Skip to main content

Theory and Modern Applications

Some trapezoid and midpoint type inequalities via fractional \((p,q)\)-calculus

Abstract

Fractional calculus is the field of mathematical analysis that investigates and applies integrals and derivatives of arbitrary order. Fractional q-calculus has been investigated and applied in a variety of research subjects including the fractional q-trapezoid and q-midpoint type inequalities. Fractional \((p,q)\)-calculus on finite intervals, particularly the fractional \((p,q)\)-integral inequalities, has been studied. In this paper, we study two identities for continuous functions in the form of fractional \((p,q)\)-integral on finite intervals. Then, the obtained results are used to derive some fractional \((p,q)\)-trapezoid and \((p,q)\)-midpoint type inequalities.

1 Introduction

The ordinary calculus of Newton and Leibniz is well known to be investigated extensively and intensively to produce a large number of related formulas and properties as well as applications in a variety of fields ranging from natural sciences to social sciences. In the early eighteenth century, the well-known mathematician Leonhard Euler (1707–1783) established quantum calculus or q-calculus, which is the study of calculus without limits, in the way of Newton’s work for infinite series. Later, F. H. Jackson initiated a study of q-calculus in a symmetrical manner in 1910 and introduced q-derivative and q-integral in [1], see [2] for more details.

Many physical and mathematical problems have led to the necessity of studying q-calculus; for instance, Fock [3] studied the symmetry of hydrogen atoms using the q-difference equation. In addition, in modern mathematical analysis, q-calculus has lots of applications such as combinatorics, orthogonal polynomials, basic hypergeometric functions, number theory, quantum theory, mechanics, and theory of relativity, see also [424] and the references cited therein. The book by Kac and Cheung [25] covers the basic theoretical concepts of q-calculus.

As one of the major driving forces behind the modern approach of real analysis, inequalities have played a vital role in almost all branches of mathematics along with other fields of science. In 2015, Noor et al. [26] established q-analogue of classical integral identity to obtain q-trapezoid type inequalities for convex functions. Moreover, in 2016, Necmettin, Mehmet, and İmdat [27] proved the correctness of left part of q-Hermite–Hadamard and gave some q-midpoint type integral inequalities through q-differentiable convex function and q-differentiable quasi-convex functions. With these results, many researchers have extended some important topics of q-calculus together with applications in many fields, such as q-integral inequalities, see [2837] for more details.

Since the exploration has been continued to generalize the existing results through creative thoughts and novel techniques of fractional calculus, in 2015, Tariboon, Ntouyas, and Agarwal [38] proposed a new q-shifting operator \({}_{a}\Phi _{q}{(m)}= qm+(1-q)a\) for studying new concepts of fractional q-calculus. In 2016, Sudsutad, Ntouyas, and Tariboon [39] studied some fractional q-integral inequalities. In 2020, Kunt and Aljasem [40] proved Riemann–Liouville fractional q-trapezoid and q-midpoint type inequalities for convex functions. Furthermore, in 2021, Neang et al. [41] introduced fractional \((p,q)\)-calculus on finite intervals and proved some well-known integral inequalities.

In 2018, as one of the most attractive areas, Kunt et al. [42] proved \((p,q)\)-Hermite–Hadamard inequalities and gave some \((p,q)\)-midpoint type integral inequalities via \((p,q)\)-differentiable convex and \((p,q)\)-differentiable quasi-convex functions. In 2019, Latif et al. [43] proved some \((p,q)\)-trapezoid integral inequalities for convex and quasi-convex functions. Based on these results, many authors have generalized and developed \((p,q)\)-calculus, which is used efficiently in many fields, and some results on the study of \((p,q)\)-calculus can be found in [4471].

Motivated by some of the above studies and applications, in this paper, we study two identities for continuous functions in the form of fractional \((p,q)\)-integral on finite intervals. Then, the obtained results are used to derive some fractional \((p,q)\)-trapezoid and \((p,q)\)-midpoint type inequalities.

2 Preliminaries

In this section, we recall some well-known facts on fractional \((p,q)\)-calculus, which can be found in [10, 11, 38, 53, 55]. Throughout this paper, let \([a,b] \subset \mathbb{R}\) be an interval with \(a < b\), and \(0< q< p\leq 1\) be constants,

$$\begin{aligned} &[k]_{p,q} = \textstyle\begin{cases} \frac{p^{k}-q^{k}}{p-q}, & k \in \mathbb{N}, \end{cases}\displaystyle \\ &[k]_{p,q}! = \textstyle\begin{cases} [k]_{p,q}[k-1]_{p,q} \cdots [1]_{p,q} = \prod_{i=1}^{k} \frac{p^{i}-q^{i}}{p-q}, & k \in \mathbb{N}, \\ 1,& k=0. \end{cases}\displaystyle \end{aligned}$$
(2.1)

Property 2.1

([38])

Let \({}_{a}\Phi _{q}{(m)}= qm+(1-q)a\). For any \(m, n \in \mathbb{R}\) and for all positive integers j, k, we have

  1. (i)

    \({{}_{a}\Phi ^{k}_{q}(m)} = {{}_{a}\Phi _{q^{k}}(m)} \);

  2. (ii)

    \({{}_{a}\Phi ^{j}_{q}({{}_{a}\Phi ^{k}_{q}(m)})} = {{}_{a}\Phi ^{k}_{q}({{}_{a} \Phi ^{j}_{q}(m)})} = {{}_{a}\Phi ^{j+k}_{q}(m)}\);

  3. (iii)

    \({{}_{a}\Phi _{q}(a)}= a\);

  4. (iv)

    \({{}_{a}\Phi ^{k}_{q}(m)}-a = q^{k}(m-a)\);

  5. (v)

    \(m-{{}_{a}\Phi ^{k}_{q}(m)} = (1-q^{k})(m-a)\);

  6. (vi)

    \({{}_{a}\Phi ^{k}_{q}(m)}= m{\,{}_{a/m}\Phi ^{k}_{q}(1)}\) for \(m \neq 0\);

  7. (vii)

    \({{}_{a}\Phi _{q}(m)}- {{}_{a}\Phi ^{k}_{q}(n)} = q (m- {{}_{a} \Phi ^{k-1}_{q}(n)} )\).

Property 2.2

([38])

For any \(\gamma , n, m \in \mathbb{R}\) with \(n \neq a\) and \(k \in \mathbb{N} \cup \{0\}\), we have

  1. (i)

    \((n-m)^{(k)}_{a}= (n-a)^{k}{ (\frac{m-a}{n-a};q )}_{k}\);

  2. (ii)

    \({(n-m)^{(\gamma )}}_{a}={(n-a)^{\gamma }} \prod_{i=0}^{ \infty }{ \frac{1-{\frac{m-a}{n-a}{q^{i}}}}{1-{\frac{m-a}{n-a}}{q^{\gamma +i}}}}={(n-a)^{ \gamma }} \frac{(\frac{m-a}{n-a};q)_{\infty }}{(\frac{m-a}{n-a}q^{\gamma };q)_{\infty }}\);

  3. (iii)

    \((n-{{}_{a}\Phi ^{k}_{q}(n)} )^{\gamma }_{a} = (n-a)^{\gamma }{\frac{(q^{k};q)_{\infty }}{(q^{\gamma +k};q)_{\infty }}}\).

For \(m,n \in \mathbb{R}\), the \((p,q)\)-analogue of the power function \({}_{a}{(m-n)^{k}_{p,q}}\) with \(k \in \mathbb{N}\cup \{0\}\) is defined follows:

$$\begin{aligned}& {}_{a}{(m-n)^{(0)}_{p,q}}: =1,\qquad {}_{a}{(m-n)^{(k)}_{p,q}}:= \prod_{i=0}^{k-1}{ \bigl({}_{a} \Phi ^{i}_{p}{(m)}-{}_{a} \Phi ^{i}_{q}{(n)} \bigr)}, \end{aligned}$$
(2.2)
$$\begin{aligned}& {}_{a}{(m-n)^{(k)}_{p,q}} = {(m-a)^{k}}\prod_{i=0}^{k-1}p^{i} \biggl(1- \biggl(\frac{n-a}{m-a} \biggr){ \biggl(\frac{q}{p} \biggr)^{i}} \biggr). \end{aligned}$$
(2.3)

More generally, if \(\alpha \in \mathbb{R}\), then

$$ {}_{a}{(m-n)^{(\alpha )}_{p,q}}= {(m-a)^{\alpha }} \prod_{i=0}^{ \infty } \frac{p^{i}}{p^{\alpha +i}} \frac{1- (\frac{n-a}{m-a} ) (\frac{q}{p} )^{i}}{1- (\frac{n-a}{m-a} ) (\frac{q}{p} )^{\alpha +i}}, $$
(2.4)

or

$$ {}_{a}{(m-n)^{(\alpha )}_{p,q}}= {(m-a)^{\alpha }p^{\binom{\alpha }{2}}} \prod_{i=0}^{\infty } \frac{1- (\frac{n-a}{m-a} ) (\frac{q}{p} )^{i}}{1- (\frac{n-a}{m-a} ) (\frac{q}{p} )^{\alpha +i}}. $$
(2.5)

Property 2.3

([41])

For \(\alpha > 0 \), the following formulas hold:

  1. (i)

    \({}_{a}\Phi ^{k}_{q/p}{(m)} - a = (\frac{q}{p} )^{k}{(m-a)}\);

  2. (ii)

    \({}_{a} (m-{}_{a}\Phi ^{k}_{q/p}{(m)} )^{(\alpha )}_{p,q} = {(m-a)^{\alpha }} \prod_{i=0}^{\infty } \frac{p^{i}}{p^{\alpha +i}} \frac{1- (\frac{q}{p} )^{k} (\frac{q}{p} )^{i}}{1- (\frac{q}{p} )^{k} (\frac{q}{p} )^{(\alpha +i)}}= (m-a)^{\alpha } (1- (\frac{q}{p} )^{k} )^{( \alpha )}_{p,q}\).

Definition 2.1

([72])

If \(f : [a,b] \rightarrow \mathbb{R} \) is a continuous function, then the \((p,q)\)-derivative of f on \([a,\frac{1}{p}(b-a)+a ]\) at x is defined by

$$\begin{aligned}& _{a}D_{p,q} f (x) = \frac{f(px+(1-p)a)-f(qx+(1-q)a)}{(p-q)(x-a)}, \quad x \neq a, \\& {}_{a}D_{p,q} f (a) = \lim_{x \to a}{{}_{a}D_{p,q}f(x)}. \end{aligned}$$
(2.6)

Obviously, a function f is \((p,q)\)-differentiable on \([a,\frac{1}{p}(b-a)+a ]\) if \(_{a}D_{p,q}f(x)\) exists for all \(x \in [a,\frac{1}{p}(b-a)+a ]\). In Definition 2.1, if \(a=0\), then \(_{0}D_{p,q}f = D_{p,q}f\), where \(D_{p,q}f\) is defined by

$$ D_{p,q} f (x) =\frac{f(px)-f(qx)}{(p-q)x}, \quad x \neq 0. $$
(2.7)

Furthermore, if \(p=1\) in (2.7), then it reduces to \(D_{q}f\), which is q-derivative of the function f, see [25, 73] for more details.

