Skip to main content

Theory and Modern Applications

Second-order impulsive differential systems with mixed and several delays

Abstract

In this work, we present new necessary and sufficient conditions for the oscillation of a class of second-order neutral delay impulsive differential equations. Our oscillation results complement, simplify and improve recent results on oscillation theory of this type of nonlinear neutral impulsive differential equations that appear in the literature. An example is provided to illustrate the value of the main results.

1 Introduction

Nowadays impulsive differential equations are attracting a lot of attention. They appear in the study of several real world problems (see, for instance, [13]). In general, it is well known that several natural phenomena are driven by differential equations. However, the description of some real world problems requires studies on systems of differential equations with impulses, a subject very interesting from a mathematical point of view. Examples of the aforementioned phenomena are related to mechanical systems, biological systems, population dynamics, pharmacokinetics, theoretical physics, biotechnology processes, chemistry, engineering, control theory (we also stress that in the modeling of these phenomena is suitably formulated by evolutive partial differential equations and, moreover, moment problem approaches appear also as a natural instrument in control theory of neutral type systems; see [46] and [7], respectively).

The literature related to impulsive differential equations is very wide. Here we mention some recent developments in this field.

In [8], Shen and Wang considered impulsive differential equations of the following form:

$$ \textstyle\begin{cases} u'(\iota )+r(\iota )u(\iota -\nu )=0,\quad \iota \neq \phi _{k} , \iota \geq \iota _{0}, \\ u(\phi _{k}^{+})-u(\phi _{k} ^{-})=I_{k}(u(\phi _{k} )), \quad k\in \mathbb{N}, \end{cases} $$
(1)

where \(r\in C(\mathbb{R},\mathbb{R})\) and \(I_{k}\in C(\mathbb{R},\mathbb{R})\) for \(k\in \mathbb{N}\), and obtained sufficient conditions that ensure the oscillation and the asymptotic behaviour of the solutions of the problem (1).

In [9], Graef et al. considered the problem

$$ \textstyle\begin{cases} (u(\iota )-q(\iota )u(\iota -\zeta ) )'+r(\iota ) \vert u( \iota -\nu ) \vert ^{\lambda }\operatorname{sgn} u(\iota -\nu )=0,\quad \iota \geq \iota _{0}, \\ u(\phi _{k} ^{+})=b_{k} u(\phi _{k} ), \quad k\in \mathbb{N}, \end{cases} $$
(2)

assuming that \(q(\iota )\in PC([\iota _{0},\infty ),\mathbb{R}_{+})\) (that is, \(q(\iota )\) is piecewise continuous in \([\iota _{0},\infty )\)), obtained sufficient conditions for the oscillation of the solutions of the problem (2).

In [10], Shen and Zou obtained oscillation criteria for first-order impulsive neutral delay differential equations of the form

$$ \textstyle\begin{cases} (u(\iota )-q(\iota )u(\iota -\zeta ) )'+r(\iota )u(\iota - \nu _{1})-v(\iota )u(\iota -\nu _{2})=0, \quad \nu _{1}\geq \nu _{2}>0, \\ u(\phi _{k} ^{+})=I_{k}(u(\phi _{k} )),\quad k\in \mathbb{N}, \end{cases} $$
(3)

obtaining sufficient conditions that ensure the oscillation of the solutions of (3) under the assumptions that \(q(\iota )\in PC([\iota _{0},\infty ),\mathbb{R}_{+})\) and \(b_{k}\leq \frac{I_{k}(u)}{u}\leq 1\).

Karpuz et al. in [11] extended the results contained in [10] by taking the nonhomogeneous counterpart of the system (3) with variable delays.

Oscillation and nonoscillation properties for a class of second-order neutral impulsive differential equations with constant coefficients and constant delays were studied by Tripathy and Santra in [12], where the authors considered the problem

$$ \textstyle\begin{cases} (u(\iota )-qu(\iota -\zeta ) )''+ru(\iota -\nu )=0,\quad \iota \neq \phi _{k} , k\in \mathbb{N}, \\ \Delta (u(\phi _{k})-qu(\phi _{k}-\zeta ))'+\tilde{r}u(\phi _{k}-\nu )=0,\quad k\in \mathbb{N}. \end{cases} $$
(4)

Other necessary and sufficient conditions for the oscillation of a class of second-order neutral impulsive systems were established in [13], where Tripathy and Santra studied systems of the form

$$ \textstyle\begin{cases} (p(\iota )(u(\iota )+q(\iota )u(\iota -\zeta ))' )'+r( \iota )g(u(\iota -\nu )), \quad \iota \neq \phi _{k} , k\in \mathbb{N}, \\ \Delta (p(\phi _{k})(u(\phi _{k})+q(\phi _{k})u(\phi _{k}-\zeta ))')+r( \phi _{k})g(u(\phi _{k}-\nu ))=0,\quad k\in \mathbb{N}. \end{cases} $$
(5)

In [13], in particular, the authors are interested with oscillating systems that, after a perturbation by instantaneous change of state, remain oscillating.

In [14], Santra and Tripathy investigated the oscillatory behaviour of the solutions for first-order impulsive neutral delay differential equations of the form

$$ \textstyle\begin{cases} (u(\iota )-q(\iota )u(\iota -\zeta ))'+r(\iota )g(u(\iota -\nu ))=0, \quad \iota \neq \phi _{k} , \iota \geq \iota _{0}, \\ u(\phi _{k} ^{+})=I_{k}(u(\phi _{k} )),\quad k\in \mathbb{N}, \\ u(\phi _{k}^{+}-\tau )=I_{k}(u(\phi _{k}-\tau )),\quad k\in \mathbb{N}, \end{cases} $$
(6)

for different values of the neutral coefficient q.

