\begin{aligned} & \biggl\vert \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr)- \frac{ ( [\alpha +1]_{p,q} - p^{\alpha } )f(a) +p^{\alpha }f(b)}{[\alpha +1]_{p,q}} \biggr\vert \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}}B^{1/s}_{4} \biggl( \frac{(p+q-1) \vert {}_{a}D_{p,q}f(a) \vert ^{r}+ \vert {}_{a}D_{p,q}f(b) \vert ^{r}}{p+q} \biggr)^{1/r}, \end{aligned}
(3.13)

where

$$B_{4}= \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0}\Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert ^{s} \,{}_{0}d_{p,q}t.$$

### Proof

Using Lemma 3.1, the convexity of $$\vert {}_{a}D_{p,q}f \vert ^{r}$$, and Hölder’s inequality, we have

\begin{aligned} & \biggl\vert \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr)- \frac{ ( [\alpha +1]_{p,q} - p^{\alpha } )f(a) +p^{\alpha }f(b)}{[\alpha +1]_{p,q}} \biggr\vert \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert \,{}_{0}d_{p,q}t \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \biggl( \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert ^{s} \,{}_{0}d_{p,q}t \biggr)^{1/s} \\ &\qquad {} \times \biggl( \int _{0}^{1} \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert ^{r} \,{}_{0}d_{p,q}t \biggr)^{1/r} \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \biggl( \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert ^{s} \,{}_{0}d_{p,q}t \biggr)^{1/s} \\ &\qquad {} \times \biggl( \int _{0}^{1} \bigl[ \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r}(1-t) + \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} t \bigr] \,{}_{0}d_{p,q}t \biggr)^{1/r} \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \biggl( \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert ^{s} \,{}_{0}d_{p,q}t \biggr)^{1/s} \\ &\qquad {} \times \biggl( \frac{(p+q-1) \vert {}_{a}D_{p,q}f(a) \vert ^{r}+ \vert {}_{a}D_{p,q}f(b) \vert ^{r} }{p+q} \biggr)^{1/r}. \end{aligned}

This completes the proof. □

### Remark 3.4

If $$\alpha =1$$, then (3.13) reduces to

\begin{aligned} & \biggl\vert \frac{1}{p(b-a)} \int _{a}^{pb+(1-p)a} f(x) \,{}_{a}d_{p,q}x- \frac{pf(a)+qf(a)}{p+q} \biggr\vert \\ &\quad =\frac{q(b-a)}{p+q} [ \lambda _{3} ]^{1/s} \biggl( \frac{ \vert {}_{a}D_{p,q}f(b) \vert ^{r}+ (p+q-1) \vert {}_{a}D_{p,q}f(a) \vert ^{r}}{p+q} \biggr)^{1/r}, \end{aligned}
(3.14)

where

$$\lambda _{3} = \int _{0}^{1} \bigl\vert 1-(p+q)t \bigr\vert ^{s} \,{}_{0}d_{p,q}t,$$

which appeared in [43].

Moreover, if $$p=1$$, then (3.13) reduces to

\begin{aligned} & \biggl\vert \frac{\Gamma _{q}(\alpha +1)}{ (b-a)^{\alpha }} \bigl( {}_{a}I^{ \alpha }_{ q}f \bigr) (b)- \frac{ ( [\alpha +1]_{ q} - )f(a) + f(b)}{[\alpha +1]_{ q}} \biggr\vert \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{ q}}\delta ^{1/s}_{4} \biggl( \frac{q \vert {}_{a}D_{ q}f(a) \vert ^{r}+ \vert {}_{a}D_{ q}f(b) \vert ^{r}}{1+q} \biggr)^{1/r}, \end{aligned}

where

$$\delta _{4}= \int _{0}^{1} \bigl\vert [\alpha +1]_{ q} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)_{ q}^{(\alpha )} - 1 \bigr\vert ^{s} \,{}_{0}d_{q}t,$$
(3.15)

which appeared in [40].

Now we will prove the following lemma to obtain the Riemann–Liouville fractional $$(p,q)$$-midpoint type inequalities.

### Lemma 3.2

Let $$f: [a,b] \to \mathbb{R}$$ be a continuous function and $$\alpha > 0$$. If $${}_{a}D_{p,q}f$$ is $$(p,q)$$-integrable on $$(a,\frac{1}{p}(b-a)+a )$$, then the following equality holds:

\begin{aligned} &f \biggl( \frac{ ([\alpha +1]_{p,q}-p^{\alpha } )a+p^{\alpha }b}{[\alpha +1]_{p,q}} \biggr)- \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr) \\ &\quad = (b-a) \biggl[ \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl(1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr) \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \\ &\qquad {}+ \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \biggr]. \end{aligned}
(3.16)