Definition 2.2

([72])

If \(f : [a,b] \to \mathbb{R}\) is a continuous function, then the \((p,q)\)-integral is defined by

$$ \int _{a}^{x}{f(t)} \,{}_{a}d_{p,q}t = (p-q) (x-a)\sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}} f \biggl(\frac{q^{n}}{p^{n+1}}x+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) $$
(2.8)

for \(x \in [a,\frac{1}{p}(b-a)+a ]\). If \(a=0\) and \(p=1\) in (2.8), then we have the classical q-integral, see [25] for more details.

Theorem 2.1

([72])

The following formulas hold for \(t \in [a,b]\):

  1. (i)

    \({{}_{a}D_{p,q}\int _{a}^{t}{f(s)} \,{}_{a} d_{p,q}s} = {f(t)}\);

  2. (ii)

    \(\int _{a}^{b}\,{}_{a}D_{p,q}{f(s)}\,{}_{a}d_{p,q}s= f(t)-f(a)\);

  3. (iii)

    \(\int _{c}^{t}\,{}_{a}D_{p,q}{f(s)}\,{}_{a}d_{p,q}s= f(t)-f(c)\) for \(c \in (a,t)\).

Theorem 2.2

([72])

If \(f, g: [a,b]\to \mathbb{R} \) are continuous functions and \(\lambda \in \mathbb{R}\), then the following formulas hold:

  1. (i)

    \(\int _{a}^{t} [f(s)+g(s) ]\,{}_{a}d_{p,q}s= \int _{a}^{t}{f(s)}\,{}_{a}d_{p,q}s+ \int _{a}^{t}{g(s)}\,{}_{a}d_{p,q}s\);

  2. (ii)

    \(\int _{a}^{t}{\lambda f(s)}\,{}_{a}d_{p,q}s= \lambda \int _{a}^{t}{f(s)}\,{}_{a}d_{p,q}s\);

  3. (iii)

    \(\int _{a}^{t}{f(ps+(1-p)a)}\,{}_{a}D_{p,q}{g(s)}\,{}_{a}d_{p,q}s= (fg ){(s)}|^{t}_{a}- \int _{a}^{t}{g(qs+(1-q)a)}\,{}_{a}D_{p,q}{(f(s))}\,{}_{a}d_{p,q}s\).

For \(t \in \mathbb{R}\setminus \{0,-1,-2,\dots \}\), the \((p,q)\)-gamma function is defined by

$$ \Gamma _{p,q}(t)= \frac{ (p-q )_{p,q}^{(t-1)}}{(p-q)^{t-1}}, $$
(2.9)

and an equivalent definition of (2.9) is given in [56] as

$$ \Gamma _{p,q}{(t)} = p^{\frac{t(t-1)}{2}} \int _{0}^{\infty }x^{t-1}E^{-qx}_{p,q}\, d_{p,q}x, $$
(2.10)

where

$$ E^{-qx}_{p,q} = \sum_{n=0}^{\infty } \frac{q^{\binom{n}{2}}}{[n]_{p,q}} (-qx )^{n}. $$

Obviously, \(\Gamma _{p,q}{(t+1)}= [t]_{p,q}\Gamma _{p,q}{(t)}\). For \(s, t > 0\), the definition of the \((p,q)\)-beta function is defined by

$$ B_{p,q}{(s,t)}= \int _{0}^{1}{u^{s-1}}_{0} \bigl(1-{}_{0} \Phi _{q}{(u)} \bigr)^{(t-1)}_{p,q}\,{}_{0}d_{p,q}u, $$
(2.11)

and (2.11) can also be written as

$$ B_{p,q}{(s,t)} =p^{ (t-1 ) (2s+t-2 )/2} \frac{\Gamma _{p,q}{(s)}\Gamma _{p,q}{(t)}}{\Gamma _{p,q}{(s+t)}}, $$
(2.12)

see [74, 75] for more details.

Definition 2.3

([41])

Let f be a function defined on \([a,b]\), and let \(\alpha > 0\). The Riemann–Liouville fractional \((p,q)\)-integral is defined by

$$\begin{aligned} & \bigl({}_{a}I^{\alpha }_{p,q}f \bigr) (t) \\ &\quad = \frac{1}{p^{\binom{\alpha }{2}}\Gamma _{p,q}{(\alpha )}} \int _{a}^{t}{ \,{}_{a} \bigl(t-{}_{a}\Phi _{q}(s) \bigr)^{(\alpha -1)}_{p,q}} {f \biggl( \frac{s}{p^{\alpha -1}}+ \biggl(1-\frac{1}{p^{\alpha -1}} \biggr)a \biggr)}\,{}_{a}d_{p,q}s \\ &\quad =\frac{(p-q)(t-a)}{p^{\binom{\alpha }{2}}{}\Gamma _{p,q}{(\alpha )}} \sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}}{\,{}_{a} \bigl( t-{}_{a}\Phi ^{n+1}_{q/p}{(t)} \bigr)^{( \alpha -1)}_{p,q}}f \biggl(\frac{q^{n}}{p^{\alpha +n}}t+ \biggl(1- \frac{q^{n}}{p^{\alpha +n}} \biggr)a \biggr) \end{aligned}$$
(2.13)

for \(t\in [a,p^{\alpha }(b-a)+a ]\).

Theorem 2.3

([41])

If \(f:[a,b] \to \mathbb{R} \) is a convex differentiable function and \(\alpha > 0\), then we have

$$\begin{aligned} f \biggl( \frac{ ( [\alpha +1]_{p,q}-p^{\alpha } )a+p^{\alpha }b}{[\alpha +1]_{p,q}} \biggr) &\leq \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl({}_{a}I^{\alpha }_{p,q}f(s) \bigr) \bigl(p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr) \\ &\leq \frac{ ( [\alpha +1]_{p,q} - p^{\alpha } )f(a) +p^{\alpha }f(b)}{[\alpha +1]_{p,q}}. \end{aligned}$$
(2.14)

3 Main results

In this section, we give two identities for continuous functions in the form of fractional Riemann–Liouville \((p,q)\)-integral type which will be used to prove the fractional Riemann–Liouville \((p,q)\)-trapezoid and \((p,q)\)-midpoint type inequalities.

Lemma 3.1

Let \(f: [a,b] \to \mathbb{R}\) be a continuous function and \(\alpha > 0\). If \({}_{a}D_{p,q}f\) is \((p,q)\)-integrable on \((a,\frac{1}{p}(b-a)+a )\), then the following equality holds:

$$\begin{aligned} &\frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{ \alpha } \bigr)a \bigr)- \frac{ ( [\alpha +1]_{p,q} - p^{\alpha } )f(a) +p^{\alpha }f(b)}{[\alpha +1]_{p,q}} \\ &\quad = \frac{(b-a)}{[\alpha +1]_{p,q}} \int _{0}^{1} \bigl( [\alpha +1]_{p,q} \bigl( 1- \Phi _{q}(t) \bigr)^{\alpha }_{p,q}- p^{\alpha } \bigr) \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t. \end{aligned}$$
(3.1)

Proof

By simple computation and using Definition 2.3, we have

$$\begin{aligned} A_{1} &= \frac{b-a}{p^{\binom{\alpha }{2}}} \int _{0}^{1} \bigl(1- {}_{0} \Phi _{q}(t) \bigr)_{p,q}^{(\alpha )} \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \\ &= \frac{b-a}{p^{\binom{\alpha }{2}}} \int _{0}^{1} \bigl(1- {}_{0} \Phi _{q}(t) \bigr)_{p,q}^{(\alpha )} \frac{f ( (1-pt)a +ptb ) -f ( (1-qt)a +qtb )}{(p-q)(b-a)t} \,{}_{0}d_{p,q}t \\ &= \frac{1}{p^{\binom{\alpha }{2}}(p-q)} \int _{0}^{1} \bigl(1- {}_{0} \Phi _{q}(t) \bigr)_{p,q}^{(\alpha )} \frac{f ( (1-pt)a +ptb )}{t} \,{}_{0}d_{p,q}t \\ &\quad {} - \frac{1}{p^{\binom{\alpha }{2}}(p-q)} \int _{0}^{1} \bigl(1- {}_{0} \Phi _{q}(t) \bigr)_{p,q}^{(\alpha )} \frac{f ( (1-qt)a +qtb )}{t} \,{}_{0}d_{p,q}t \\ &=\frac{1}{p^{\binom{\alpha }{2}}} \sum_{n= 0}^{\infty } \frac{q^{n}}{p^{n+1}} \bigl(1- {}_{0}\Phi ^{n+1}_{q/p}(1) \bigr)_{p,q}^{( \alpha )} \frac{f ( (1-{}_{0}\Phi ^{n}_{q/p}(1) )a +{}_{0}\Phi ^{n}_{q/p}(1) b )}{\frac{q^{n}}{p^{n+1}}} \\ & \quad {} -\frac{1}{p^{\binom{\alpha }{2}}}\sum_{n= 0}^{\infty } \frac{q^{n}}{p^{n+1}} \bigl(1- {}_{0}\Phi ^{n+1}_{q/p}(1) \bigr)_{p,q}^{( \alpha )} \frac{f ( (1-{}_{0}\Phi ^{n+1}_{q/p}(1) )a +{}_{0}\Phi ^{n+1}_{q/p}(1) b )}{\frac{q^{n}}{p^{n+1}}} \\ &= \sum_{n=0}^{\infty } \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n+1}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n}b \biggr)} \\ &\quad {} - \sum_{n=0}^{\infty } \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n+1}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n+1} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n+1}b \biggr)} \\ &= \sum_{n=0}^{\infty } \biggl( 1- \biggl( \frac{q}{p} \biggr)^{\alpha +n} \biggr) \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n}b \biggr)} \\ &\quad {} - \sum_{n=0}^{\infty } \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n+1} \biggr) \frac{ ( (\frac{q}{p} )^{n+2}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n+1}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n+1} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n+1}b \biggr)} \\ &=\sum_{n=0}^{\infty } \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n}b \biggr)} \\ &\quad {} -\sum_{n=0}^{\infty } \frac{ ( (\frac{q}{p} )^{n+2}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n+1}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n+1} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n+1}b \biggr)} \\ &\quad {} - \Biggl[\sum_{n=0}^{\infty } \biggl(\frac{q}{p} \biggr)^{ \alpha +n} \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n}b \biggr)} \\ &\quad {} - \sum_{n=0}^{\infty } \biggl( \frac{q}{p} \biggr)^{n+1} \frac{ ( (\frac{q}{p} )^{n+2}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n+1}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n+1} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n+1}b \biggr)} \Biggr] \\ &= \frac{ ( (\frac{q}{p} )^{1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha }; \frac{q}{p} )_{\infty }}f{(b)} -f(a) - \Biggl[\sum_{n=0}^{\infty } \biggl(\frac{q}{p} \biggr)^{\alpha +n} \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n}b \biggr)} \\ &\quad {} - \sum_{n=1}^{\infty } \biggl( \frac{q}{p} \biggr)^{n} \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n}b \biggr)} \Biggr] \\ &= \frac{ ( (\frac{q}{p} )^{1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha }; \frac{q}{p} )_{\infty }}f{(b)} -f(a) - \Biggl[\sum_{n=0}^{\infty } \biggl(\frac{q}{p} \biggr)^{\alpha +n} \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n}b \biggr)} \\ & \quad {} - \sum_{n=0}^{\infty } \biggl( \frac{q}{p} \biggr)^{n} \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n } \biggr)a + \biggl( \frac{q}{p} \biggr)^{n }b \biggr)} + \frac{ ( (\frac{q}{p} )^{1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha }; \frac{q}{p} )_{\infty }}f{(b)} \Biggr] \\ &= -f(a) + \biggl(1- \biggl( \frac{q}{p} \biggr)^{\alpha } \biggr)\sum_{n=0}^{ \infty } \biggl( \frac{q}{p} \biggr)^{n} \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n}b \biggr)} \\ &= -f(a) + \frac{[\alpha ]_{p,q}(p-q)}{p^{\alpha }}\sum_{n=0}^{ \infty } \biggl(\frac{q}{p} \biggr)^{n} \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{\alpha +n}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n}b \biggr)} \\ &= -f(a) + \frac{[\alpha ]_{p,q}\Gamma _{p,q}(\alpha )}{p^{\alpha ^{2}}(b-a)^{\alpha }} \frac{(p-q)p^{\alpha }(b-a)}{p^{\binom{\alpha }{2}}\Gamma _{p,q}(\alpha )} \sum _{n=0}^{\infty }\frac{q^{n}}{p^{n+1}} p^{\alpha (\alpha -1)}(b-a)^{ \alpha -1}p^{\binom{\alpha -1}{2}} \\ &\quad {} \times \frac{ ( (\frac{q}{p} )^{n+1}; \frac{q}{p} )_{\infty }}{ ( (\frac{q}{p} )^{(\alpha -1)+(n+1)}; \frac{q}{p} )_{\infty }}f{ \biggl( \biggl( 1- \biggl( \frac{q}{p} \biggr)^{n} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n}b \biggr)} \\ &= -f(a) + \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \biggl[ \frac{1}{p^{\binom{\alpha }{2}}\Gamma _{p,q}(\alpha )} \int _{a}^{{}_{a} \Phi _{p^{\alpha }}(b)} \,{}_{a} \bigl({}_{a}\Phi _{p^{\alpha }}(b)-{}_{a} \Phi _{q}(t) \bigr)_{p,q}^{(\alpha -1)} \\ & \quad {} \times f \biggl( \frac{t}{p^{\alpha -1} }+ \biggl(1- \frac{1}{p^{\alpha -1}} \biggr)a \biggr)\,{}_{a}d_{p,q}t \biggr] \\ &= -f(a) + \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}} (b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{ \alpha } \bigr)a \bigr), \end{aligned}$$
(3.2)