We also mention Ref. [15] in which Santra and Dix, using Lebesgue’s dominated convergence theorem, obtained necessary and sufficient conditions for the oscillation of the solutions of the following second-order neutral differential equations with impulses:

$$ \textstyle\begin{cases} (p(\iota )(w'(\iota ))^{\gamma } )'+\sum_{j=1}^{m} r_{j}( \iota )g_{j}(u(\nu _{j}(\iota )))=0, \quad \iota \geq \iota _{0}, \iota \neq \phi _{k}, k\in \mathbb{N}, \\ \Delta (p(\phi _{k})(w'(\phi _{k}))^{\gamma })+\sum_{j=1}^{m} \widetilde{r}_{j}(\phi _{k})g_{j}(u(\nu _{j}(\phi _{k})))=0, \end{cases} $$
(7)

where

$$ w(\iota )=u(\iota )+q(\iota )u\bigl(\zeta (\iota )\bigr),\qquad \Delta u(a)= \lim _{s\to a^{+}}u(s)-\lim_{s\to a^{-}}u(s),\quad -1\leq q(\iota ) \leq 0. $$

In line with the contents of [15], Tripathy and Santra in [16] examined oscillation and nonoscillation properties for the solutions of the following class of forced impulsive nonlinear neutral differential systems:

$$ \textstyle\begin{cases} (p(\iota )(u(\iota )+q(\iota )u(\iota -\zeta ))')'+r(\iota )g(u( \iota -\nu ))=f(\iota ), \quad \iota \neq \phi _{k}, k\in \mathbb{N}, \\ \Delta (p(\phi _{k})(u(\phi _{k})+q(\phi _{k})u(\phi _{k}-\zeta ))')+ \tilde{r}(\phi _{k})g(u(\phi _{k}-\nu ))=\tilde{f}(\phi _{k}),\quad k \in \mathbb{N}, \end{cases} $$
(8)

for different values of \(q(\iota )\) and obtained sufficient conditions for the existence of positive bounded solutions of system (8).

Finally we mention recent work [17] in which Tripathy and Santra obtained some characterizations for the oscillation of solutions of the following second-order neutral impulsive differential system:

$$ \textstyle\begin{cases} (p(\iota )(w'(\iota ))^{\gamma })'+\sum_{j=1}^{m} r_{j}(\iota ) x^{ \alpha _{j}}(\nu _{j}(\iota ))=0,\quad \iota \geq \iota _{0}, \iota \neq \phi _{k} , \\ \Delta (p(\phi _{k})(w'(\phi _{k}))^{\gamma })+\sum_{j=1}^{m} h_{j}( \phi _{k})x^{\alpha _{j}}(\nu _{j}(\phi _{k}))=0, \quad k\in \mathbb{N} , \end{cases} $$
(9)

where \(w(\iota )=u(\iota )+q(\iota )u(\zeta (\iota ))\) and \(-1< q(\iota )\leq 0\).

For further details on neutral impulsive differential equations and for recent results related to the oscillation theory for ordinary differential equations, we refer the reader to Refs. [1843] and to the references therein. In particular, the study of oscillation of half-linear/Emden–Fowler (neutral) differential equations with deviating arguments (delayed or advanced arguments or mixed arguments) has numerous applications in physics and engineering (e.g., half-linear/Emden–Fowler differential equations arise in a variety of real world problems such as in the study of p-Laplace equations and in chemotaxis models); see, e.g., Refs. [4, 3437, 39, 40, 42, 43] for more details. In particular, by using different methods, the following work was concerned with the oscillation of various classes of half-linear/Emden–Fowler differential equations and half-linear/Emden–Fowler differential equations with different neutral coefficients (e.g., Ref. [33] was concerned with neutral differential equations assuming that \(0\leq q(\iota )<1\) and \(q(\iota )>1\); Ref. [34] was concerned with neutral differential equations assuming that \(0\leq q(\iota )<1\); Ref. [36] was concerned with neutral differential equations assuming that \(q(\iota )\) is nonpositive; Rewfs. [37, 41] were concerned with neutral differential equations in the case where \(q(\iota )>1\); Ref. [40] was concerned with neutral differential equations assuming that \(0\leq q(\iota )\leq q_{0}<\infty \) and \(q(\iota )>1\); Ref. [42] was concerned with neutral differential equations in the case where \(0\leq q(\iota )\leq q_{0}<\infty \); Ref. [43] was concerned with neutral differential equations in the case when \(0\leq q(\iota )= q_{0}\neq 1\); whereas Ref. [39] was concerned with differential equations with a nonlinear neutral term assuming that \(0\leq q(\iota )\leq a<1\)), which has the same research topic as that of this paper.

Motivated by the aforementioned findings, in this paper we prove necessary and sufficient conditions for the oscillation of solutions to a second-order nonlinear impulsive differential system in the form

$$\begin{aligned}& \bigl(p(\iota ) \bigl(w'(\iota ) \bigr)^{\alpha } \bigr)' +\sum_{j=1}^{m} r_{j}( \iota )u^{\beta }\bigl(\nu _{j}(\iota ) \bigr)=0, \quad \iota \geq \iota _{0}, \iota \neq \phi _{k}, k\in \mathbb{N}, \end{aligned}$$
(10)
$$\begin{aligned}& \Delta \bigl(p(\phi _{k}) \bigl(w'(\phi _{k}) \bigr)^{\alpha } \bigr) + \sum_{j=1}^{m} \tilde{r}_{j}(\phi _{k})u^{\beta }\bigl(\nu _{j}(\phi _{k})\bigr)=0 , \end{aligned}$$
(11)

where

$$ w(\iota )=u(\iota )+q(\iota )u\bigl(\zeta (\iota )\bigr),\qquad \Delta u(a)= \lim _{s\to a^{+}}u(s)-\lim_{s\to a^{-}}u(s), $$

the functions \(r_{j}\), \(\tilde{r}_{j}\), p, q, \(\nu _{j}\), ζ are continuous that satisfy the conditions stated now;

  1. (a)

    \(\nu _{j}\in C([0,\infty ),\mathbb{R})\), \(\zeta \in C^{2}([0,\infty ),\mathbb{R})\), \(\nu _{j}(\iota )<\iota \), \(\zeta (\iota )<\iota \), \(\lim_{\iota \to \infty }\nu _{j}(\iota )=\infty \), \(\lim_{\iota \to \infty }\zeta (\iota )=\infty \).

  2. (b)

    \(\nu _{j}\in C([0,\infty ),\mathbb{R})\), \(\zeta \in C^{2}([0,\infty ),\mathbb{R})\), \(\nu _{j}(\iota )>\iota \), \(\zeta (\iota )<\iota \), \(\lim_{\iota \to \infty }\zeta (\iota )=\infty \).