### Proof

By direct computation and using Definitions 2.1 and 2.2, we have

\begin{aligned} A_{3}& = \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \\ & = \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \frac{f ( (1-pt)a +ptb ) -f ( (1-qt)a +qtb )}{(p-q)(b-a)t} \,{}_{0}d_{p,q}t \\ &= \frac{1}{(p-q)(b-a)} \int _{0}^{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \frac{f ( (1-pt)a +ptb )}{t} \,{}_{0}d_{p,q}t \\ &\quad {} - \frac{1}{(p-q)(b-a)} \int _{0}^{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \frac{f ( (1-qt)a +qtb )}{t} \,{}_{0}d_{p,q}t \\ & = \frac{p^{\alpha }}{(b-a)[\alpha +1]_{p,q}}\sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}} \frac{f ( (1-\frac{q^{n}p^{\alpha }}{p^{n}[\alpha +1]_{p,q}} )a +\frac{q^{n}p^{\alpha }}{p^{n}[\alpha +1]_{p,q}}b )}{\frac{q^{n}p^{\alpha }}{p^{n+1}[\alpha +1]_{p,q}}} \\ & \quad {} -\frac{p^{\alpha }}{(b-a)[\alpha +1]_{p,q}}\sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}} \frac{f ( (1-\frac{q^{n+1}p^{\alpha }}{p^{n+1}[\alpha +1]_{p,q}} )a +\frac{q^{n+1}p^{\alpha }}{p^{n+1}[\alpha +1]_{p,q}}b )}{\frac{q^{n}p^{\alpha }}{p^{n+1}[\alpha +1]_{p,q}}} \\ &= \frac{1}{(b-a)} \Biggl[ \sum_{n=0}^{\infty } f \biggl( \biggl(1- \frac{q^{n}p^{\alpha }}{p^{n}[\alpha +1]_{p,q}} \biggr)a + \frac{q^{n}p^{\alpha }}{p^{n}[\alpha +1]_{p,q}}b \biggr) \\ &\quad {} -\sum_{n=0}^{\infty } f \biggl( \biggl(1- \frac{q^{n+1}p^{\alpha }}{p^{n+1}[\alpha +1]_{p,q}} \biggr)a + \frac{q^{n+1}p^{\alpha }}{p^{n+1}[\alpha +1]_{p,q}}b \biggr) \Biggr] \\ &= \frac{1}{(b-a)} \biggl[ f \biggl( \frac{ ( [\alpha +1]_{p,q}-p^{\alpha } )a+p^{\alpha }b}{[\alpha +1]_{p,q}} \biggr)-f(a) \biggr]. \end{aligned}
(3.17)

On the other hand, in Lemma 3.1, the following integral was given:

\begin{aligned} A_{1}& = \frac{b-a}{p^{\binom{\alpha }{2}}} \int _{0}^{1} \bigl(1- {}_{0} \Phi _{q}(t) \bigr)_{p,q}^{(\alpha )} \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \\ & =-f(a) + \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr). \end{aligned}
(3.18)

Consequently, from (3.17) and (3.18), we have

\begin{aligned} &A_{3} +A_{1} \\ &\quad = (b-a) \biggl[ \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl(1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr) \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \\ &\qquad {}+ \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \biggr] \\ &\quad = {(b-a)} \biggl[ \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \\ &\qquad {} - \int _{0}^{1} \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \biggr] \\ &\quad = f \biggl( \frac{ ( [\alpha +1]_{p,q}-p^{\alpha } )a+p^{\alpha }b}{[\alpha +1]_{p,q}} \biggr)- \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( \,{}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr). \end{aligned}

Therefore, the proof is completed. □

### Remark 3.5

If $$\alpha =1$$, then (3.16) reduces to

\begin{aligned} & \biggl\vert f \biggl( \frac{ qa+pb}{p+q} \biggr)- \frac{ 1}{p (b-a)} \int _{a}^{pb+(1-p)a} f(x) \,{}_{a}d_{p,q}x \biggr\vert \\ &\quad = q(b-a) \biggl[ \int _{0}^{\frac{p }{ p+q}}t \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \\ &\qquad {}+ \int _{\frac{p }{p+q}}^{1} \biggl( t-\frac{1}{q} \biggr) \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \biggr], \end{aligned}
(3.19)

which appeared in [42].

Moreover, if $$p=1$$, then (3.16) reduces to

\begin{aligned} &f \biggl( \frac{ ( [\alpha +1]_{ q}- 1 )a+ b}{[\alpha +1]_{ q}} \biggr)- \frac{\Gamma _{ q}(\alpha +1)}{ (b-a)^{\alpha }} \bigl( \,{}_{a}I^{ \alpha }_{ q}f \bigr) (b) \\ &\quad = (b-a) \biggl[ \int _{0}^{\frac{ 1}{[\alpha +1]_{ q}}} \bigl(1- {}_{0} \Phi _{q}(t) \bigr)_{ q}^{(\alpha )} \,{}_{a}D_{ q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{ q}t \\ &\qquad {}- \int _{\frac{ 1}{[\alpha +1]_{ q}}}^{1} \bigl(1- {}_{0} \Phi _{q}(t) \bigr)_{ q}^{(\alpha )} \,{}_{a}D_{ q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{ q}t, \biggr] \end{aligned}
(3.20)

which appeared in [40].

### Theorem 3.4

Let $$f: [a,b] \to \mathbb{R}$$ be a continuous function, $$\alpha > 0$$, and $${}_{a}D_{p,q}f$$ be $$(p,q)$$-integrable on $$(a,\frac{1}{p}(b-a)+a )$$. If $$\vert {}_{a}D_{p,q}f \vert$$ is convex on $$(a,\frac{1}{p}(b-a)+a )$$, then the following Riemann–Liouville fractional $$(p,q)$$-midpoint type inequality holds:

\begin{aligned} & \biggl\vert f \biggl( \frac{ ( [\alpha +1]_{p,q}-p^{\alpha } )a+p^{\alpha }b}{[\alpha +1]_{p,q}} \biggr)- \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr) \biggr\vert \\ & \quad \leq (b-a) \bigl[ B_{5} \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert + B_{6} \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert + B_{7} \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert + B_{8} \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert \bigr], \end{aligned}
(3.21)

where

\begin{aligned}& B_{5} = \biggl[ \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert (1-t) \,{}_{0}d_{p,q}t \biggr], \\& B_{6} = \biggl[ \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert t \,{}_{0}d_{p,q}t \biggr], \\& B_{7} = \biggl[ \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert (1-t) \,{}_{0}d_{p,q}t \biggr], \\& B_{8} = \biggl[ \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert t \,{}_{0}d_{p,q}t \biggr]. \end{aligned}