and

$$\begin{aligned} A_{2}&= \frac{p^{\alpha }(b-a)}{[\alpha +1]_{p,q}} \int _{0}^{1} \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \\ &=\frac{p^{\alpha }(b-a)}{[\alpha +1]_{p,q}} \int _{0}^{1} \frac{f ( (1-pt)a +ptb ) -f ( (1-qt)a +qtb )}{(p-q)(b-a)t} \,{}_{0}d_{p,q}t \\ &= \biggl[\frac{p^{\alpha }}{(p-q)[\alpha +1]_{p,q}} \int _{0}^{1} \frac{f ( (1-pt)a +ptb )}{t} \,{}_{0}d_{p,q}t \\ & \quad {} -\frac{p^{\alpha }}{(p-q)[\alpha +1]_{p,q}} \int _{0}^{1} \frac{f ( (1-qt)a +qtb )}{t} \,{}_{0}d_{p,q}t \biggr] \\ &= \frac{p^{\alpha }}{[\alpha +1]_{p,q}} \Biggl[\sum_{n=0}^{\infty } f{ \biggl( \biggl( 1- \biggl(\frac{q}{p} \biggr)^{n} \biggr)a + \biggl( \frac{q}{p} \biggr)^{n}b \biggr)} \\ & \quad {} - \sum_{n=0}^{\infty }f{ \biggl( \biggl( 1- \biggl( \frac{q}{p} \biggr)^{n+1 } \biggr)a + \biggl(\frac{q}{p} \biggr)^{n+1}b \biggr)} \Biggr] \\ &=\frac{p^{\alpha }f(b)-p^{\alpha }f(a) }{[\alpha +1]_{p,q}}. \end{aligned}$$
(3.3)

From (3.2) and (3.3), we obtain

$$\begin{aligned} &\frac{(b-a)}{[\alpha +1]_{p,q}} \int _{0}^{1} \biggl( \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}} } \bigl( 1-{}_{0} \Phi _{q}(s) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr) \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \\ &\quad = A_{1}-A_{2} \\ &\quad =\frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{ \alpha } \bigr)a \bigr)- \frac{ ( [\alpha +1]_{p,q} - p^{\alpha } )f(a) +p^{\alpha }f(b)}{[\alpha +1]_{p,q}}. \end{aligned}$$
(3.4)

Thus the proof is completed. □

Remark 3.1

If \(\alpha =1\), then (3.1) reduces to Lemma 3.2 in [43] as

$$\begin{aligned} &\frac{1}{p(b-a)} \int _{a}^{pb+(1-p)a} f(x) \,{}_{a}d_{p,q}x- \frac{pf(a)+qf(a)}{p+q} \\ &\quad = \frac{q(b-a)}{p+q} \int _{0}^{1} \bigl( 1- (p+q)t \bigr) \,{}_{a}D_{p,q}f \bigl( tb + (1-t)a \bigr) \,{}_{a}d_{p,q}t. \end{aligned}$$
(3.5)

If \(p=1\), then (3.1) reduces to Lemma 5.2 in [40] as

$$\begin{aligned} &\frac{\Gamma _{q}(\alpha +1)}{ (b-a)^{\alpha }} \bigl( {}_{a}I^{ \alpha }_{ q}f \bigr) (b)- \frac{ ( [\alpha +1]_{ q} -1 )f(a) + f(b)}{[\alpha +1]_{ q}} \\ &\quad = \frac{(b-a)}{[\alpha +1]_{ q}} \int _{0}^{1} \bigl( [\alpha +1]_{ q} \bigl( 1- \Phi _{q}(t) \bigr)^{(\alpha )}_{ q}- 1 \bigr) \,{}_{a}D_{ q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{ q}t. \end{aligned}$$
(3.6)

Moreover, if \(q \to 1\) and \(\alpha =1\), then (3.6) reduces to

$$ \frac{f(a) +f(b)}{2} - \frac{1}{b-a} \int _{a}^{b} f(x)\,dx = \frac{b-a}{2} \int _{0}^{1} (1-2t)f' \bigl(ta +(1-t)b \bigr) \,dt, $$
(3.7)

which can be found in [76].

Theorem 3.1

Let \(f: [a,b] \to \mathbb{R}\) be a continuous function, \(\alpha > 0\), and \({}_{a}D_{p,q}f\) be \((p,q)\)-integrable on \((a,\frac{1}{p}(b-a)+a )\). If \(\vert {}_{a}D_{p,q}f \vert \) is convex on

$$ \biggl(a,\frac{1}{p}(b-a)+a \biggr), $$

then the following Riemann–Liouville fractional \((p,q)\)-trapezoid type inequality holds:

$$\begin{aligned} & \biggl\vert \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr)- \frac{ ( [\alpha +1]_{p,q} - p^{\alpha } )f(a) +p^{\alpha }f(b)}{[\alpha +1]_{p,q}} \biggr\vert \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \bigl( \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert B_{1} + \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert B_{2} \bigr), \end{aligned}$$
(3.8)

where

$$ B_{1}= \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert (1-t ) \,{}_{0}d_{p,q}t $$

and

$$ B_{2}= \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert t \,{}_{0}d_{p,q}t. $$

Proof

Using Lemma 3.1 and the convexity of \(\vert {}_{a}D_{p,q}f \vert \), we have

$$\begin{aligned} & \biggl\vert \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2} }(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{ \alpha } \bigr)a \bigr)- \frac{ ( [\alpha +1]_{p,q} - p^{\alpha } )f(a) +p^{\alpha }f(b)}{[\alpha +1]_{p,q}} \biggr\vert \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert \,{}_{0}d_{p,q}t \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert \\ &\qquad {} \times \bigl[ \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert (1-t) + \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert t \bigr] \,{}_{0}d_{p,q}t \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \biggl[ \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert (1-t) \biggr] \,{}_{0}d_{p,q}t \\ & \qquad {} +\frac{(b-a)}{[\alpha +1]_{p,q}} \biggl[ \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert t \biggr] \,{}_{0}d_{p,q}t. \end{aligned}$$

This completes the proof. □

Remark 3.2

If \(p=1\), then (3.8) reduces to

$$\begin{aligned} & \biggl\vert \frac{\Gamma _{ q}(\alpha +1)}{ (b-a)^{\alpha }} \bigl( {}_{a}I^{ \alpha }_{ q}f \bigr) (b)- \frac{ ( [\alpha +1]_{ q} - 1 )f(a) + f(b)}{[\alpha +1]_{ q}} \biggr\vert \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{ q}} \bigl( \bigl\vert {}_{a}D_{ q}f(a) \bigr\vert \delta _{1} + \bigl\vert {}_{a}D_{ q}f(b) \bigr\vert \delta _{2} \bigr), \end{aligned}$$
(3.9)

where

$$ \delta _{1}= \int _{0}^{1} \bigl\vert [\alpha +1]_{ q} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)_{ q}^{(\alpha )} - 1 \bigr\vert (1-t ) \,{}_{0}d_{ q}t $$

and

$$ \delta _{2}= \int _{0}^{1} \bigl\vert [\alpha +1]_{ q} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)_{ q}^{(\alpha )}- 1 \bigr\vert t \,{}_{0}d_{ q}t, $$

which appeared in [40].