  3. (c)

    \(p\in C^{1}([0,\infty ),\mathbb{R})\), \(r_{j},\tilde{r}_{j}\in C([0,\infty ),\mathbb{R})\); \(0< p(\iota )\), \(0\leq r_{j}(\iota )\), \(0\leq \tilde{r}_{j}(\iota )\), for all \(\iota \geq 0\) and \(j=1,2,\dots ,m\); \(\sum r_{j}(\iota )\) is not identically zero in any interval \([b,\infty )\).

  4. (d)

    \(q\in C^{2}([0,\infty ),\mathbb{R_{+}})\) with \(0\leq q(\iota )\leq a<1\).

  5. (e)

    \(\lim_{\iota \to \infty }P(\iota )=\infty \) where \(P(\iota )=\int _{0}^{\iota }p^{-1/\alpha }(s) \,\mathrm{d}s\).

  6. (f)

    α and β are the quotients of two positive odd integers and the sequence \(\{\phi _{k}\}\) satisfies \(0<\phi _{1}<\phi _{2}<\cdots <\phi _{k}\to \infty \) as \(k\to \infty \).

2 Preliminary results

To make our notations simpler, we set

$$\begin{aligned} &R_{1}(\iota )= \sum_{j=1}^{m} r_{j}(\iota ) \bigl((1-a)w \bigl(\nu _{j}( \iota ) \bigr) \bigr)^{\beta }; \\ &R_{(1,k)}= \sum_{j=1}^{m} \tilde{r}_{j}(\phi _{k}) \bigl((1-a)w \bigl( \nu _{j}(\phi _{k}) \bigr) \bigr)^{\beta } . \end{aligned}$$

Lemma 2.1

Suppose (a)–(f) hold for \(\iota \geq \iota _{0}\), and u is an eventually positive solution of (10)(11). Then w satisfies

$$\begin{aligned}& 0< w(\iota ),\qquad w'(\iota )>0,\quad \textit{and} \quad \bigl(p(\iota ) \bigl(w'( \iota ) \bigr)^{\alpha } \bigr)'\leq 0 \quad \textit{for } \iota \geq \iota _{1} . \end{aligned}$$
(12)

Proof

Let u be an eventually positive solution. Then \(w(\iota )>0\) and there exists \(\iota _{0}\geq 0\) such that \(u(\iota )>0\), \(u(\nu _{j}(\iota ))>0\), \(u(\zeta (\iota ))>0\) for all \(\iota \geq \iota _{0}\) and \(j=1,2,\dots ,m\). Then (10)–(11) gives

$$ \begin{gathered} \bigl(p(\iota ) \bigl(w'( \iota ) \bigr)^{\alpha } \bigr)' = -\sum _{j=1}^{m} r_{j}( \iota )u^{\beta } \bigl(\nu _{j}(\iota )\bigr)\leq 0 \quad \text{for } \iota \neq \phi _{k}, \\ \Delta \bigl(p(\phi _{k}) \bigl(w'(\phi _{k}) \bigr)^{\alpha } \bigr) =- \sum_{j=1}^{m} \tilde{r}_{j}(\phi _{k})u^{\beta }\bigl(\nu _{j}(\phi _{k})\bigr) \leq 0\quad \text{for }k\in \mathbb{N} , \end{gathered} $$
(13)

which shows that \(p(\iota ) (w'(\iota ) )^{\alpha }\) is non-increasing for \(\iota \geq \iota _{0}\), including jumps of discontinuity. Next we claim that, for \(w>0\), \(p(\iota ) (w'(\iota ) )^{\alpha }\) is positive for \(\iota \geq \iota _{1}>\iota _{0}\). If not, letting \(p(\iota ) (w'(\iota ) )^{\alpha }\leq 0\) for \(\iota \geq \iota _{1}\), we can choose \(c>0\) such that

$$ p(\iota ) \bigl(w'(\iota ) \bigr)^{\alpha }\leq -c , $$

that is,

$$ w'(\iota )\leq (-c)^{1/\alpha }p^{-1/\alpha }(\iota ) . $$

Integrating both sides from \(\iota _{1}\) to ι we get

$$ w(\iota )-w(\iota _{1})-\sum_{k=1}^{\infty }w'( \phi _{k})\leq (-c)^{1/ \alpha } \bigl(P(\iota )-P(\iota _{1}) \bigr). $$

Taking the limit in both sides as \(\iota \to \infty \), we have \(\lim_{\iota \to \infty }w(\iota )\leq -\infty \), that is, \(w(\iota )\leq 0\) which leads to a contradiction to \(w(\iota )>0\). Hence, \(p(\iota ) (w'(\iota ) )^{\alpha }>0\) for \(\iota \geq \iota _{1}\) i.e., \(w'(\iota )>0\) for \(\iota \geq \iota _{1}\). This completes the proof. □

Lemma 2.2

Suppose (a)–(f) hold for \(\iota \geq \iota _{0}\), and u is an eventually positive solution of (10)(11). Then w satisfies

$$\begin{aligned} u(\iota )\geq (1-a)w(\iota )\quad \textit{for } \iota \geq \iota _{1}. \end{aligned}$$
(14)

Proof

Assume that u is an eventually positive solution of (10)–(11). Then \(w(\iota )>0\) and there exists \(\iota \geq \iota _{1}>\iota _{0}\) such that

$$\begin{aligned} u(\iota )&= w(\iota )-q(\iota )u\bigl(\zeta (\iota )\bigr) \\ &\geq w(\iota )-q(\iota )w\bigl(\zeta (\iota )\bigr) \\ &\geq w(\iota )-q(\iota )w(\iota ) \\ &= \bigl(1-q(\iota ) \bigr)w(\iota ) \\ &\geq (1-a)w(\iota ) . \end{aligned}$$

Hence w satisfies (14) for \(\iota \geq \iota _{1}\). □

Remark 2.1

The above two lemmas hold for any \(\alpha >\beta \) or \(\alpha <\beta \).