### Proof

Using Lemma 3.2 and the convexity of $$\vert {}_{a}D_{p,q}f \vert$$, we have

\begin{aligned} & \biggl\vert f \biggl( \frac{ ( [\alpha +1]_{p,q}-p^{\alpha } )a+p^{\alpha }b}{[\alpha +1]_{p,q}} \biggr)- \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr) \biggr\vert \\ &\quad \leq (b-a) \biggl[ \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert \,{}_{0}d_{p,q}t \\ &\qquad {}+ \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert \,{}_{0}d_{p,q}t \biggr] \\ &\quad \leq (b-a) \biggl[ \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl[ \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert (1-t)+ \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert t \bigr] \,{}_{0}d_{p,q}t \\ &\qquad {}+ \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl[ \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert (1-t)+ \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert t \bigr] \,{}_{0}d_{p,q}t \biggr] \\ &\quad \leq (b-a) \biggl[ \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert (1-t) \,{}_{0}d_{p,q}t \\ &\qquad {}+ \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert t \,{}_{0}d_{p,q}t \biggr] \\ &\qquad {} + (b-a) \biggl[ \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert (1-t) \,{}_{0}d_{p,q}t \\ &\qquad {}+ \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert t \,{}_{0}d_{p,q}t \biggr]. \end{aligned}

This completes the proof. □

### Remark 3.6

If $$\alpha =1$$, then (3.21) reduces to

\begin{aligned} & \biggl\vert f \biggl( \frac{ qa+pb}{p+q} \biggr)- \frac{ 1}{p (b-a)} \int _{a}^{pb+(1-p)a} f(x) \,{}_{a}d_{p,q}x \biggr\vert \\ &\quad \leq q(b-a) \bigl[ \lambda _{4}(p,q) \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert + \lambda _{5}(p,q) \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert \\ &\qquad {}+\lambda _{6}(p,q) \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert + \lambda _{7}(p,q) \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert \bigr], \end{aligned}
(3.22)

where

\begin{aligned}& \lambda _{4}(p,q) = \frac{ p^{3}}{(p+q)^{3}(p^{2}+pq+q^{2})}, \qquad \lambda _{5}(p,q) = \frac{p^{2}(p^{2}+pq+q^{2})-p^{3}}{(p+q)^{3}(p^{2}+pq+q^{2})}, \\& \lambda _{6}(p,q) = \frac{2p^{3}}{(p+q)^{3}(p^{2}+pq+q^{2})}, \qquad \lambda _{7}(p,q) = \frac{ p^{4}+p^{3}q+p^{2}q^{2}-2p^{3}}{(p+q)^{3}(p^{2}+pq+q^{2})}, \end{aligned}

which appeared in [42].

Moreover, if $$p=1$$, then (3.21) reduces to

\begin{aligned} & \biggl\vert f \biggl( \frac{ ( [\alpha +1]_{q}- 1 )a+ b}{[\alpha +1]_{ q}} \biggr)- \frac{\Gamma _{ q}(\alpha +1)}{ (b-a)^{\alpha }} \bigl( {}_{a}I^{ \alpha }_{ q}f \bigr) (b) \biggr\vert \\ &\quad \leq (b-a) \bigl[ \delta _{5} \bigl\vert {}_{a}D_{ q}f(a) \bigr\vert + \delta _{6} \bigl\vert {}_{a}D_{ q}f(b) \bigr\vert +\delta _{7} \bigl\vert {}_{a}D_{ q}f(a) \bigr\vert + \delta _{8} \bigl\vert {}_{a}D_{ q}f(b) \bigr\vert \bigr], \end{aligned}
(3.23)

where

\begin{aligned}& \delta _{5} = \biggl[ \int _{0}^{\frac{ 1}{[\alpha +1]_{q}}} \bigl\vert 1- \bigl(1- {}_{0}\Phi _{q}(t) \bigr)_{ q}^{(\alpha )} \bigr\vert (1-t) \,{}_{0}d_{ q}t \biggr], \\& \delta _{6} = \biggl[ \int _{0}^{\frac{1}{[\alpha +1]_{ q}}} \bigl\vert 1- \bigl(1- {}_{0}\Phi _{q}(t) \bigr)_{q}^{(\alpha )} \bigr\vert t \,{}_{0}d_{ q}t \biggr], \\& \delta _{7} = \biggl[ \int _{\frac{1}{[\alpha +1]_{q}}}^{1} \bigl\vert - \bigl(1- {}_{0}\Phi _{q}(t) \bigr)_{ q}^{(\alpha )} \bigr\vert (1-t) \,{}_{0}d_{ q}t \biggr], \\& \delta _{8} = \biggl[ \int _{\frac{1}{[\alpha +1]_{ q}}}^{1} \bigl\vert - \bigl(1- {}_{0}\Phi _{q}(t) \bigr)_{ q}^{(\alpha )} \bigr\vert t \,{}_{0}d_{ q}t \biggr], \end{aligned}

which appeared in [40].

### Theorem 3.5

Let $$f: [a,b] \to \mathbb{R}$$ be a continuous function, $$\alpha > 0$$ and $${}_{a}D_{p,q}f$$ be $$(p,q)$$-integrable on $$(a,\frac{1}{p}(b-a)+a )$$. If $$\vert {}_{a}D_{p,q}f \vert ^{r}$$ is convex on $$(a,\frac{1}{p}(b-a)+a )$$ for $$r\geq 0$$, then the following Riemann–Liouville fractional $$(p,q)$$-midpoint type inequality holds:

\begin{aligned} & \biggl\vert f \biggl( \frac{ ( [\alpha +1]_{p,q}-p^{\alpha } )a+p^{\alpha }b}{[\alpha +1]_{p,q}} \biggr)- \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr) \biggr\vert \\ &\quad \leq (b-a) \bigl[ B^{1-1/r}_{9} \bigl(B_{5} \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} + B_{6} \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \bigr)^{1/r} \\ &\qquad {}+B^{1-1/r}_{10} \bigl(B_{7} \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} + B_{8} \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \bigr)^{1/r} \bigr], \end{aligned}
(3.24)

where $$B_{5}$$, $$B_{6}$$, $$B_{7}$$, and $$B_{8}$$ are given in Theorem 3.4and

$$B_{9} = \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \,{}_{0}d_{p,q}t$$

and

$$B_{10} = \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \,{}_{0}d_{p,q}t.$$