Theorem 3.2

Let \(f: [a,b] \to \mathbb{R}\) be a continuous function, \(\alpha > 0\), and \({}_{a}D_{p,q}f \) be \((p,q)\)-integrable on \((a,\frac{1}{p}(b-a)+a )\). If \(\vert {}_{a}D_{p,q}f \vert ^{r}\) is convex on \((a,\frac{1}{p}(b-a)+a )\) for \(r\geq 0\), then the following Riemann–Liouville fractional \((p,q)\)-trapezoid type inequality holds:

$$\begin{aligned} & \biggl\vert \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr)- \frac{ ( [\alpha +1]_{p,q} - p^{\alpha } )f(a) +p^{\alpha }f(b)}{[\alpha +1]_{p,q}} \biggr\vert \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}}B^{1-1/r}_{3} \bigl( \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r}B_{1} + \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r}B_{2} \bigr)^{1/r}, \end{aligned}$$
(3.10)

where \(B_{1}\) and \(B_{2}\) are given in Theorem 3.1and

$$ B_{3}= \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert \,{}_{0}d_{p,q}t. $$

Proof

Using Lemma 3.1, the convexity of \(\vert {}_{a}D_{p,q}f \vert ^{r}\), and the power mean inequality, we have

$$\begin{aligned} & \biggl\vert \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr)- \frac{ ( [\alpha +1]_{p,q} - p^{\alpha } )f(a) +p^{\alpha }f(b)}{[\alpha +1]_{p,q}} \biggr\vert \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert \,{}_{0}d_{p,q}t \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \biggl( \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert \,{}_{0}d_{p,q}t \biggr)^{1-1/r} \\ &\qquad {} \times \biggl( \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert ^{r} \,{}_{0}d_{p,q}t \biggr)^{1/r} \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \biggl( \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert \,{}_{0}d_{p,q}t \biggr)^{1-1/r} \\ &\qquad {} \times \biggl( \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0}\Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert \bigl[ \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r}(1-t) \\ &\qquad {}+ \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} t \bigr] \,{}_{0}d_{p,q}t \biggr)^{1/r} \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \biggl( \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert \,{}_{0}d_{p,q}t \biggr)^{1-1/r} \\ & \qquad {} \times \biggl[ \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert (1-t) \,{}_{0}d_{p,q}t \\ &\qquad {} + \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert (1-t) \,{}_{0}d_{p,q}t \biggr]^{1/r}. \end{aligned}$$

Therefore, the proof is completed. □

Remark 3.3

If \(\alpha =1\), then (3.10) reduces to

$$\begin{aligned} & \biggl\vert \frac{1}{p(b-a)} \int _{a}^{pb+(1-p)a} f(x) \,{}_{a}d_{p,q}x- \frac{pf(a)+qf(a)}{p+q} \biggr\vert \\ &\quad = \frac{q(b-a)}{p+q} \biggl[ \frac{2(p+q-1)}{(p+q)^{2}} \biggr]^{1-1/r} \bigl[\lambda _{1}(p,q) \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} + \lambda _{2}(p,q) \bigl\vert \,{}_{a}D_{p,q}f(a) \bigr\vert ^{r} \bigr]^{1/r}, \end{aligned}$$
(3.11)

where

$$ \lambda _{1}(p,q)= \frac{q [(p^{3}-2+2p)+ (2p^{2}+2)q + pq^{2} pq^{2} ] + 2p^{2}-2p}{(p+q)^{3}(p^{2}+pq+q^{2})} $$

and

$$\begin{aligned} \lambda _{2}(p,q)&= \frac{1}{(p+q)^{3}(p^{2}+pq+q^{2})} \bigl\{ q \bigl[ \bigl(5p^{3}-4p^{2}-2p+2 \bigr) + \bigl(6p^{2}-4p-2 \bigr)q \\ &\quad {} + (5p-2)q^{2}+2q^{3} \bigr]+ \bigl(2p^{4}-2p^{3}-2p^{3}-2p^{2}+2p \bigr) \bigr\} , \end{aligned}$$

which appeared in [43].

Moreover, if \(p=1\), then (3.10) reduces to

$$\begin{aligned} & \biggl\vert \frac{\Gamma _{ q}(\alpha +1)}{(b-a)^{\alpha }} \bigl( {}_{a}I^{ \alpha }_{ q}f \bigr) (b)- \frac{ ( [\alpha +1]_{ q} - 1 )f(a) + f(b)}{[\alpha +1]_{ q}} \biggr\vert \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{ q}}M^{1-1/r}_{3} \bigl( \bigl\vert {}_{a}D_{ q}f(a) \bigr\vert ^{r}M_{1} + \bigl\vert {}_{a}D_{ q}f(b) \bigr\vert ^{r}M_{2} \bigr)^{1/r}, \end{aligned}$$
(3.12)

where \(\delta _{1}\) and \(\delta _{2}\) are given in Remark 3.2 and

$$ \delta _{3}= \int _{0}^{1} \bigl\vert [\alpha +1]_{ q} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)_{ q}^{(\alpha )} - 1 \bigr\vert \,{}_{0}d_{ q}t, $$

which appeared in [40].

Theorem 3.3

Let \(f: [a,b] \to \mathbb{R}\) be a continuous function, \(\alpha > 0\) and \({}_{a}D_{p,q}f \) be \((p,q)\)-integrable on \((a,\frac{1}{p}(b-a)+a )\). If \(\vert {}_{a}D_{p,q}f \vert ^{r}\) is convex on \([a,\frac{1}{p}(b-a)+a ]\) for \(r > 1\) and \(1/r +1/p = 1\), then the following Riemann–Liouville fractional \((p,q)\)-trapezoid type inequality holds:

$$\begin{aligned} & \biggl\vert \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr)- \frac{ ( [\alpha +1]_{p,q} - p^{\alpha } )f(a) +p^{\alpha }f(b)}{[\alpha +1]_{p,q}} \biggr\vert \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}}B^{1/s}_{4} \biggl( \frac{(p+q-1) \vert {}_{a}D_{p,q}f(a) \vert ^{r}+ \vert {}_{a}D_{p,q}f(b) \vert ^{r}}{p+q} \biggr)^{1/r}, \end{aligned}$$
(3.13)

where

$$ B_{4}= \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0}\Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert ^{s} \,{}_{0}d_{p,q}t. $$

Proof

Using Lemma 3.1, the convexity of \(\vert {}_{a}D_{p,q}f \vert ^{r}\), and Hölder’s inequality, we have

$$\begin{aligned} & \biggl\vert \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr)- \frac{ ( [\alpha +1]_{p,q} - p^{\alpha } )f(a) +p^{\alpha }f(b)}{[\alpha +1]_{p,q}} \biggr\vert \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert \,{}_{0}d_{p,q}t \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \biggl( \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert ^{s} \,{}_{0}d_{p,q}t \biggr)^{1/s} \\ &\qquad {} \times \biggl( \int _{0}^{1} \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert ^{r} \,{}_{0}d_{p,q}t \biggr)^{1/r} \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \biggl( \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert ^{s} \,{}_{0}d_{p,q}t \biggr)^{1/s} \\ &\qquad {} \times \biggl( \int _{0}^{1} \bigl[ \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r}(1-t) + \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} t \bigr] \,{}_{0}d_{p,q}t \biggr)^{1/r} \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{p,q}} \biggl( \int _{0}^{1} \biggl\vert \frac{[\alpha +1]_{p,q}}{p^{\binom{\alpha }{2}}} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)^{(\alpha )}_{p,q}- p^{\alpha } \biggr\vert ^{s} \,{}_{0}d_{p,q}t \biggr)^{1/s} \\ &\qquad {} \times \biggl( \frac{(p+q-1) \vert {}_{a}D_{p,q}f(a) \vert ^{r}+ \vert {}_{a}D_{p,q}f(b) \vert ^{r} }{p+q} \biggr)^{1/r}. \end{aligned}$$

This completes the proof. □

Remark 3.4

If \(\alpha =1\), then (3.13) reduces to

$$\begin{aligned} & \biggl\vert \frac{1}{p(b-a)} \int _{a}^{pb+(1-p)a} f(x) \,{}_{a}d_{p,q}x- \frac{pf(a)+qf(a)}{p+q} \biggr\vert \\ &\quad =\frac{q(b-a)}{p+q} [ \lambda _{3} ]^{1/s} \biggl( \frac{ \vert {}_{a}D_{p,q}f(b) \vert ^{r}+ (p+q-1) \vert {}_{a}D_{p,q}f(a) \vert ^{r}}{p+q} \biggr)^{1/r}, \end{aligned}$$
(3.14)

where

$$ \lambda _{3} = \int _{0}^{1} \bigl\vert 1-(p+q)t \bigr\vert ^{s} \,{}_{0}d_{p,q}t, $$

which appeared in [43].

Moreover, if \(p=1\), then (3.13) reduces to

$$\begin{aligned} & \biggl\vert \frac{\Gamma _{q}(\alpha +1)}{ (b-a)^{\alpha }} \bigl( {}_{a}I^{ \alpha }_{ q}f \bigr) (b)- \frac{ ( [\alpha +1]_{ q} - )f(a) + f(b)}{[\alpha +1]_{ q}} \biggr\vert \\ &\quad \leq \frac{(b-a)}{[\alpha +1]_{ q}}\delta ^{1/s}_{4} \biggl( \frac{q \vert {}_{a}D_{ q}f(a) \vert ^{r}+ \vert {}_{a}D_{ q}f(b) \vert ^{r}}{1+q} \biggr)^{1/r}, \end{aligned}$$

where

$$ \delta _{4}= \int _{0}^{1} \bigl\vert [\alpha +1]_{ q} \bigl( 1- {}_{0} \Phi _{q}(t) \bigr)_{ q}^{(\alpha )} - 1 \bigr\vert ^{s} \,{}_{0}d_{q}t, $$
(3.15)

which appeared in [40].

Now we will prove the following lemma to obtain the Riemann–Liouville fractional \((p,q)\)-midpoint type inequalities.