3 Main results

Theorem 3.1

Let (b)–(f) hold for \(\iota \geq \iota _{0}\) and \(\beta > \alpha \). Then every solution of (10)(11) is oscillatory if and only if

$$ \int _{0}^{\infty }p^{-1/\alpha }(s) \Biggl[ \int _{s}^{\infty }\sum_{j=1}^{m} r_{j}(\psi ) \,\mathrm{d}\psi +\sum_{\phi _{k}\geq s} \sum_{j=1}^{m} \tilde{r}_{j}(\phi _{k}) \Biggr]^{1/\alpha } \,\mathrm{d}s =\infty . $$
(15)

Proof

Let u be an eventually positive solution of (10)–(11). Then \(w(\iota )>0\) and there exists \(\iota _{0}\geq 0\) such that \(u(\iota )>0\), \(u(\nu _{j}(\iota ))>0\), \(u(\zeta (\iota ))>0\) for all \(\iota \geq \iota _{0}\) and \(j=1,2,\dots ,m\). Thus, Lemmas 2.1 and 2.2 hold for \(\iota \geq \iota _{1}\). By Lemma 2.1, there exists \(\iota _{2}>\iota _{1}\) such that \(w'(\iota )>0\) for all \(\iota \geq \iota _{2}\). Then there exist \(\iota _{3}>\iota _{2}\) and \(c>0\) such that \(w(\iota )\geq c\) for all \(\iota \geq \iota _{3}\). Next using Lemma 2.2, we get \(u(\iota )\geq (1-a)w(\iota )\) for all \(\iota \geq \iota _{3}\) and (10)–(11) become

$$ \begin{gathered} \bigl(p(\iota ) \bigl(w'( \iota ) \bigr)^{\alpha } \bigr)' + R_{1}(\iota )\leq 0 \quad \text{for } \iota \neq \phi _{k}, \\ \Delta \bigl(p(\phi _{k}) \bigl(w'(\phi _{k}) \bigr)^{\alpha } \bigr) + R_{(1,k)} \leq 0\quad \text{for }k=1,2,\dots . \end{gathered} $$
(16)

Integrating (16) from ι to ∞ we get

$$\begin{aligned} &\bigl[p(s) \bigl(w'(s) \bigr)^{\alpha }\bigr]_{\iota }^{\infty }+ \int _{\iota }^{\infty }R_{1}(s) \,\mathrm{d}s+ \sum_{\phi _{k} \geq \iota } R_{(1,k)} \leq 0 . \end{aligned}$$

Note that \(p(\iota ) (w'(\iota ) )^{\alpha }\) is positive and non-decreasing. So, \(\lim_{\iota \to \infty } p(\iota ) (w'(\iota ) )^{\alpha }\) finitely exists and is positive. Therefore,

$$ \begin{aligned} p(\iota ) \bigl(w'(\iota ) \bigr)^{\alpha }& \geq \int _{\iota }^{\infty }R_{1}(s) \,\mathrm{d}s+ \sum_{\phi _{k} \geq \iota } R_{(1,k)} , \end{aligned} $$

that is,

$$ \begin{aligned} w'(\iota ) &\geq p^{-1/\alpha }(\iota ) \biggl[ \int _{\iota }^{\infty }R_{1}(s) \,\mathrm{d}s + \sum_{\phi _{k} \geq \iota } R_{(1,k)} \biggr]^{1/\alpha } \\ &= (1-a)^{\beta /\alpha } p^{-1/\alpha }(\iota ) \Biggl[ \int _{\iota }^{\infty }\sum_{j=1}^{m} r_{j}(s)w^{\beta } \bigl(\nu _{j}(s) \bigr) \, \mathrm{d}s +\sum_{\phi _{k}\geq \iota } \sum _{j=1}^{m} \tilde{r}_{j} (\phi _{k}) w^{\beta } \bigl(\nu _{j}(\phi _{k}) \bigr) \Biggr]^{1/\alpha } . \end{aligned} $$
(17)

Using (b) and the fact that \(w(\iota )\) is non-decreasing,

$$\begin{aligned} w'(\iota ) &\geq (1-a)^{\beta /\alpha }p^{-1/\alpha }(\iota ) \Biggl[ \int _{ \iota }^{\infty }\sum_{j=1}^{m} r_{j}(s) \,\mathrm{d}s + \sum_{\phi _{k} \geq \iota } \sum _{j=1}^{m} \tilde{r}_{j} (\phi _{k}) \Biggr]^{1/\alpha } w^{\beta /\alpha }(\iota ) , \end{aligned}$$

that is,

$$\begin{aligned} \frac{w'(\iota )}{w^{\beta /\alpha }(\iota )} &\geq (1-a)^{\beta / \alpha } p^{-1/\alpha }(\iota ) \Biggl[ \int _{\iota }^{\infty }\sum_{j=1}^{m} r_{j}(s) \,\mathrm{d}s + \sum_{\phi _{k}\geq \iota } \sum _{j=1}^{m} \tilde{r}_{j} (\phi _{k}) \Biggr]^{1/\alpha } . \end{aligned}$$

By integrating over \(\iota _{3}\) and ∞ both side, we have

$$\begin{aligned} &(1-a)^{\beta /\alpha } \int _{\iota _{3}}^{\infty }p^{-1/\alpha }(s) \Biggl[ \int _{s}^{\infty }\sum_{j=1}^{m} r_{j}(\psi ) \,\mathrm{d}\psi + \sum_{ \phi _{k}\geq \iota } \sum_{j=1}^{m} \tilde{r}_{j} ( \phi _{k}) \Biggr]^{1/ \alpha } \,\mathrm{d}s\\ &\quad \leq \int _{\iota _{3}}^{\infty }\frac{w'(s)}{w^{\beta /\alpha }(s)} \,\mathrm{d}s < \infty \end{aligned}$$

due to \(\beta >\alpha \), which is a contradiction to (15) and hence the sufficient part of the theorem is proved.