### Proof

Using Lemma 3.2, the power mean inequality and the convexity of $$\vert {}_{a}D_{p,q}f \vert ^{r}$$, we have

\begin{aligned} & \biggl\vert f \biggl( \frac{ ( [\alpha +1]_{p,q}-p^{\alpha } )a+p^{\alpha }b}{[\alpha +1]_{p,q}} \biggr)- \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr) \biggr\vert \\ &\quad \leq (b-a) \biggl[ \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert \,{}_{0}d_{p,q}t \\ &\qquad {}+ \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert \,{}_{0}d_{p,q}t \biggr] \\ &\quad \leq (b-a) \biggl[ \biggl( \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \,{}_{0}d_{p,q}t \biggr)^{1-1/r} \\ &\qquad {}\times \biggl( \int _{0}^{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert ^{r} \,{}_{0}d_{p,q}t \biggr)^{1/r} \\ &\qquad {}+ \biggl( \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \,{}_{0}d_{p,q}t \biggr)^{1-1/r} \\ &\qquad {}\times \biggl( \int _{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert ^{r} \,{}_{0}d_{p,q}t \biggr)^{1/r} \biggr] \\ &\quad \leq (b-a) \biggl[ \biggl( \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \,{}_{0}d_{p,q}t \biggr)^{1-1/r} \\ &\qquad {}\times \biggl( \int _{0}^{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl[ \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r}(1-t)+ \bigl\vert \,{}_{a}D_{p,q}f(b) \bigr\vert ^{r}t \bigr] \,{}_{0}d_{p,q}t \biggr)^{1/r} \\ &\qquad {}+ \biggl( \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \,{}_{0}d_{p,q}t \biggr)^{1-1/r} \\ &\qquad {}\times \biggl( \int _{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl[ \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r}(1-t)+ \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r}t \bigr] \,{}_{0}d_{p,q}t \biggr)^{1/r} \biggr] \\ &\quad \leq (b-a) \biggl[ \biggl( \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \,{}_{0}d_{p,q}t \biggr)^{1-1/r} \\ &\qquad {}\times \biggl( \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} \int _{0}^{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert (1-t) \,{}_{0}d_{p,q}t \\ &\qquad {}+\bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \int _{0}^{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert t \,{}_{0}d_{p,q}t \biggr)^{1/r} \biggr] \\ &\qquad {} + (b-a) \biggl[ \biggl( \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \,{}_{0}d_{p,q}t \biggr)^{1-1/r} \\ &\qquad {}\times \biggl( \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} \int _{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert (1-t) \,{}_{0}d_{p,q}t \\ &\qquad {}+\bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \int _{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert t \,{}_{0}d_{p,q}t \biggr)^{1/r} \biggr]. \end{aligned}

This completes the proof. □

### Remark 3.7

If $$\alpha =1$$, then (3.24) reduces to

\begin{aligned} & \biggl\vert f \biggl( \frac{ qa+pb}{p+q} \biggr)- \frac{ 1}{p (b-a)} \int _{a}^{pb+(1-p)a} f(x) \,{}_{a}d_{p,q}x \biggr\vert \\ &\quad \leq q(b-a) \biggl( \frac{p^{2}}{(p+q)^{3}} \biggr)^{1-1/r} \bigl[ \bigl(\lambda _{4}(p,q) \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} + \lambda _{5}(p,q) \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert {r} \bigr)^{1/r} \\ &\qquad {}+ \bigl(\lambda _{6}(p,q) \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} + \lambda _{7}(p,q) \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \bigr)^{1/r} \bigr], \end{aligned}
(3.25)

where $$\lambda _{4}(p,q)$$, $$\lambda _{5}(p,q)$$, $$\lambda _{6}(p,q)$$, and $$\lambda _{7}(p,q)$$ are given in Remark (3.6), which appeared in [42].

Moreover, if $$p=1$$, then (3.24) reduces to

\begin{aligned} & \biggl\vert f \biggl( \frac{ ( [\alpha +1]_{ q}-1 )a+ b}{[\alpha +1]_{ q}} \biggr)- \frac{\Gamma _{ q}(\alpha +1)}{ (b-a)^{\alpha }} \bigl( {}_{a}I^{ \alpha }_{ q}f \bigr) (b) \biggr\vert \\ &\quad \leq (b-a) \bigl[ \delta ^{1-1/r}_{9} \bigl( \delta _{5} \bigl\vert {}_{a}D_{ q}f(a) \bigr\vert ^{r} + \delta _{6} \bigl\vert {}_{a}D_{ q}f(b) \bigr\vert ^{r} \bigr)^{1/r} \\ &\qquad {}+\delta ^{1-1/r}_{10} \bigl(\delta _{7} \bigl\vert {}_{a}D_{ q}f(a) \bigr\vert ^{r} + \delta _{8} \bigl\vert {}_{a}D_{ q}f(b) \bigr\vert ^{r} \bigr)^{1/r} \bigr], \end{aligned}
(3.26)

where $$\delta _{5}$$, $$\delta _{6}$$, $$\delta _{7}$$, and $$\delta _{8}$$ are given in Remark (3.6) and

\begin{aligned}& \delta _{9} = \int _{0}^{\frac{1}{[\alpha +1]_{ q}}} \bigl\vert 1- \bigl(1- {}_{0}\Phi _{q}(t) \bigr)_{ q}^{(\alpha )} \bigr\vert \,{}_{0}d_{q}t, \\& \delta _{10} = \int _{\frac{1}{[\alpha +1]_{ q}}}^{1} \bigl\vert - \bigl(1- {}_{0}\Phi _{q}(t) \bigr)_{ q}^{(\alpha )} \bigr\vert \,{}_{0}d_{q}t, \end{aligned}

which appeared in [40].