Lemma 3.2

Let \(f: [a,b] \to \mathbb{R}\) be a continuous function and \(\alpha > 0\). If \({}_{a}D_{p,q}f\) is \((p,q)\)-integrable on \((a,\frac{1}{p}(b-a)+a )\), then the following equality holds:

$$\begin{aligned} &f \biggl( \frac{ ([\alpha +1]_{p,q}-p^{\alpha } )a+p^{\alpha }b}{[\alpha +1]_{p,q}} \biggr)- \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr) \\ &\quad = (b-a) \biggl[ \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl(1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr) \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \\ &\qquad {}+ \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \biggr]. \end{aligned}$$
(3.16)

Proof

By direct computation and using Definitions 2.1 and 2.2, we have

$$\begin{aligned} A_{3}& = \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \\ & = \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \frac{f ( (1-pt)a +ptb ) -f ( (1-qt)a +qtb )}{(p-q)(b-a)t} \,{}_{0}d_{p,q}t \\ &= \frac{1}{(p-q)(b-a)} \int _{0}^{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \frac{f ( (1-pt)a +ptb )}{t} \,{}_{0}d_{p,q}t \\ &\quad {} - \frac{1}{(p-q)(b-a)} \int _{0}^{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \frac{f ( (1-qt)a +qtb )}{t} \,{}_{0}d_{p,q}t \\ & = \frac{p^{\alpha }}{(b-a)[\alpha +1]_{p,q}}\sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}} \frac{f ( (1-\frac{q^{n}p^{\alpha }}{p^{n}[\alpha +1]_{p,q}} )a +\frac{q^{n}p^{\alpha }}{p^{n}[\alpha +1]_{p,q}}b )}{\frac{q^{n}p^{\alpha }}{p^{n+1}[\alpha +1]_{p,q}}} \\ & \quad {} -\frac{p^{\alpha }}{(b-a)[\alpha +1]_{p,q}}\sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}} \frac{f ( (1-\frac{q^{n+1}p^{\alpha }}{p^{n+1}[\alpha +1]_{p,q}} )a +\frac{q^{n+1}p^{\alpha }}{p^{n+1}[\alpha +1]_{p,q}}b )}{\frac{q^{n}p^{\alpha }}{p^{n+1}[\alpha +1]_{p,q}}} \\ &= \frac{1}{(b-a)} \Biggl[ \sum_{n=0}^{\infty } f \biggl( \biggl(1- \frac{q^{n}p^{\alpha }}{p^{n}[\alpha +1]_{p,q}} \biggr)a + \frac{q^{n}p^{\alpha }}{p^{n}[\alpha +1]_{p,q}}b \biggr) \\ &\quad {} -\sum_{n=0}^{\infty } f \biggl( \biggl(1- \frac{q^{n+1}p^{\alpha }}{p^{n+1}[\alpha +1]_{p,q}} \biggr)a + \frac{q^{n+1}p^{\alpha }}{p^{n+1}[\alpha +1]_{p,q}}b \biggr) \Biggr] \\ &= \frac{1}{(b-a)} \biggl[ f \biggl( \frac{ ( [\alpha +1]_{p,q}-p^{\alpha } )a+p^{\alpha }b}{[\alpha +1]_{p,q}} \biggr)-f(a) \biggr]. \end{aligned}$$
(3.17)

On the other hand, in Lemma 3.1, the following integral was given:

$$\begin{aligned} A_{1}& = \frac{b-a}{p^{\binom{\alpha }{2}}} \int _{0}^{1} \bigl(1- {}_{0} \Phi _{q}(t) \bigr)_{p,q}^{(\alpha )} \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \\ & =-f(a) + \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr). \end{aligned}$$
(3.18)

Consequently, from (3.17) and (3.18), we have

$$\begin{aligned} &A_{3} +A_{1} \\ &\quad = (b-a) \biggl[ \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl(1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr) \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \\ &\qquad {}+ \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \biggr] \\ &\quad = {(b-a)} \biggl[ \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \\ &\qquad {} - \int _{0}^{1} \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \biggr] \\ &\quad = f \biggl( \frac{ ( [\alpha +1]_{p,q}-p^{\alpha } )a+p^{\alpha }b}{[\alpha +1]_{p,q}} \biggr)- \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( \,{}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr). \end{aligned}$$

Therefore, the proof is completed. □

Remark 3.5

If \(\alpha =1\), then (3.16) reduces to

$$\begin{aligned} & \biggl\vert f \biggl( \frac{ qa+pb}{p+q} \biggr)- \frac{ 1}{p (b-a)} \int _{a}^{pb+(1-p)a} f(x) \,{}_{a}d_{p,q}x \biggr\vert \\ &\quad = q(b-a) \biggl[ \int _{0}^{\frac{p }{ p+q}}t \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \\ &\qquad {}+ \int _{\frac{p }{p+q}}^{1} \biggl( t-\frac{1}{q} \biggr) \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{p,q}t \biggr], \end{aligned}$$
(3.19)

which appeared in [42].

Moreover, if \(p=1\), then (3.16) reduces to

$$\begin{aligned} &f \biggl( \frac{ ( [\alpha +1]_{ q}- 1 )a+ b}{[\alpha +1]_{ q}} \biggr)- \frac{\Gamma _{ q}(\alpha +1)}{ (b-a)^{\alpha }} \bigl( \,{}_{a}I^{ \alpha }_{ q}f \bigr) (b) \\ &\quad = (b-a) \biggl[ \int _{0}^{\frac{ 1}{[\alpha +1]_{ q}}} \bigl(1- {}_{0} \Phi _{q}(t) \bigr)_{ q}^{(\alpha )} \,{}_{a}D_{ q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{ q}t \\ &\qquad {}- \int _{\frac{ 1}{[\alpha +1]_{ q}}}^{1} \bigl(1- {}_{0} \Phi _{q}(t) \bigr)_{ q}^{(\alpha )} \,{}_{a}D_{ q}f \bigl((1-t)a +tb \bigr) \,{}_{0}d_{ q}t, \biggr] \end{aligned}$$
(3.20)

which appeared in [40].

Theorem 3.4

Let \(f: [a,b] \to \mathbb{R}\) be a continuous function, \(\alpha > 0\), and \({}_{a}D_{p,q}f\) be \((p,q)\)-integrable on \((a,\frac{1}{p}(b-a)+a )\). If \(\vert {}_{a}D_{p,q}f \vert \) is convex on \((a,\frac{1}{p}(b-a)+a )\), then the following Riemann–Liouville fractional \((p,q)\)-midpoint type inequality holds:

$$\begin{aligned} & \biggl\vert f \biggl( \frac{ ( [\alpha +1]_{p,q}-p^{\alpha } )a+p^{\alpha }b}{[\alpha +1]_{p,q}} \biggr)- \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr) \biggr\vert \\ & \quad \leq (b-a) \bigl[ B_{5} \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert + B_{6} \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert + B_{7} \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert + B_{8} \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert \bigr], \end{aligned}$$
(3.21)

where

$$\begin{aligned}& B_{5} = \biggl[ \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert (1-t) \,{}_{0}d_{p,q}t \biggr], \\& B_{6} = \biggl[ \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert t \,{}_{0}d_{p,q}t \biggr], \\& B_{7} = \biggl[ \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert (1-t) \,{}_{0}d_{p,q}t \biggr], \\& B_{8} = \biggl[ \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert t \,{}_{0}d_{p,q}t \biggr]. \end{aligned}$$

Proof

Using Lemma 3.2 and the convexity of \(\vert {}_{a}D_{p,q}f \vert \), we have

$$\begin{aligned} & \biggl\vert f \biggl( \frac{ ( [\alpha +1]_{p,q}-p^{\alpha } )a+p^{\alpha }b}{[\alpha +1]_{p,q}} \biggr)- \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr) \biggr\vert \\ &\quad \leq (b-a) \biggl[ \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert \,{}_{0}d_{p,q}t \\ &\qquad {}+ \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert \,{}_{0}d_{p,q}t \biggr] \\ &\quad \leq (b-a) \biggl[ \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl[ \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert (1-t)+ \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert t \bigr] \,{}_{0}d_{p,q}t \\ &\qquad {}+ \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl[ \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert (1-t)+ \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert t \bigr] \,{}_{0}d_{p,q}t \biggr] \\ &\quad \leq (b-a) \biggl[ \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert (1-t) \,{}_{0}d_{p,q}t \\ &\qquad {}+ \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert t \,{}_{0}d_{p,q}t \biggr] \\ &\qquad {} + (b-a) \biggl[ \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert (1-t) \,{}_{0}d_{p,q}t \\ &\qquad {}+ \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert t \,{}_{0}d_{p,q}t \biggr]. \end{aligned}$$

This completes the proof. □

Remark 3.6

If \(\alpha =1\), then (3.21) reduces to

$$\begin{aligned} & \biggl\vert f \biggl( \frac{ qa+pb}{p+q} \biggr)- \frac{ 1}{p (b-a)} \int _{a}^{pb+(1-p)a} f(x) \,{}_{a}d_{p,q}x \biggr\vert \\ &\quad \leq q(b-a) \bigl[ \lambda _{4}(p,q) \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert + \lambda _{5}(p,q) \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert \\ &\qquad {}+\lambda _{6}(p,q) \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert + \lambda _{7}(p,q) \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert \bigr], \end{aligned}$$
(3.22)

where

$$\begin{aligned}& \lambda _{4}(p,q) = \frac{ p^{3}}{(p+q)^{3}(p^{2}+pq+q^{2})}, \qquad \lambda _{5}(p,q) = \frac{p^{2}(p^{2}+pq+q^{2})-p^{3}}{(p+q)^{3}(p^{2}+pq+q^{2})}, \\& \lambda _{6}(p,q) = \frac{2p^{3}}{(p+q)^{3}(p^{2}+pq+q^{2})}, \qquad \lambda _{7}(p,q) = \frac{ p^{4}+p^{3}q+p^{2}q^{2}-2p^{3}}{(p+q)^{3}(p^{2}+pq+q^{2})}, \end{aligned}$$

which appeared in [42].

Moreover, if \(p=1\), then (3.21) reduces to

$$\begin{aligned} & \biggl\vert f \biggl( \frac{ ( [\alpha +1]_{q}- 1 )a+ b}{[\alpha +1]_{ q}} \biggr)- \frac{\Gamma _{ q}(\alpha +1)}{ (b-a)^{\alpha }} \bigl( {}_{a}I^{ \alpha }_{ q}f \bigr) (b) \biggr\vert \\ &\quad \leq (b-a) \bigl[ \delta _{5} \bigl\vert {}_{a}D_{ q}f(a) \bigr\vert + \delta _{6} \bigl\vert {}_{a}D_{ q}f(b) \bigr\vert +\delta _{7} \bigl\vert {}_{a}D_{ q}f(a) \bigr\vert + \delta _{8} \bigl\vert {}_{a}D_{ q}f(b) \bigr\vert \bigr], \end{aligned}$$
(3.23)

where

$$\begin{aligned}& \delta _{5} = \biggl[ \int _{0}^{\frac{ 1}{[\alpha +1]_{q}}} \bigl\vert 1- \bigl(1- {}_{0}\Phi _{q}(t) \bigr)_{ q}^{(\alpha )} \bigr\vert (1-t) \,{}_{0}d_{ q}t \biggr], \\& \delta _{6} = \biggl[ \int _{0}^{\frac{1}{[\alpha +1]_{ q}}} \bigl\vert 1- \bigl(1- {}_{0}\Phi _{q}(t) \bigr)_{q}^{(\alpha )} \bigr\vert t \,{}_{0}d_{ q}t \biggr], \\& \delta _{7} = \biggl[ \int _{\frac{1}{[\alpha +1]_{q}}}^{1} \bigl\vert - \bigl(1- {}_{0}\Phi _{q}(t) \bigr)_{ q}^{(\alpha )} \bigr\vert (1-t) \,{}_{0}d_{ q}t \biggr], \\& \delta _{8} = \biggl[ \int _{\frac{1}{[\alpha +1]_{ q}}}^{1} \bigl\vert - \bigl(1- {}_{0}\Phi _{q}(t) \bigr)_{ q}^{(\alpha )} \bigr\vert t \,{}_{0}d_{ q}t \biggr], \end{aligned}$$

which appeared in [40].