Next we prove necessary part by contrapositive argument. If (15) does not hold, then for every \(\varepsilon >0\) there exists \(\iota \geq \iota _{0}\) for which

$$\begin{aligned} \int _{\iota }^{\infty }p^{-1/\alpha }(s) \Biggl[ \int _{s}^{\infty }\sum_{j=1}^{m} r_{j}(\psi ) \,\mathrm{d}\psi +\sum_{\phi _{k}\geq s} \sum_{j=1}^{m} \tilde{r}_{j}(\phi _{k}) \Biggr]^{1/\alpha } \,\mathrm{d}s< \varepsilon \quad \text{for } \iota \geq T, \end{aligned}$$

where \(2\varepsilon = [\frac{1}{1-a} ]^{-\beta /\alpha }>0\). Let us define a set

$$ V= \biggl\{ u\in C\bigl([0,\infty \bigr)): \frac{1}{2}\leq u(\iota )\leq \frac{1}{1-a} \text{ for all } \iota \geq T \biggr\} $$

and \(\Phi : V\rightarrow V\) as

$$ (\Phi u) (\iota )= \textstyle\begin{cases} 0 &\text{if } \iota \leq T, \\\frac{1+a}{2(1-a)}-q(\iota )u(\zeta (\iota )) \\ \quad {}+ \int _{\iota }^{\iota }p^{-1/\alpha }(s) [\int _{s}^{\infty }\sum_{j=1}^{m} r_{j}(\psi )u^{\beta }(\nu _{j}(\psi )) \,\mathrm{d}\psi \\ \quad {}+\sum_{\phi _{k} \geq s} \sum_{j=1}^{m} \tilde{r}_{j}(\phi _{k})u^{\beta }(\nu _{j}( \phi _{k})) ]^{1/\alpha } \,\mathrm{d}s &\text{if } \iota >T . \end{cases} $$

Next, we prove \((\Phi u)(\iota )\in V\). For \(u(\iota )\in V\),

$$\begin{aligned} (\Phi u) (\iota )&\leq \frac{1+a}{2(1-a)}\\ &\quad {}+ \int _{T}^{\iota }p^{-1/ \alpha }(s) \Biggl[ \int _{s}^{\infty }\sum_{j=1}^{m} r_{j}(\psi ) \biggl( \frac{1}{1-a} \biggr)^{\beta } \, \mathrm{d}\psi +\sum_{\phi _{k}\geq s} \sum _{j=1}^{m} \tilde{r}_{j}(\phi _{k}) \biggl(\frac{1}{1-a} \biggr)^{\beta } \Biggr]^{1/\alpha } \,\mathrm{d}s \\ &\leq \frac{1+a}{2(1-a)}+ \biggl(\frac{1}{1-a} \biggr)^{\beta /\alpha } \times \varepsilon \\ &=\frac{1+a}{2(1-a)} +\frac{1}{2}= \frac{1}{1-a} \end{aligned}$$

and further, for \(u(\iota )\in V\),

$$\begin{aligned} (\Phi u) (\iota )\geq \frac{1+a}{2(1-a)} - q(\iota ).\frac{1}{1-a}+0 \geq \frac{1+a}{2(1-a)} - \frac{a}{1-a} =\frac{1}{2} . \end{aligned}$$

Hence Φ maps V into V.

Now we are going to find a fixed point for Φ in V which will give an eventually positive solution of (10)–(11).

First we define a sequence of functions in V by

$$\begin{aligned}& u_{0}(\iota )=0 \quad \text{for } \iota \geq \iota _{0}, \\& u_{1}(\iota )=(\Phi u_{0}) (\iota )= \textstyle\begin{cases} 0 &\text{if } \iota < T, \\ \frac{1}{2} &\text{if } \iota \geq T, \end{cases}\displaystyle \\& u_{n+1}(\iota ) = (\Phi u_{n}) (\iota )\quad \text{for }n \geq 1, \iota \geq T. \end{aligned}$$

Here we see \(u_{1}(\iota )\geq u_{0}(\iota )\) for each fixed ι and \(\frac{1}{2}\leq u_{n-1}(\iota )\leq u_{n}(\iota )\leq \frac{1}{1-a}\), \(\iota \geq T\) for all \(n\geq 1\). Thus \({u_{n}}\) converges point-wise to a function u. By Lebesgue’s dominated convergence theorem u is a fixed point of Φ in V, which shows that there has a non-oscillatory solution. This completes the proof the theorem. □

Theorem 3.2

Let (a), (c)–(f) hold for \(\iota \geq \iota _{0}\) and \(\beta < \alpha \). Then every solution of (10)(11) is oscillatory if and only if

$$ \begin{aligned} \Biggl[ \int _{0}^{\infty }\sum_{j=1}^{m} r_{j}(\psi )\bigl[(1-a) P \bigl(\nu _{j}( \psi ) \bigr) \bigr]^{\beta } \,\mathrm{d}\psi +\sum_{k=1}^{\infty } \sum_{j=1}^{m} \tilde{r}_{j}(\phi _{k})\bigl[(1-a)P \bigl(\nu _{j}(\phi _{k}) \bigr)\bigr]^{\beta } \Biggr]=\infty . \end{aligned} $$
(18)

Proof

Let \(u(\iota )\) be an eventually positive solution of (10)–(11). Then, proceeding as in the proof of Theorem 3.1 we have \(\iota _{2}>\iota _{1}>\iota _{0}\) such that (17) holds for all \(\iota \geq \iota _{2}\). Using (e), there exists \(\iota _{3}>\iota _{2}\) for which \(P(\iota )-P(\iota _{3})\geq \frac{1}{2} P(\iota )\) for \(\iota \geq \iota _{3}\). Integrating (17) from \(\iota _{3}\) to ι, we have

$$ \begin{aligned} w(\iota )-w(\iota _{3})&\geq \int _{\iota _{3}}^{\iota }p^{-1/\alpha }(s) \biggl[ \int _{s}^{\infty }R_{1}(\kappa )\,\mathrm{d} \kappa + \sum_{\phi _{k} \geq s} R_{(1,k)} \biggr]^{1/\alpha } \,\mathrm{d}s \\ &\geq \int _{\iota _{3}}^{\iota }p^{-1/\alpha }(s) \biggl[ \int _{\iota }^{\infty }R_{1}(\kappa )\,\mathrm{d} \kappa + \sum_{\phi _{k} \geq \iota } R_{(1,k)} \biggr]^{1/\alpha } \,\mathrm{d}s, \end{aligned} $$

that is,

$$\begin{aligned} w(\iota )&\geq \bigl(P(\iota )-P(\iota _{3})\bigr) \biggl[ \int _{\iota }^{\infty }R_{1}( \kappa )\,\mathrm{d} \kappa + \sum_{\phi _{k} \geq \iota } R_{(1,k)} \biggr]^{1/ \alpha } \\ &\geq \frac{1}{2} P(\iota ) \biggl[ \int _{\iota }^{\infty }R_{1}(\kappa ){ \mathrm{d}} \kappa + \sum_{\phi _{k} \geq \iota } R_{(1,k)} \biggr]^{1/\alpha }. \end{aligned}$$
(19)