### Theorem 3.6

Let $$f: [a,b] \to \mathbb{R}$$ be a continuous function, $$\alpha > 0$$, and $${}_{a}D_{p,q}f$$ be $$(p,q)$$-integrable on $$(a,\frac{1}{p}(b-a)+a )$$. If $$\vert {}_{a}D_{p,q}f \vert ^{r}$$ is convex on $$[a,\frac{1}{p}(b-a)+a ]$$ for $$r > 1$$ and $$1/r +1/s = 1$$, then the following Riemann–Liouville fractional $$(p,q)$$-midpoint type inequality holds:

\begin{aligned} & \biggl\vert f \biggl( \frac{ ( [\alpha +1]_{p,q}-p^{\alpha } )a+p^{\alpha }b}{[\alpha +1]_{p,q}} \biggr)- \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr) \biggr\vert \\ &\quad \leq (b-a) \biggl[ (B_{11} )^{1/s} \biggl( \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} \biggl( \frac{p^{\alpha }(p+q)[\alpha +1]_{p,q}-p^{\alpha }}{(p+q) ([\alpha +1]_{p,q} )^{2}} \biggr) \\ &\qquad {}+ \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \biggl( \frac{p^{\alpha }}{(p+q) ([\alpha +1]_{p,q} )^{2}} \biggr) \biggr)^{1/r} \biggr] \\ &\qquad {} + (b-a) \biggl[ (B_{12} )^{1/s} \biggl( \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} \biggl( \frac{p+q-1}{p+q}- \frac{p^{\alpha }(p+q)[\alpha +1]_{p,q}-p^{2\alpha }}{(p+q) ( [\alpha +1]_{p,q} )^{2}} \biggr) \\ &\qquad {}+\bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \biggl(\frac{1}{p+q}- \frac{p^{2\alpha }}{(p+q) ( [\alpha +1]_{p,q} )^{2}} \biggr) \biggr)^{1/r} \biggr], \end{aligned}
(3.27)

where

$$B_{11} = \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert ^{s} \,{}_{0}d_{p,q}t$$

and

$$B_{12} = \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert ^{s} \,{}_{0}d_{p,q}t.$$

### Proof

Applying Lemma 3.2, Hölder’s inequality, and the convexity of $$\vert {}_{a}D_{p,q}f \vert ^{r}$$, we have

\begin{aligned} & \biggl\vert f \biggl( \frac{ ( [\alpha +1]_{p,q}-p^{\alpha } )a+p^{\alpha }b}{[\alpha +1]_{p,q}} \biggr)- \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr) \biggr\vert \\ &\quad \leq (b-a) \biggl[ \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert \,{}_{0}d_{p,q}t \\ &\qquad {}+ \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert \,{}_{0}d_{p,q}t \biggr] \\ &\quad \leq (b-a) \biggl[ \biggl( \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert ^{p} \,{}_{0}d_{p,q}t \biggr)^{1/p} \\ &\qquad {}\times \biggl( \int _{0}^{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert ^{r} \,{}_{0}d_{p,q}t \biggr)^{1/r} \\ &\qquad {}+ \biggl( \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert ^{p} \,{}_{0}d_{p,q}t \biggr)^{1/p} \\ &\qquad {}\times \biggl( \int _{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert ^{r} \,{}_{0}d_{p,q}t \biggr)^{1/r} \biggr] \\ & \quad \leq (b-a) \biggl[ \biggl( \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert ^{p} \,{}_{0}d_{p,q}t \biggr)^{1/p} \\ &\qquad {}\times \biggl( \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} \int _{0}^{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}} (1-t) \,{}_{0}d_{p,q}t + \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \int _{0}^{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}}t \,{}_{0}d_{p,q}t \biggr)^{1/r} \biggr] \\ &\qquad {} + (b-a) \biggl[ \biggl( \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert ^{p} \,{}_{0}d_{p,q}t \biggr)^{1/p} \\ &\qquad {}\times \biggl( \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} \int _{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} (1-t) \,{}_{0}d_{p,q}t \\ &\qquad {}+\bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \int _{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} t \,{}_{0}d_{p,q}t \biggr)^{1/r} \biggr] \\ &\quad \leq (b-a) \biggl[ \biggl( \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert ^{p} \,{}_{0}d_{p,q}t \biggr)^{1/p} \\ &\qquad {}\times \biggl( \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} \biggl( \frac{p^{\alpha }(p+q)[\alpha +1]_{p,q}-p^{\alpha }}{(p+q) ([\alpha +1]_{p,q} )^{2}} \biggr) \\ &\qquad {}+ \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \biggl( \frac{p^{\alpha }}{(p+q) ([\alpha +1]_{p,q} )^{2}} \biggr) \biggr)^{1/r} \biggr] \\ & \qquad {} + (b-a) \biggl[ \biggl( \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert ^{p} \,{}_{0}d_{p,q}t \biggr)^{1/p} \\ &\qquad {}\times \biggl( \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} \biggl( \frac{p+q-1}{p+q}- \frac{p^{\alpha }(p+q)[\alpha +1]_{p,q}-p^{2\alpha }}{(p+q) ( [\alpha +1]_{p,q} )^{2}} \biggr) \\ &\qquad {}+\bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \biggl( \frac{1}{p+q}- \frac{p^{2\alpha }}{(p+q) ( [\alpha +1]_{p,q} )^{2}} \biggr) \biggr)^{1/r} \biggr]. \end{aligned}

This completes the proof. □

### Remark 3.8

If $$\alpha =1$$, then (3.27) reduces to

\begin{aligned} & \biggl\vert f \biggl( \frac{ qa+pb}{p+q} \biggr)- \frac{ 1}{p (b-a)} \int _{a}^{pb+(1-p)a} f(x) \,{}_{a}d_{p,q}x \biggr\vert \\ &\quad \leq q(b-a) \biggl[ \biggl( \biggl(\frac{p}{p+q} \biggr)^{s+1} \biggl( \frac{p-q}{p^{s+1}-q^{s+1}} \biggr) \biggr)^{1/s} \biggl( \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} \biggl( \frac{p^{3}+2p^{2}q+pq^{2}-p^{2}}{(p+q)^{3}} \biggr) \\ &\qquad {}+ \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \biggl( \frac{ p^{2}}{(p+q)^{3}} \biggr) \biggr)^{1/r} \\ &\qquad {}+ \biggl( \int _{\frac{p}{p+q}}^{1} \biggl( \frac{1}{q}-t \biggr)^{s} \,{}_{0}d_{p,q}t \biggr)^{1/s} \biggl( \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \biggl( \frac{2pq+q^{2}}{(p+q)^{3}} \biggr) \\ &\qquad {}+ \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} \biggl( \frac{ p^{2}q+2pq^{2}-2pq-q^{2}+q^{3}}{(p+q)^{3}} \biggr) \biggr)^{1/r} \biggr], \end{aligned}

which appeared in [42].