Theorem 3.5

Let \(f: [a,b] \to \mathbb{R}\) be a continuous function, \(\alpha > 0\) and \({}_{a}D_{p,q}f \) be \((p,q)\)-integrable on \((a,\frac{1}{p}(b-a)+a )\). If \(\vert {}_{a}D_{p,q}f \vert ^{r}\) is convex on \((a,\frac{1}{p}(b-a)+a )\) for \(r\geq 0\), then the following Riemann–Liouville fractional \((p,q)\)-midpoint type inequality holds:

$$\begin{aligned} & \biggl\vert f \biggl( \frac{ ( [\alpha +1]_{p,q}-p^{\alpha } )a+p^{\alpha }b}{[\alpha +1]_{p,q}} \biggr)- \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr) \biggr\vert \\ &\quad \leq (b-a) \bigl[ B^{1-1/r}_{9} \bigl(B_{5} \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} + B_{6} \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \bigr)^{1/r} \\ &\qquad {}+B^{1-1/r}_{10} \bigl(B_{7} \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} + B_{8} \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \bigr)^{1/r} \bigr], \end{aligned}$$
(3.24)

where \(B_{5}\), \(B_{6}\), \(B_{7}\), and \(B_{8}\) are given in Theorem 3.4and

$$ B_{9} = \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \,{}_{0}d_{p,q}t $$

and

$$ B_{10} = \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \,{}_{0}d_{p,q}t. $$

Proof

Using Lemma 3.2, the power mean inequality and the convexity of \(\vert {}_{a}D_{p,q}f \vert ^{r}\), we have

$$\begin{aligned} & \biggl\vert f \biggl( \frac{ ( [\alpha +1]_{p,q}-p^{\alpha } )a+p^{\alpha }b}{[\alpha +1]_{p,q}} \biggr)- \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr) \biggr\vert \\ &\quad \leq (b-a) \biggl[ \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert \,{}_{0}d_{p,q}t \\ &\qquad {}+ \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert \,{}_{0}d_{p,q}t \biggr] \\ &\quad \leq (b-a) \biggl[ \biggl( \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \,{}_{0}d_{p,q}t \biggr)^{1-1/r} \\ &\qquad {}\times \biggl( \int _{0}^{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert \,{}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert ^{r} \,{}_{0}d_{p,q}t \biggr)^{1/r} \\ &\qquad {}+ \biggl( \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \,{}_{0}d_{p,q}t \biggr)^{1-1/r} \\ &\qquad {}\times \biggl( \int _{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert ^{r} \,{}_{0}d_{p,q}t \biggr)^{1/r} \biggr] \\ &\quad \leq (b-a) \biggl[ \biggl( \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \,{}_{0}d_{p,q}t \biggr)^{1-1/r} \\ &\qquad {}\times \biggl( \int _{0}^{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl[ \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r}(1-t)+ \bigl\vert \,{}_{a}D_{p,q}f(b) \bigr\vert ^{r}t \bigr] \,{}_{0}d_{p,q}t \biggr)^{1/r} \\ &\qquad {}+ \biggl( \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \,{}_{0}d_{p,q}t \biggr)^{1-1/r} \\ &\qquad {}\times \biggl( \int _{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl[ \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r}(1-t)+ \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r}t \bigr] \,{}_{0}d_{p,q}t \biggr)^{1/r} \biggr] \\ &\quad \leq (b-a) \biggl[ \biggl( \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \,{}_{0}d_{p,q}t \biggr)^{1-1/r} \\ &\qquad {}\times \biggl( \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} \int _{0}^{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert (1-t) \,{}_{0}d_{p,q}t \\ &\qquad {}+\bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \int _{0}^{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert t \,{}_{0}d_{p,q}t \biggr)^{1/r} \biggr] \\ &\qquad {} + (b-a) \biggl[ \biggl( \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \,{}_{0}d_{p,q}t \biggr)^{1-1/r} \\ &\qquad {}\times \biggl( \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} \int _{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert (1-t) \,{}_{0}d_{p,q}t \\ &\qquad {}+\bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \int _{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert t \,{}_{0}d_{p,q}t \biggr)^{1/r} \biggr]. \end{aligned}$$

This completes the proof. □

Remark 3.7

If \(\alpha =1\), then (3.24) reduces to

$$\begin{aligned} & \biggl\vert f \biggl( \frac{ qa+pb}{p+q} \biggr)- \frac{ 1}{p (b-a)} \int _{a}^{pb+(1-p)a} f(x) \,{}_{a}d_{p,q}x \biggr\vert \\ &\quad \leq q(b-a) \biggl( \frac{p^{2}}{(p+q)^{3}} \biggr)^{1-1/r} \bigl[ \bigl(\lambda _{4}(p,q) \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} + \lambda _{5}(p,q) \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert {r} \bigr)^{1/r} \\ &\qquad {}+ \bigl(\lambda _{6}(p,q) \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} + \lambda _{7}(p,q) \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \bigr)^{1/r} \bigr], \end{aligned}$$
(3.25)

where \(\lambda _{4}(p,q)\), \(\lambda _{5}(p,q)\), \(\lambda _{6}(p,q)\), and \(\lambda _{7}(p,q)\) are given in Remark (3.6), which appeared in [42].

Moreover, if \(p=1\), then (3.24) reduces to

$$\begin{aligned} & \biggl\vert f \biggl( \frac{ ( [\alpha +1]_{ q}-1 )a+ b}{[\alpha +1]_{ q}} \biggr)- \frac{\Gamma _{ q}(\alpha +1)}{ (b-a)^{\alpha }} \bigl( {}_{a}I^{ \alpha }_{ q}f \bigr) (b) \biggr\vert \\ &\quad \leq (b-a) \bigl[ \delta ^{1-1/r}_{9} \bigl( \delta _{5} \bigl\vert {}_{a}D_{ q}f(a) \bigr\vert ^{r} + \delta _{6} \bigl\vert {}_{a}D_{ q}f(b) \bigr\vert ^{r} \bigr)^{1/r} \\ &\qquad {}+\delta ^{1-1/r}_{10} \bigl(\delta _{7} \bigl\vert {}_{a}D_{ q}f(a) \bigr\vert ^{r} + \delta _{8} \bigl\vert {}_{a}D_{ q}f(b) \bigr\vert ^{r} \bigr)^{1/r} \bigr], \end{aligned}$$
(3.26)

where \(\delta _{5}\), \(\delta _{6}\), \(\delta _{7}\), and \(\delta _{8} \) are given in Remark (3.6) and

$$\begin{aligned}& \delta _{9} = \int _{0}^{\frac{1}{[\alpha +1]_{ q}}} \bigl\vert 1- \bigl(1- {}_{0}\Phi _{q}(t) \bigr)_{ q}^{(\alpha )} \bigr\vert \,{}_{0}d_{q}t, \\& \delta _{10} = \int _{\frac{1}{[\alpha +1]_{ q}}}^{1} \bigl\vert - \bigl(1- {}_{0}\Phi _{q}(t) \bigr)_{ q}^{(\alpha )} \bigr\vert \,{}_{0}d_{q}t, \end{aligned}$$

which appeared in [40].

Theorem 3.6

Let \(f: [a,b] \to \mathbb{R}\) be a continuous function, \(\alpha > 0\), and \({}_{a}D_{p,q}f \) be \((p,q)\)-integrable on \((a,\frac{1}{p}(b-a)+a )\). If \(\vert {}_{a}D_{p,q}f \vert ^{r}\) is convex on \([a,\frac{1}{p}(b-a)+a ]\) for \(r > 1\) and \(1/r +1/s = 1\), then the following Riemann–Liouville fractional \((p,q)\)-midpoint type inequality holds:

$$\begin{aligned} & \biggl\vert f \biggl( \frac{ ( [\alpha +1]_{p,q}-p^{\alpha } )a+p^{\alpha }b}{[\alpha +1]_{p,q}} \biggr)- \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr) \biggr\vert \\ &\quad \leq (b-a) \biggl[ (B_{11} )^{1/s} \biggl( \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} \biggl( \frac{p^{\alpha }(p+q)[\alpha +1]_{p,q}-p^{\alpha }}{(p+q) ([\alpha +1]_{p,q} )^{2}} \biggr) \\ &\qquad {}+ \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \biggl( \frac{p^{\alpha }}{(p+q) ([\alpha +1]_{p,q} )^{2}} \biggr) \biggr)^{1/r} \biggr] \\ &\qquad {} + (b-a) \biggl[ (B_{12} )^{1/s} \biggl( \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} \biggl( \frac{p+q-1}{p+q}- \frac{p^{\alpha }(p+q)[\alpha +1]_{p,q}-p^{2\alpha }}{(p+q) ( [\alpha +1]_{p,q} )^{2}} \biggr) \\ &\qquad {}+\bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \biggl(\frac{1}{p+q}- \frac{p^{2\alpha }}{(p+q) ( [\alpha +1]_{p,q} )^{2}} \biggr) \biggr)^{1/r} \biggr], \end{aligned}$$
(3.27)

where

$$ B_{11} = \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert ^{s} \,{}_{0}d_{p,q}t $$

and

$$ B_{12} = \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert ^{s} \,{}_{0}d_{p,q}t. $$