Hence,

$$\begin{aligned} w(\iota )\geq \frac{1}{2}P(\iota )U^{1/\alpha }(\iota ) \quad \text{for } \iota \geq \iota _{3} \end{aligned}$$

where

$$\begin{aligned} U(\iota )= \int _{\iota }^{\infty }\sum_{j=1}^{m} r_{j}(\kappa ) \bigl((1-a)w \bigl(\nu _{j}(\kappa ) \bigr) \bigr)^{\beta } \,\mathrm{d}\kappa +\sum_{\phi _{k} \geq \iota } \sum_{j=1}^{m} \tilde{r}_{j}(\phi _{k}) \bigl((1-a)w \bigl( \nu _{j}(\phi _{k}) \bigr) \bigr)^{\beta } . \end{aligned}$$

Now,

$$\begin{aligned} U'(\iota )&=-\sum_{j=1}^{m} r_{j}(\iota ) \bigl((1-a)w \bigl(\nu _{j}( \iota ) \bigr) \bigr)^{\beta } \\ &\leq -\frac{1}{2^{\beta }} \sum_{j=1}^{m} r_{j}(\iota )\bigl[(1-a)P \bigl( \nu _{j}(\iota ) \bigr) \bigr]^{\beta }U^{\beta /\alpha } \bigl(\nu _{j}(\iota ) \bigr)\leq 0 \end{aligned}$$
(20)

and

$$\begin{aligned} \quad \Delta U(\phi _{k})= -\frac{1}{2^{\beta }} \sum _{j=1}^{m} r_{j}( \phi _{k})\bigl[(1-a)P \bigl(\nu _{j}(\phi _{k}) \bigr)\bigr]^{\beta }U^{\beta / \alpha }\bigl(\nu _{j}(\phi _{k}) \bigr)\leq 0, \end{aligned}$$
(21)

which shows that \(U(\iota )\) is non-increasing on \([\iota _{4},\infty )\) and \(\lim_{\iota \to \infty }U(\iota )\) exists. Using (20) and (a), we find

$$\begin{aligned} \bigl[U^{1-\beta /\alpha }(\iota ) \bigr]'&= (1-\beta / \alpha )U^{-\beta / \alpha }(\iota )U'(\iota ) \\ &\leq -\frac{1-\beta /\alpha }{2^{\beta }} \sum_{j=1}^{m} r_{j}(\iota )\bigl[(1-a)P \bigl(\nu _{j}(\iota ) \bigr) \bigr]^{\beta }U^{\beta /\alpha } \bigl(\nu _{j}( \iota ) \bigr)U^{-\beta /\alpha }(\iota ) \\ &\leq -\frac{1-\beta /\alpha }{2^{\beta }} \sum_{j=1}^{m} r_{j}(\iota )\bigl[(1-a)P \bigl(\nu _{j}(\iota ) \bigr) \bigr]^{\beta } . \end{aligned}$$
(22)

To estimate the discontinuity of \(U^{1-\beta /\alpha }\), we use the first-order Taylor polynomial approximation \(h(u)=u^{1-\beta /\alpha }\), with \(0<\beta <\alpha \) and \(u=a\):

$$\begin{aligned} b^{1-\beta /\alpha }-a^{1-\beta /\alpha }\leq (1-\beta /\alpha )a^{- \beta /\alpha }(b-a) . \end{aligned}$$

Then

$$\begin{aligned} \Delta U^{1-\beta /\alpha }(\phi _{k})&\leq (1-\beta /\alpha )U^{- \beta /\alpha }(\phi _{k})\Delta U(\phi _{k}) \\ &\leq -\frac{1-\beta /\alpha }{2^{\beta }} \sum_{j=1}^{m} r_{j}(\phi _{k})\bigl[(1-a)P \bigl(\nu _{j}(\phi _{k}) \bigr)\bigr]^{\beta } . \end{aligned}$$

Integrating (22) from \(\iota _{3}\) to ι we have

$$\begin{aligned} \bigl[U^{1-\beta /\alpha }(s) \bigr]_{\iota _{4}}^{\iota }-\sum _{\phi _{k} \geq \iota } &\Delta \bigl[U^{1-\beta /\alpha }(\phi _{k}) \bigr] \leq - \frac{1-\beta /\alpha }{2^{\beta }} \int _{\iota _{3}}^{\iota }\sum_{j=1}^{m} r_{j}(s)\bigl[(1-a)P \bigl(\nu _{j}(s) \bigr) \bigr]^{\beta }\,\mathrm{d}s, \end{aligned}$$

that is,

$$\begin{aligned} &\frac{1-\beta /\alpha }{2^{\beta }} \Biggl[ \int _{0}^{\infty }\sum_{j=1}^{m} r_{j}(s)\bigl[(1-a) P \bigl(\nu _{j}(s) \bigr) \bigr]^{\beta } \,\mathrm{d}s+\sum_{k=1}^{\infty } \sum_{j=1}^{m} \tilde{r}_{j}(\phi _{k})\bigl[(1-a)P \bigl(\nu _{j}( \phi _{k}) \bigr)\bigr]^{\beta } \Biggr] \\ &\quad \leq - \bigl[U^{1-\beta /\alpha }(s) \bigr]_{\iota _{3}}^{\iota }< U^{1- \beta /\alpha }( \iota _{3})< \infty \end{aligned}$$

which contradicts (18). This completes the proof the theorem. □

Example 3.1

Consider the neutral differential equations

$$\begin{aligned}& \bigl( \bigl( \bigl(u(\iota )+e^{-\iota }u\bigl(\zeta (\iota )\bigr) \bigr)' \bigr)^{1/3} \bigr)'+\iota \bigl(u(\iota -2)\bigr)^{5/3} + (\iota +1) \bigl(u(\iota -3) \bigr)^{5/3}=0 , \end{aligned}$$
(23)
$$\begin{aligned}& \bigl( \bigl( \bigl(u\bigl(3^{k}\bigr)+e^{-3^{k}}u \bigl(\zeta \bigl(3^{k}\bigr)\bigr) \bigr)' \bigr)^{1/3} \bigr)'+(\iota +2) \bigl(u\bigl(3^{k}-2 \bigr)\bigr)^{5/3} + (\iota +3) \bigl(u\bigl(3^{k}-3\bigr) \bigr)^{5/3}=0 . \end{aligned}$$
(24)