Moreover, if $$p=1$$, then (3.27) reduces to

\begin{aligned} & \biggl\vert f \biggl( \frac{ ( [\alpha +1]_{ q}-1 )a+ b}{[\alpha +1]_{ q}} \biggr)- \frac{\Gamma _{ q}(\alpha +1)}{ (b-a)^{\alpha }} \bigl( {}_{a}I^{ \alpha }_{ q}f \bigr) (b) \biggr\vert \\ &\quad \leq (b-a) \biggl[ (\delta _{11} )^{1/s} \biggl( \bigl\vert {}_{a}D_{q}f(a) \bigr\vert ^{r} \biggl( \frac{ (1+q)[\alpha +1]_{ q}-1}{(1+q) ([\alpha +1]_{ q} )^{2}} \biggr) \\ &\qquad {}+ \bigl\vert {}_{a}D_{ q}f(b) \bigr\vert ^{r} \biggl( \frac{1}{(1+q) ([\alpha +1]_{ q} )^{2}} \biggr) \biggr)^{1/r} \biggr] \\ &\qquad {} + (b-a) \biggl[ (\delta _{12} )^{1/s} \biggl( \bigl\vert {}_{a}D_{ q}f(a) \bigr\vert ^{r} \biggl(\frac{q}{1+q}- \frac{(1+q)[\alpha +1]_{ q}-1}{(1+q) ( [\alpha +1]_{ q} )^{2}} \biggr) \\ &\qquad {}+\bigl\vert {}_{a}D_{ q}f(b) \bigr\vert ^{r} \biggl(\frac{1}{1+q}- \frac{1}{(1+q) ( [\alpha +1]_{ q} )^{2}} \biggr) \biggr)^{1/r} \biggr], \end{aligned}

where

$$\delta _{11} = \int _{0}^{\frac{1}{[\alpha +1]_{ q}}} \bigl\vert 1- \bigl(1- {}_{0}\Phi _{q}(t) \bigr)_{ q}^{(\alpha )} \bigr\vert ^{s} \,{}_{0}d_{ q}t$$

and

$$\delta _{12} = \int _{\frac{1}{[\alpha +1]_{ q}}}^{1} \bigl\vert - \bigl(1- {}_{0}\Phi _{q}(t) \bigr)_{ q}^{(\alpha )} \bigr\vert ^{s} \,{}_{0}d_{ q}t,$$

which appeared in [40].

## Conclusions

In this work, we studied two identities for continuous functions in the form of fractional Riemann–Liouville $$(p,q)$$-integral. Based on these two identities, some fractional Riemann–Liouville $$(p,q)$$-trapezoid and $$(p,q)$$-midpoint type inequalities are given. From this idea, as well as the techniques of this paper, we hope that it will inspire interested readers working in this field.

Not applicable.

## References

1. Jackson, F.H.: On a q-definite integrals. Q. J. Pure Appl. Math. 41, 193–203 (1910)

2. Jackson, F.H.: q-Difference equations. Am. J. Math. 32, 305–314 (1910)

3. Fock, V.: Zur theorie des wasserstoffatoms. Z. Phys. 98, 145–154 (1935)

4. Bangerezaka, G.: Variational q-calculus. J. Math. Anal. Appl. 289, 650–665 (2004)

5. Asawasamrit, S., Sudprasert, C., Ntouyas, S., Tariboon, J.: Some results on quantum Hanh integral inequalities. J. Inequal. Appl. 2019, 154 (2019)

6. Bangerezako, G.: Variational calculus on q-nonuniform. J. Math. Anal. Appl. 306, 161–179 (2005)

7. Exton, H.: q-Hypergeometric Functions and Applications. Halsted, New York (1983)

8. Annyby, H.M., Mansour, S.K.: q-Fractional Calculus and Equations. Springer, Berlin (2012)

9. Ernst, T.: A Comprehensive Treatment of q-Calculus. Springer, Basel (2012)

10. Ernst, T.: A history of q-calculus and a new method. UUDM Report 2000:16, Department of Mathematics, Uppsala University (2000)

11. Ferreira, R.: Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2010, 70 (2010)

12. Aslam, M., Awan, M.U., Noor, K.I.: Quantum Ostrowski inequalities for q-differentiable convex function. J. Math. Inequal. 10, 1013–1018 (2016)

13. Aral, A., Gupta, V., Agarwal, R.P.: Applications of q-Calculus in Operator Theory. Springer, New York (2013)

14. Gauchman, H.: Integral inequalities in q-calculus. J. Comput. Appl. Math. 47, 281–300 (2002)

15. Kunt, M., Aljasem, M.: Riemann–Liouville fractional quantum Hermite–Hadamard type inequalities for convex functions. Konuralp J. Math. 8, 122–136 (2020)

16. Dobrogowska, A., Odzijewicz, A.: A second order q-difference equation solvable by factorization method. J. Comput. Appl. Math. 193, 319–346 (2006)

17. Gasper, G., Rahman, M.: Some systems of multivariable orthogonal q-Racah polynomials. Ramanujan J. 13, 389–405 (2007)

18. Ismail, M.E.H., Simeonov, P.: q-Difference operators for orthogonal polynomials. J. Comput. Appl. Math. 233, 749–761 (2009)

19. Bohner, M., Guseinov, G.S.: The h-Laplace and q-Laplace transforms. J. Comput. Appl. Math. 365, 75–92 (2010)

20. El-Shahed, M., Hassan, H.A.: Positive solutions of q-difference equation. Proc. Am. Math. Soc. 138, 1733–1738 (2010)

21. Ahmad, B.: Boundary-value problems for nonlinear third-order q-difference equations. Electron. J. Differ. Equ. 2011, 94 (2011)