Proof

Applying Lemma 3.2, Hölder’s inequality, and the convexity of \(\vert {}_{a}D_{p,q}f \vert ^{r}\), we have

$$\begin{aligned} & \biggl\vert f \biggl( \frac{ ( [\alpha +1]_{p,q}-p^{\alpha } )a+p^{\alpha }b}{[\alpha +1]_{p,q}} \biggr)- \frac{\Gamma _{p,q}(\alpha +1)}{p^{\alpha ^{2}}(b-a)^{\alpha }} \bigl( {}_{a}I^{\alpha }_{p,q}f \bigr) \bigl( p^{\alpha }b+ \bigl(1-p^{\alpha } \bigr)a \bigr) \biggr\vert \\ &\quad \leq (b-a) \biggl[ \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert \,{}_{0}d_{p,q}t \\ &\qquad {}+ \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert \,{}_{0}d_{p,q}t \biggr] \\ &\quad \leq (b-a) \biggl[ \biggl( \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert ^{p} \,{}_{0}d_{p,q}t \biggr)^{1/p} \\ &\qquad {}\times \biggl( \int _{0}^{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert ^{r} \,{}_{0}d_{p,q}t \biggr)^{1/r} \\ &\qquad {}+ \biggl( \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert ^{p} \,{}_{0}d_{p,q}t \biggr)^{1/p} \\ &\qquad {}\times \biggl( \int _{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \bigl\vert {}_{a}D_{p,q}f \bigl((1-t)a +tb \bigr) \bigr\vert ^{r} \,{}_{0}d_{p,q}t \biggr)^{1/r} \biggr] \\ & \quad \leq (b-a) \biggl[ \biggl( \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert ^{p} \,{}_{0}d_{p,q}t \biggr)^{1/p} \\ &\qquad {}\times \biggl( \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} \int _{0}^{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}} (1-t) \,{}_{0}d_{p,q}t + \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \int _{0}^{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}}t \,{}_{0}d_{p,q}t \biggr)^{1/r} \biggr] \\ &\qquad {} + (b-a) \biggl[ \biggl( \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert ^{p} \,{}_{0}d_{p,q}t \biggr)^{1/p} \\ &\qquad {}\times \biggl( \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} \int _{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} (1-t) \,{}_{0}d_{p,q}t \\ &\qquad {}+\bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \int _{ \frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} t \,{}_{0}d_{p,q}t \biggr)^{1/r} \biggr] \\ &\quad \leq (b-a) \biggl[ \biggl( \int _{0}^{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}} \biggl\vert 1- \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert ^{p} \,{}_{0}d_{p,q}t \biggr)^{1/p} \\ &\qquad {}\times \biggl( \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} \biggl( \frac{p^{\alpha }(p+q)[\alpha +1]_{p,q}-p^{\alpha }}{(p+q) ([\alpha +1]_{p,q} )^{2}} \biggr) \\ &\qquad {}+ \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \biggl( \frac{p^{\alpha }}{(p+q) ([\alpha +1]_{p,q} )^{2}} \biggr) \biggr)^{1/r} \biggr] \\ & \qquad {} + (b-a) \biggl[ \biggl( \int _{\frac{p^{\alpha }}{[\alpha +1]_{p,q}}}^{1} \biggl\vert - \frac{ (1- {}_{0}\Phi _{q}(t) )_{p,q}^{(\alpha )}}{p^{\binom{\alpha }{2}}} \biggr\vert ^{p} \,{}_{0}d_{p,q}t \biggr)^{1/p} \\ &\qquad {}\times \biggl( \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} \biggl( \frac{p+q-1}{p+q}- \frac{p^{\alpha }(p+q)[\alpha +1]_{p,q}-p^{2\alpha }}{(p+q) ( [\alpha +1]_{p,q} )^{2}} \biggr) \\ &\qquad {}+\bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \biggl( \frac{1}{p+q}- \frac{p^{2\alpha }}{(p+q) ( [\alpha +1]_{p,q} )^{2}} \biggr) \biggr)^{1/r} \biggr]. \end{aligned}$$

This completes the proof. □

Remark 3.8

If \(\alpha =1\), then (3.27) reduces to

$$\begin{aligned} & \biggl\vert f \biggl( \frac{ qa+pb}{p+q} \biggr)- \frac{ 1}{p (b-a)} \int _{a}^{pb+(1-p)a} f(x) \,{}_{a}d_{p,q}x \biggr\vert \\ &\quad \leq q(b-a) \biggl[ \biggl( \biggl(\frac{p}{p+q} \biggr)^{s+1} \biggl( \frac{p-q}{p^{s+1}-q^{s+1}} \biggr) \biggr)^{1/s} \biggl( \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} \biggl( \frac{p^{3}+2p^{2}q+pq^{2}-p^{2}}{(p+q)^{3}} \biggr) \\ &\qquad {}+ \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \biggl( \frac{ p^{2}}{(p+q)^{3}} \biggr) \biggr)^{1/r} \\ &\qquad {}+ \biggl( \int _{\frac{p}{p+q}}^{1} \biggl( \frac{1}{q}-t \biggr)^{s} \,{}_{0}d_{p,q}t \biggr)^{1/s} \biggl( \bigl\vert {}_{a}D_{p,q}f(b) \bigr\vert ^{r} \biggl( \frac{2pq+q^{2}}{(p+q)^{3}} \biggr) \\ &\qquad {}+ \bigl\vert {}_{a}D_{p,q}f(a) \bigr\vert ^{r} \biggl( \frac{ p^{2}q+2pq^{2}-2pq-q^{2}+q^{3}}{(p+q)^{3}} \biggr) \biggr)^{1/r} \biggr], \end{aligned}$$

which appeared in [42].

Moreover, if \(p=1\), then (3.27) reduces to

$$\begin{aligned} & \biggl\vert f \biggl( \frac{ ( [\alpha +1]_{ q}-1 )a+ b}{[\alpha +1]_{ q}} \biggr)- \frac{\Gamma _{ q}(\alpha +1)}{ (b-a)^{\alpha }} \bigl( {}_{a}I^{ \alpha }_{ q}f \bigr) (b) \biggr\vert \\ &\quad \leq (b-a) \biggl[ (\delta _{11} )^{1/s} \biggl( \bigl\vert {}_{a}D_{q}f(a) \bigr\vert ^{r} \biggl( \frac{ (1+q)[\alpha +1]_{ q}-1}{(1+q) ([\alpha +1]_{ q} )^{2}} \biggr) \\ &\qquad {}+ \bigl\vert {}_{a}D_{ q}f(b) \bigr\vert ^{r} \biggl( \frac{1}{(1+q) ([\alpha +1]_{ q} )^{2}} \biggr) \biggr)^{1/r} \biggr] \\ &\qquad {} + (b-a) \biggl[ (\delta _{12} )^{1/s} \biggl( \bigl\vert {}_{a}D_{ q}f(a) \bigr\vert ^{r} \biggl(\frac{q}{1+q}- \frac{(1+q)[\alpha +1]_{ q}-1}{(1+q) ( [\alpha +1]_{ q} )^{2}} \biggr) \\ &\qquad {}+\bigl\vert {}_{a}D_{ q}f(b) \bigr\vert ^{r} \biggl(\frac{1}{1+q}- \frac{1}{(1+q) ( [\alpha +1]_{ q} )^{2}} \biggr) \biggr)^{1/r} \biggr], \end{aligned}$$

where

$$ \delta _{11} = \int _{0}^{\frac{1}{[\alpha +1]_{ q}}} \bigl\vert 1- \bigl(1- {}_{0}\Phi _{q}(t) \bigr)_{ q}^{(\alpha )} \bigr\vert ^{s} \,{}_{0}d_{ q}t $$

and

$$ \delta _{12} = \int _{\frac{1}{[\alpha +1]_{ q}}}^{1} \bigl\vert - \bigl(1- {}_{0}\Phi _{q}(t) \bigr)_{ q}^{(\alpha )} \bigr\vert ^{s} \,{}_{0}d_{ q}t, $$

which appeared in [40].

4 Conclusions

In this work, we studied two identities for continuous functions in the form of fractional Riemann–Liouville \((p,q)\)-integral. Based on these two identities, some fractional Riemann–Liouville \((p,q)\)-trapezoid and \((p,q)\)-midpoint type inequalities are given. From this idea, as well as the techniques of this paper, we hope that it will inspire interested readers working in this field.

Availability of data and materials

Not applicable.

References

  1. Jackson, F.H.: On a q-definite integrals. Q. J. Pure Appl. Math. 41, 193–203 (1910)

    MATH  Google Scholar 

  2. Jackson, F.H.: q-Difference equations. Am. J. Math. 32, 305–314 (1910)

    Article  MATH  Google Scholar 

  3. Fock, V.: Zur theorie des wasserstoffatoms. Z. Phys. 98, 145–154 (1935)

    Article  MATH  Google Scholar 

  4. Bangerezaka, G.: Variational q-calculus. J. Math. Anal. Appl. 289, 650–665 (2004)

    Article  MathSciNet  Google Scholar 

  5. Asawasamrit, S., Sudprasert, C., Ntouyas, S., Tariboon, J.: Some results on quantum Hanh integral inequalities. J. Inequal. Appl. 2019, 154 (2019)

    Article  Google Scholar 

  6. Bangerezako, G.: Variational calculus on q-nonuniform. J. Math. Anal. Appl. 306, 161–179 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Exton, H.: q-Hypergeometric Functions and Applications. Halsted, New York (1983)

    MATH  Google Scholar 

  8. Annyby, H.M., Mansour, S.K.: q-Fractional Calculus and Equations. Springer, Berlin (2012)

    Book  Google Scholar 

  9. Ernst, T.: A Comprehensive Treatment of q-Calculus. Springer, Basel (2012)

    Book  MATH  Google Scholar 

  10. Ernst, T.: A history of q-calculus and a new method. UUDM Report 2000:16, Department of Mathematics, Uppsala University (2000)

  11. Ferreira, R.: Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2010, 70 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Aslam, M., Awan, M.U., Noor, K.I.: Quantum Ostrowski inequalities for q-differentiable convex function. J. Math. Inequal. 10, 1013–1018 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Aral, A., Gupta, V., Agarwal, R.P.: Applications of q-Calculus in Operator Theory. Springer, New York (2013)

    Book  MATH  Google Scholar 

  14. Gauchman, H.: Integral inequalities in q-calculus. J. Comput. Appl. Math. 47, 281–300 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kunt, M., Aljasem, M.: Riemann–Liouville fractional quantum Hermite–Hadamard type inequalities for convex functions. Konuralp J. Math. 8, 122–136 (2020)

    MathSciNet  Google Scholar 

  16. Dobrogowska, A., Odzijewicz, A.: A second order q-difference equation solvable by factorization method. J. Comput. Appl. Math. 193, 319–346 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gasper, G., Rahman, M.: Some systems of multivariable orthogonal q-Racah polynomials. Ramanujan J. 13, 389–405 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ismail, M.E.H., Simeonov, P.: q-Difference operators for orthogonal polynomials. J. Comput. Appl. Math. 233, 749–761 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bohner, M., Guseinov, G.S.: The h-Laplace and q-Laplace transforms. J. Comput. Appl. Math. 365, 75–92 (2010)

    MATH  Google Scholar 

  20. El-Shahed, M., Hassan, H.A.: Positive solutions of q-difference equation. Proc. Am. Math. Soc. 138, 1733–1738 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ahmad, B.: Boundary-value problems for nonlinear third-order q-difference equations. Electron. J. Differ. Equ. 2011, 94 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ahmad, B., Alsaedi, A., Ntouyas, S.K.: A study of second-order q-difference equations with boundary conditions. Adv. Differ. Equ. 2012, 35 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ahmad, B., Ntouyas, S.K., Purnaras, I.K.: Existence results for nonlinear q-difference equations with nonlocal boundary conditions. Commun. Appl. Nonlinear Anal. 19, 59–72 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Ahmad, B., Nieto, J.J.: On nonlocal boundary value problems of nonlinear q-difference equation. Adv. Differ. Equ. 2012, 81 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002)

    Book  MATH  Google Scholar 

  26. Noor, M.A., Noor, K.I., Awan, M.U.: Some quantum estimate for Hermite Hadamard inequalities. Appl. Math. Comput. 251, 675–679 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Necmettin, A., Mehmet, Z.S., Mehmet, K., İmdat, İ.: q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex functions and quasi-convex functions. J. King Saud Univ., Sci. 30, 193–203 (2018)