Here \(\alpha = 1/3\), \(p(\iota )=1\), \(0< q(\iota )=e^{-\iota }<1\), \(\nu _{j}(\iota )=\iota -(j+1)\), \(\phi _{k}=3^{k}\) for \(k \in \mathbb{N}\) with index \(j=1,2\). For \(\beta =5/3\), we have \(\beta =5/3>\alpha =1/3\). To check (15) we have

$$\begin{aligned} & \int _{\iota _{0}}^{\infty } \Biggl[ \frac{1}{p(s)} \Biggl[ \int _{s}^{\infty }\sum_{j=1}^{m} r_{j}(\psi ) \,d\psi +\sum_{\phi _{k}\geq s} \sum _{j=1}^{m} \tilde{r}_{j}(\phi _{k}) \Biggr] \Biggr]^{1/\alpha } \,ds \\ &\quad \geq \int _{\iota _{0}}^{\infty } \Biggl[ \frac{1}{p(s)} \Biggl[ \int _{s}^{\infty }\sum_{j=1}^{m} r_{j}(\psi ) \,d\psi \Biggr] \Biggr]^{1/\alpha } \,ds \\ &\quad \geq \int _{\iota _{0}}^{\infty } \biggl[ \frac{1}{p(s)} \biggl[ \int _{s}^{\infty }r_{1}(\psi ) \,d\psi \biggr] \biggr]^{1/\alpha } \,ds \\ &\quad\geq \int _{2}^{\infty } \biggl[ \int _{s}^{\infty }\psi \,d\psi \biggr]^{3} \,ds=\infty . \end{aligned}$$

So, all the conditions of Theorem 3.1 hold. Thus, each solution of (23)–(24) is oscillatory.

Example 3.2

Consider the neutral differential equations

$$\begin{aligned}& \bigl(e^{-\iota } \bigl( \bigl(u(\iota )+e^{-\iota }u \bigl(\zeta (\iota )\bigr) \bigr)' \bigr)^{11/3} \bigr)' +\frac{1}{\iota +1}\bigl(u(\iota -2)\bigr)^{7/3} + \frac{1}{\iota +2}\bigl(u(\iota -3)\bigr)^{7/3}=0 , \end{aligned}$$
(25)
$$\begin{aligned}& \bigl(e^{-k} \bigl( \bigl(u(k)+e^{-k}u\bigl(\zeta (k)\bigr) \bigr)' \bigr)^{11/3} \bigr)' + \frac{1}{\iota +4}\bigl(u(k-2)\bigr)^{7/3} + \frac{1}{\iota +5} \bigl(u(k-3)\bigr)^{7/3}=0 . \end{aligned}$$
(26)

Here \(\alpha = 11/3\), \(p(\iota )=e^{-\iota }\), \(0< q(\iota )=e^{-\iota }<1\), \(\nu _{j}(\iota )=\iota -(j+1)\), \(\phi _{k}=k\) for \(k \in \mathbb{N}\) with index \(j=1,2\), \(P(\iota )= \int _{0}^{\iota }e^{3s/11} \,ds=\frac{11}{3}(e^{3\iota /11}-1)\). For \(\beta =7/3\), we have \(\beta =7/3<\alpha =11/3\). To check (18) we have

$$\begin{aligned} &\frac{1}{(2)^{\beta }} \Biggl[ \int _{0}^{\infty }\sum_{j=1}^{m} r_{j}( \psi )\bigl[(1-a) P \bigl(\nu _{j}(\psi ) \bigr) \bigr]^{\beta } \,d\psi +\sum_{k=1}^{\infty } \sum_{j=1}^{m} \tilde{r}_{j}(\phi _{k})\bigl[(1-a)P \bigl(\nu _{j}( \phi _{k}) \bigr)\bigr]^{\beta } \Biggr] \\ &\quad\geq \frac{1}{(2)^{7/3}} \int _{0}^{\infty }\sum_{j=1}^{m} r_{j}( \psi )\bigl[(1-a) P \bigl(\nu _{j}(\psi ) \bigr) \bigr]^{\beta } \,d\psi \\ &\quad \geq \frac{1}{(2)^{7/3}} \int _{0}^{\infty }r_{1}(\psi )\bigl[(1-a) P \bigl( \nu _{1}(\psi ) \bigr)\bigr]^{\beta } \,\mathrm{d}\psi \\ &\quad= \frac{1}{(2)^{7/3}} \int _{0}^{\infty }\frac{1}{\psi +1} \biggl[(1-a) \frac{11}{3} \bigl(e^{3(\psi -2)/11}-1 \bigr) \biggr]^{7/3} \,d\psi =\infty . \end{aligned}$$

So, all the conditions of Theorem 3.2 hold, and therefore, each solution of (25)–(26) is oscillatory.

4 Conclusions

In this work, we studied second-order highly nonlinear neutral impulsive differential systems and established necessary and sufficient conditions for the oscillation of (10)–(11) when the neutral coefficient lies in \([0, 1)\). It would be of interest to examine the oscillation of (10)–(11) with different neutral coefficients; see, e.g., Refs. [33, 36, 37, 4043] for more details. Furthermore, it is also interesting to analyze the oscillation of (10)–(11) with a nonlinear neutral term; see, e.g., Ref. [39] for more details.

Availability of data and materials

Not applicable.