22. Ahmad, B., Alsaedi, A., Ntouyas, S.K.: A study of second-order q-difference equations with boundary conditions. Adv. Differ. Equ. 2012, 35 (2012)

23. Ahmad, B., Ntouyas, S.K., Purnaras, I.K.: Existence results for nonlinear q-difference equations with nonlocal boundary conditions. Commun. Appl. Nonlinear Anal. 19, 59–72 (2012)

24. Ahmad, B., Nieto, J.J.: On nonlocal boundary value problems of nonlinear q-difference equation. Adv. Differ. Equ. 2012, 81 (2012)

25. Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002)

26. Noor, M.A., Noor, K.I., Awan, M.U.: Some quantum estimate for Hermite Hadamard inequalities. Appl. Math. Comput. 251, 675–679 (2015)

27. Necmettin, A., Mehmet, Z.S., Mehmet, K., İmdat, İ.: q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex functions and quasi-convex functions. J. King Saud Univ., Sci. 30, 193–203 (2018)

28. Sudsudat, W., Ntouyas, S.K., Tariboon, J.: Quantum integral inequalities for convex functions. J. King Saud Univ., Sci. 9, 781–793 (2015)

29. Muhammad, A.N., Khalida, I.N., Muhammad, U.A.: Some quantum integral inequalities via preinvex functions. Appl. Math. Comput. 269, 242–251 (2015)

30. Muhammad, A.N., Muhammad, U.A., Khalida, I.N.: Quantum Ostrowski inequalities for q-differentiable convex functions. Appl. Math. Comput. 10, 1013–1018 (2016)

31. Muhammad, A.K., Noor, M., Eze, N.R., Yu-Ming, C.: Quantum Hermite–Hadamard inequality by means of a Green function. Adv. Differ. Equ. 2020, 99 (2020)

32. Muhammad, A.N., Khalida, I.N., Muhammad, U.A.: Quantum analogues of Hermite–Hadamard type inequalities for generalized convexity. In: Computation, Cryptography, and Network Security, pp. 413–439. Springer, Cham (2015)

33. Humaira, K., Muhammad, I., Baleanu, D., Yu-Ming, C.: New estimates of $$q_{1}q_{2}$$-Ostrowski-type inequalities within a class of n-polynomial prevexity of functions. J. Funct. Spaces 2020, Article ID 3720798 (2020)

34. Wenjun, L., Hefeng, Z.: Some quantum estimates of Hermite–Hadamard inequalities for convex functions. Appl. Math. Comput. 251, 675–679 (2015)

35. Tun, M., Gov, E., Balgeçti, S.: Simpson type quantum integral inequalities for convex functions. Miskolc Math. Notes 9, 649–664 (2018)

36. Latif, M.A., Dragomir, S.S., Momoniat, E.: Some φ-analogues of Hermite–Hadamard inequality for s-convex functions in the second sense and related estimates. Punjab Univ. J. Math. 48, 147–166 (2016)

37. Hefeng, Z., Wenjun, L., Jaekeun, P.: Some quantum estimate of Hermite–Hadamard inequalities for quasi-convex functions. Mathematics 7, 152 (2019)

38. Tariboon, J., Ntouyas, S.K., Agarwal, P.: New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Adv. Differ. Equ. 2015, 18 (2015)

39. Sudsutad, W., Ntouyas, S.K., Tariboon, J.: Integral inequalities via fractional quantum calculus. J. Inequal. Appl. 2016, 81 (2016)

40. Kunt, M., Aljasem, M.: Fractional quantum Hermite–Hadamard type inequalities. Konuralp J. Math. 8, 122–136 (2020)

41. Neang, P., Nonlaopon, K., Tariboon, J., Ntouyas, S.K.: Fractional $$(p,q)$$-calculus on finite intervals and some integral inequalities. Symmetry 13, 504 (2021)

42. Kunt, M., İşcan, İ., Alp, N., Sarakaya, M.Z.: $$(p,q)$$-Hermite–Hadamard inequalities and $$(p,q)$$-estimates for midpoint type inequalities via convex and quasi-convex functions. Rev. R. Acad. Cienc. 112, 969–992 (2018)

43. Latif, M.A., Kunt, M., Dragomir, S.S., İşcan, İ.: $$(p,q)$$-Trapezoid type inequalities. Rev. R. Acad. Cienc. 112, 969–992 (2018)

44. Kamsrisuk, N., Promsakon, C., Ntouyas, S.K., Tariboon, J.: Nonlocal boundary value problems for $$(p,q)$$-difference equations. Differ. Equ. Appl. 10, 183–195 (2018)

45. Nuntigrangjana, T., Putjuso, S., Ntouyas, S.K., Tariboon, J.: Impulsive quantum $$(p,q)$$-difference equations. Adv. Differ. Equ. 2020, 98 (2020)

46. Promsakon, C., Kamsrisuk, N., Ntouyas, S.K., Tariboon, J.: On the second-order quantum $$(p,q)$$-difference equations with separated boundary conditions. Adv. Math. Phys. 2018, Artical ID 9089865 (2018)

47. Chakrabarti, R., Jagannathan, R.: A $$(p, q)$$-oscillator realization of two-parameter quantum algebras. J. Phys. A, Math. Gen. 24, L711–L718 (1991)

48. Burban, I.: Two-parameter deformation of the oscillator algebra and $$(p, q)$$-analog of two-dimensional conformal field theory. J. Nonlinear Math. Phys. 2, 384–391 (1995)

49. Burban, I.M., Klimyk, A.U.: $$(p,q)$$-Differentiation, $$(p,q)$$-integration, and $$(p,q)$$-hypergeometric functions related to quantum groups. Integral Transforms Spec. Funct. 2, 15–36 (1994)

50. Hounkonnou, M.N., Désiré, J., Kyemba, B.R.: $$(p, q)$$-Calculus: differentiation and integration. SUT J. Math. 49, 145–167 (2013)