    Article  MATH  Google Scholar 

  28. Sudsudat, W., Ntouyas, S.K., Tariboon, J.: Quantum integral inequalities for convex functions. J. King Saud Univ., Sci. 9, 781–793 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Muhammad, A.N., Khalida, I.N., Muhammad, U.A.: Some quantum integral inequalities via preinvex functions. Appl. Math. Comput. 269, 242–251 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Muhammad, A.N., Muhammad, U.A., Khalida, I.N.: Quantum Ostrowski inequalities for q-differentiable convex functions. Appl. Math. Comput. 10, 1013–1018 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Muhammad, A.K., Noor, M., Eze, N.R., Yu-Ming, C.: Quantum Hermite–Hadamard inequality by means of a Green function. Adv. Differ. Equ. 2020, 99 (2020)

    Article  MathSciNet  Google Scholar 

  32. Muhammad, A.N., Khalida, I.N., Muhammad, U.A.: Quantum analogues of Hermite–Hadamard type inequalities for generalized convexity. In: Computation, Cryptography, and Network Security, pp. 413–439. Springer, Cham (2015)

    Google Scholar 

  33. Humaira, K., Muhammad, I., Baleanu, D., Yu-Ming, C.: New estimates of \(q_{1}q_{2}\)-Ostrowski-type inequalities within a class of n-polynomial prevexity of functions. J. Funct. Spaces 2020, Article ID 3720798 (2020)

    MATH  Google Scholar 

  34. Wenjun, L., Hefeng, Z.: Some quantum estimates of Hermite–Hadamard inequalities for convex functions. Appl. Math. Comput. 251, 675–679 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Tun, M., Gov, E., Balgeçti, S.: Simpson type quantum integral inequalities for convex functions. Miskolc Math. Notes 9, 649–664 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Latif, M.A., Dragomir, S.S., Momoniat, E.: Some φ-analogues of Hermite–Hadamard inequality for s-convex functions in the second sense and related estimates. Punjab Univ. J. Math. 48, 147–166 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Hefeng, Z., Wenjun, L., Jaekeun, P.: Some quantum estimate of Hermite–Hadamard inequalities for quasi-convex functions. Mathematics 7, 152 (2019)

    Article  Google Scholar 

  38. Tariboon, J., Ntouyas, S.K., Agarwal, P.: New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Adv. Differ. Equ. 2015, 18 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sudsutad, W., Ntouyas, S.K., Tariboon, J.: Integral inequalities via fractional quantum calculus. J. Inequal. Appl. 2016, 81 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kunt, M., Aljasem, M.: Fractional quantum Hermite–Hadamard type inequalities. Konuralp J. Math. 8, 122–136 (2020)

    MathSciNet  Google Scholar 

  41. Neang, P., Nonlaopon, K., Tariboon, J., Ntouyas, S.K.: Fractional \((p,q)\)-calculus on finite intervals and some integral inequalities. Symmetry 13, 504 (2021)

    Article  Google Scholar 

  42. Kunt, M., İşcan, İ., Alp, N., Sarakaya, M.Z.: \((p,q)\)-Hermite–Hadamard inequalities and \((p,q)\)-estimates for midpoint type inequalities via convex and quasi-convex functions. Rev. R. Acad. Cienc. 112, 969–992 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Latif, M.A., Kunt, M., Dragomir, S.S., İşcan, İ.: \((p,q)\)-Trapezoid type inequalities. Rev. R. Acad. Cienc. 112, 969–992 (2018)

    Google Scholar 

  44. Kamsrisuk, N., Promsakon, C., Ntouyas, S.K., Tariboon, J.: Nonlocal boundary value problems for \((p,q)\)-difference equations. Differ. Equ. Appl. 10, 183–195 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Nuntigrangjana, T., Putjuso, S., Ntouyas, S.K., Tariboon, J.: Impulsive quantum \((p,q)\)-difference equations. Adv. Differ. Equ. 2020, 98 (2020)

    Article  MathSciNet  Google Scholar 

  46. Promsakon, C., Kamsrisuk, N., Ntouyas, S.K., Tariboon, J.: On the second-order quantum \((p,q)\)-difference equations with separated boundary conditions. Adv. Math. Phys. 2018, Artical ID 9089865 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Chakrabarti, R., Jagannathan, R.: A \((p, q)\)-oscillator realization of two-parameter quantum algebras. J. Phys. A, Math. Gen. 24, L711–L718 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  48. Burban, I.: Two-parameter deformation of the oscillator algebra and \((p, q)\)-analog of two-dimensional conformal field theory. J. Nonlinear Math. Phys. 2, 384–391 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  49. Burban, I.M., Klimyk, A.U.: \((p,q)\)-Differentiation, \((p,q)\)-integration, and \((p,q)\)-hypergeometric functions related to quantum groups. Integral Transforms Spec. Funct. 2, 15–36 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  50. Hounkonnou, M.N., Désiré, J., Kyemba, B.R.: \((p, q)\)-Calculus: differentiation and integration. SUT J. Math. 49, 145–167 (2013)

    MathSciNet  MATH  Google Scholar 

  51. Aral, A., Gupta, V.: Applications of \((p, q)\)-gamma function to Szász Durrmeyer operators. Publ. Inst. Math. 102, 211–220 (2017)

    Article  MathSciNet  Google Scholar 

  52. Sahai, V., Yadav, S.: Representations of two parameter quantum algebras and \((p,q)\)-special functions. J. Math. Anal. Appl. 335, 268–279 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Sadjang, P.N.: On the fundamental theorem of \((p,q)\)-calculus and some \((p,q)\)-Taylor formulas. Results Math. 73, 39 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  54. Usman, T., Saif, M., Choi, J.: Certain identities associated with \((p, q)\)-binomial coefficients and \((p, q)\)-Stirling polynomials of the second kind. Symmetry 12, 1436 (2020)

    Article  Google Scholar 

  55. Sadjang, P.N.: On the \((p, q) \)-gamma and the \((p, q) \)-beta functions. arXiv preprint (2015). arXiv:1506.07394

  56. Sadjang, P.N.: On two \((p, q) \)-analogues of the Laplace transform. J. Differ. Equ. Appl. 23, 1562–1583 (2017)

    MathSciNet  MATH  Google Scholar 

  57. Mursaleen, M., Ansari, K.J., Khan, A.: On \((p, q) \)-analogues of Bernstein operators. Appl. Math. Comput. 266, 874–882 (2015)

    MathSciNet  MATH  Google Scholar 

  58. Mursaleen, M., Ansari, K.J., Khan, A.: Erratum to “On \((p, q) \)-analogues of Bernstein operators”. Appl. Math. Comput. 278, 70–71 (2016)

    MathSciNet  MATH  Google Scholar 

  59. Kang, S.M., Rafiq, A., Acu, A.M., Ali, F., Kwun, Y.C.: Erratum to “Some approximation properties of \((p,q)\)-Bernstein operators”. J. Inequal. Appl. 2016, 169 (2016)

    Article  MATH  Google Scholar 

  60. Mursaleen, M., Khan, F., Khan, A.: Approximation by \((p,q)\)-Lorentz polynomials on a compact disk. Complex Anal. Oper. Theory 10, 1725–1740 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  61. Cai, Q.-B., Zhou, G.: On \((p, q) \)-analogues of Kantorovich type Bernstein–Stancu–Schurer operator. Appl. Math. Comput. 276, 12–20 (2016)

    MathSciNet  MATH  Google Scholar 

  62. Mursaleen, M., Ansari, K.J., Khan, A.: Some approximation results of \((p, q) \)-analogues of Bernstein–Stancu operators. Appl. Math. Comput. 264, 392–402 (2015)

    MathSciNet  MATH  Google Scholar 

  63. Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of \((p, q)\)-Baskakov operators. J. Inequal. Appl. 2016, 98 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  64. Mursaleen, M., Nasiruzzaman, M., Khan, F., Khan, A.: \((p, q) \)-Analogues of divided difference and Bernstein operators. J. Nonlinear Funct. Anal. 2017, 25 (2017)

    Google Scholar 

  65. Wachs, M., White, D.: \((p, q) \)-Stirling numbers and set partition statistics. J. Comb. Theory, Ser. A 56, 27–46 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  66. Wachs, M.L.: σ-Restricted growth functions and \((p, q) \)-Stirling numbers. J. Comb. Theory, Ser. A 68, 470–480 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  67. Remmel, J.B., Wachs, M.: Rook theory, generalized Stirling numbers and \((p, q) \)-analogues. Electron. J. Comb. 11, R84 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  68. Médics, A.D., Leroux, P.: Generalized Stirling numbers, convolution formula and \((p, q) \)-analogues. Can. J. Math. 11, 474–499 (1995)

    Article  MATH  Google Scholar 

  69. Bukweli-Kyemba, J.D., Hounkonnou, M.N.: Quantum deformed algebra: coherent states and special functions (2013). arXiv:1301.0116v1

  70. Prabseang, J., Nonlaopon, K., Tariboon, J.: \((p,q)\)-Hermite–Hadamard inequalities for double integral and \((p,q)\)-differentiable convex functions. Axioms 8, 68 (2019)

    Article  MATH  Google Scholar 

  71. Kalsoom, H., Amer, M., Junjua, M.D., Hassain, S., Shahxadi, G.: \((p,q)\)-Estimates of Hermite–Hadamard-type inequalities for coordinated convex and quasi convex function. Mathematics 7, 683 (2019)

    Article  Google Scholar 

  72. Tunc, M., Gov, E.: Some integral inequalities via \((p, q)\)-calculus on finite intervals. RGMIA Res. Rep. Collect. 19, 1–12 (2016)

    Google Scholar 

  73. Tunc, M., Gov, E.: \((p,q)\)-Integral inequalities. RGMIA Res. Rep. Collect. 19, 1–13 (2016)

    Google Scholar 

  74. Soontharanon, J., Sitthiwirattham, T.: Fractional \((p,q)\)-calculus. Adv. Differ. Equ. 2020, 35 (2020)

    Article  Google Scholar 

  75. Gradimir, V.M., Vijay, G.N.M.: \((p, q)\)-Beta functions and applications in approximation. Bol. Soc. Mat. Mex. 24, 219–237 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  76. Dragomir, S.S., Agarwal, R.P.: Two inequalities for differentiable mapping and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 11, 91–95 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Program Management Unit for Human Resources & Institutional Development, Research and Innovation [grant number B05F630104] and Chiang Mai University, Thailand.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this article. They read and approved the final manuscript.

Corresponding author

Correspondence to Kamsing Nonlaopon.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neang, P., Nonlaopon, K., Tariboon, J. et al. Some trapezoid and midpoint type inequalities via fractional \((p,q)\)-calculus. Adv Differ Equ 2021, 333 (2021). https://doi.org/10.1186/s13662-021-03487-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-021-03487-6

MSC

Keywords