51. Aral, A., Gupta, V.: Applications of $$(p, q)$$-gamma function to Szász Durrmeyer operators. Publ. Inst. Math. 102, 211–220 (2017)

52. Sahai, V., Yadav, S.: Representations of two parameter quantum algebras and $$(p,q)$$-special functions. J. Math. Anal. Appl. 335, 268–279 (2007)

53. Sadjang, P.N.: On the fundamental theorem of $$(p,q)$$-calculus and some $$(p,q)$$-Taylor formulas. Results Math. 73, 39 (2018)

54. Usman, T., Saif, M., Choi, J.: Certain identities associated with $$(p, q)$$-binomial coefficients and $$(p, q)$$-Stirling polynomials of the second kind. Symmetry 12, 1436 (2020)

55. Sadjang, P.N.: On the $$(p, q)$$-gamma and the $$(p, q)$$-beta functions. arXiv preprint (2015). arXiv:1506.07394

56. Sadjang, P.N.: On two $$(p, q)$$-analogues of the Laplace transform. J. Differ. Equ. Appl. 23, 1562–1583 (2017)

57. Mursaleen, M., Ansari, K.J., Khan, A.: On $$(p, q)$$-analogues of Bernstein operators. Appl. Math. Comput. 266, 874–882 (2015)

58. Mursaleen, M., Ansari, K.J., Khan, A.: Erratum to “On $$(p, q)$$-analogues of Bernstein operators”. Appl. Math. Comput. 278, 70–71 (2016)

59. Kang, S.M., Rafiq, A., Acu, A.M., Ali, F., Kwun, Y.C.: Erratum to “Some approximation properties of $$(p,q)$$-Bernstein operators”. J. Inequal. Appl. 2016, 169 (2016)

60. Mursaleen, M., Khan, F., Khan, A.: Approximation by $$(p,q)$$-Lorentz polynomials on a compact disk. Complex Anal. Oper. Theory 10, 1725–1740 (2016)

61. Cai, Q.-B., Zhou, G.: On $$(p, q)$$-analogues of Kantorovich type Bernstein–Stancu–Schurer operator. Appl. Math. Comput. 276, 12–20 (2016)

62. Mursaleen, M., Ansari, K.J., Khan, A.: Some approximation results of $$(p, q)$$-analogues of Bernstein–Stancu operators. Appl. Math. Comput. 264, 392–402 (2015)

63. Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of $$(p, q)$$-Baskakov operators. J. Inequal. Appl. 2016, 98 (2016)

64. Mursaleen, M., Nasiruzzaman, M., Khan, F., Khan, A.: $$(p, q)$$-Analogues of divided difference and Bernstein operators. J. Nonlinear Funct. Anal. 2017, 25 (2017)

65. Wachs, M., White, D.: $$(p, q)$$-Stirling numbers and set partition statistics. J. Comb. Theory, Ser. A 56, 27–46 (1991)

66. Wachs, M.L.: σ-Restricted growth functions and $$(p, q)$$-Stirling numbers. J. Comb. Theory, Ser. A 68, 470–480 (1994)

67. Remmel, J.B., Wachs, M.: Rook theory, generalized Stirling numbers and $$(p, q)$$-analogues. Electron. J. Comb. 11, R84 (2004)

68. Médics, A.D., Leroux, P.: Generalized Stirling numbers, convolution formula and $$(p, q)$$-analogues. Can. J. Math. 11, 474–499 (1995)

69. Bukweli-Kyemba, J.D., Hounkonnou, M.N.: Quantum deformed algebra: coherent states and special functions (2013). arXiv:1301.0116v1

70. Prabseang, J., Nonlaopon, K., Tariboon, J.: $$(p,q)$$-Hermite–Hadamard inequalities for double integral and $$(p,q)$$-differentiable convex functions. Axioms 8, 68 (2019)

71. Kalsoom, H., Amer, M., Junjua, M.D., Hassain, S., Shahxadi, G.: $$(p,q)$$-Estimates of Hermite–Hadamard-type inequalities for coordinated convex and quasi convex function. Mathematics 7, 683 (2019)

72. Tunc, M., Gov, E.: Some integral inequalities via $$(p, q)$$-calculus on finite intervals. RGMIA Res. Rep. Collect. 19, 1–12 (2016)

73. Tunc, M., Gov, E.: $$(p,q)$$-Integral inequalities. RGMIA Res. Rep. Collect. 19, 1–13 (2016)

74. Soontharanon, J., Sitthiwirattham, T.: Fractional $$(p,q)$$-calculus. Adv. Differ. Equ. 2020, 35 (2020)

75. Gradimir, V.M., Vijay, G.N.M.: $$(p, q)$$-Beta functions and applications in approximation. Bol. Soc. Mat. Mex. 24, 219–237 (2018)

76. Dragomir, S.S., Agarwal, R.P.: Two inequalities for differentiable mapping and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 11, 91–95 (1995)

## Acknowledgements

This work is supported by the Program Management Unit for Human Resources & Institutional Development, Research and Innovation [grant number B05F630104] and Chiang Mai University, Thailand.

Not applicable.

## Author information

Authors

### Corresponding author

Correspondence to Kamsing Nonlaopon.

## Ethics declarations

### Competing interests

The authors declare that they have no competing interests.

## Rights and permissions

Reprints and Permissions

Neang, P., Nonlaopon, K., Tariboon, J. et al. Some trapezoid and midpoint type inequalities via fractional $$(p,q)$$-calculus. Adv Differ Equ 2021, 333 (2021). https://doi.org/10.1186/s13662-021-03487-6

• Accepted:

• Published:

• DOI: https://doi.org/10.1186/s13662-021-03487-6

• 05A30
• 26D10
• 26D15
• 26A33

### Keywords

• Trapezoid type inequalities
• Midpoint type inequalities
• Quantum calculus
• q-shifting operator
• $$(p,q)$$-calculus
• Fractional $$(p,q)$$-integral
• Fractional $$(p,q)$$-integral inequalities