References

  1. Bainov, D.D., Simeonov, P.S.: Impulsive Differential Equations: Asymptotic Properties of the Solutions. Series on Advances in Mathematics for Applied Sciences, vol. 28. World Scientific, Singapore (1995)

    Book  MATH  Google Scholar 

  2. Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Oscillation Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)

    Book  Google Scholar 

  3. Agarwal, R.P., O’Regan, D., Saker, S.H.: Oscillation and Stability of Delay Models in Biology. Springer, New York (2014)

    Book  MATH  Google Scholar 

  4. Li, T., Pintus, N., Viglialoro, G.: Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys. 70(3), Art. 86, 1–18 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, T., Viglialoro, G.: Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime. Differ. Integral Equ. 34(5–6), 315–336 (2021)

    MATH  Google Scholar 

  6. Viglialoro, G., Woolley, T.E.: Solvability of a Keller-Segel system with signal-dependent sensitivity and essentially sublinear production. Appl. Anal. 99(14), 2507–2525 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Infusino, M., Kuhlmann, S.: Infinite dimensional moment problem: open questions and applications. In: Contemp. Math., vol. 697, pp. 187–201. Am. Math. Soc., Providence (2017)

    Google Scholar 

  8. Shen, J.H., Wang, Z.C.: Oscillation and asympotic behaviour of solutions of delay differential equations with impulses. Ann. Differ. Equ. 10(1), 61–68 (1994)

    Google Scholar 

  9. Graef, J.R., Shen, J.H., Stavroulakis, I.P.: Oscillation of impulsive neutral delay differential equations. J. Math. Anal. Appl. 268, 310–333 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Shen, J., Zou, Z.: Oscillation criteria for first order impulsive differential equations with positive and negative coefficients. J. Comput. Appl. Math. 217, 28–37 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Karpuz, B., Ocalan, O.: Oscillation criteria for a class of first-order forced differential equations under impulse effects. Adv. Dyn. Syst. Appl. 7(2), 205–218 (2012)

    MathSciNet  Google Scholar 

  12. Tripathy, A.K., Santra, S.S.: Characterization of a class of second-order neutral impulsive systems via pulsatile constant. Differ. Equ. Appl. 9(1), 87–98 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Tripathy, A.K., Santra, S.S.: Necessary and sufficient conditions for oscillation of a class of second-order impulsive systems. Differ. Equ. Dyn. Syst. (2018). https://doi.org/10.1007/s12591-018-0425-7

    Article  Google Scholar 

  14. Santra, S.S., Tripathy, A.K.: On oscillatory first order nonlinear neutral differential equations with nonlinear impulses. J. Appl. Math. Comput. 59, 257–270 (2019). https://doi.org/10.1007/s12190-018-1178-8

    Article  MathSciNet  MATH  Google Scholar 

  15. Santra, S.S., Dix, J.G.: Necessary and sufficient conditions for the oscillation of solutions to a second-order neutral differential equation with impulses. Nonlinear Stud. 27(2), 375–387 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Tripathy, A.K., Santra, S.S.: On the forced impulsive oscillatory nonlinear neutral systems of the second-order. Nonlinear Oscil. 23(2), 274–288 (2020)

    MathSciNet  Google Scholar 

  17. Tripathy, A.K., Santra, S.S.: Necessary and sufficient conditions for oscillations to a second-order neutral differential equations with impulses. Kragujev. J. Math. 47(1), 81–93 (2023)

    Google Scholar 

  18. Santra, S.S., Ghosh, T., Bazighifan, O.: Explicit criteria for the oscillation of second-order differential equations with several sub-linear neutral coefficients. Adv. Differ. Equ. 2020, 643 (2020)

    Article  MathSciNet  Google Scholar 

  19. Santra, S.S., Dassios, I., Ghosh, T.: On the asymptotic behavior of a class of second-order non-linear neutral differential equations with multiple delays. Axioms 9, 134 (2020)

    Article  Google Scholar 

  20. Santra, S.S., Majumder, D., Bhattacharjee, R., Bazighifan, O., Khedher, K., Marin, M.: New theorems for oscillations to the differential equations with mixed delays. Symmetry 13, 367 (2021)

    Article  Google Scholar 

  21. Santra, S.S., Bazighifan, O., Ahmad, H., Chu, Y.-M.: Second-order differential equation: oscillation theorems and applications. Math. Probl. Eng. 2020, 8820066 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Santra, S.S., Bazighifan, O., Ahmad, H., Yao, S.-W.: Second-order differential equation with multiple delays: oscillation theorems and applications. Complexity 2020, 8853745 (2020)

    Article  MATH  Google Scholar 

  23. Bazighifan, O., Ruggieri, M., Scapellato, A.: An improved criterion for the oscillation of fourth-order differential equations. Mathematics 8(4), 610 (2020)

    Article  Google Scholar 

  24. Bazighifan, O., Ruggieri, M., Santra, S.S., Scapellato, A.: Qualitative properties of solutions of second-order neutral differential equations. Symmetry 12(9), 1520 (2020)

    Article  Google Scholar 

  25. Berezansky, L., Braverman, E.: Oscillation of a linear delay impulsive differential equations. Commun. Appl. Nonlinear Anal. 3, 61–77 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Diblik, J., Svoboda, Z., Smarda, Z.: Retract principle for neutral functional differential equation. Nonlinear Anal., Theory Methods Appl. 71(12), 1393–1400 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Santra, S.S., Alotaibi, H., Bazighifan, O.: On the qualitative behavior of the solutions to second-order neutral delay differential equations. J. Inequal. Appl. 2020, 256 (2020)

    Article  MathSciNet  Google Scholar 

  28. Diblik, J.: Positive solutions of nonlinear delayed differential equations with impulses. Appl. Math. Lett. 72, 16–22 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Luo, Z., Jing, Z.: Periodic boundary value problem for first-order impulsive functional differential equations. Comput. Math. Appl. 55, 2094–2107 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yu, J., Yan, J.: Positive solutions and asymptotic behavior of delay differential equations with nonlinear impulses. J. Math. Anal. Appl. 207, 388–396 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tripathy, A.K.: Oscillation criteria for a class of first order neutral impulsive differential-difference equations. J. Appl. Anal. Comput. 4, 89–101 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Berezansky, L., Domoshnitsky, A., Koplatadze, R.: Oscillation, Nonoscillation, Stability and Asymptotic Properties for Second and Higher Order Functional Differential Equations. Chapman & Hall, Boca Raton (2020)

    Book  MATH  Google Scholar 

  33. Agarwal, R.P., Bohner, M., Li, T., Zhang, C.: A new approach in the study of oscillatory behavior of even-order neutral delay differential equations. Appl. Math. Comput. 225, 787–794 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Agarwal, R.P., Zhang, C., Li, T.: Some remarks on oscillation of second order neutral differential equations. Appl. Math. Comput. 274, 178–181 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Bohner, M., Hassan, T.S., Li, T.: Fite–Hille–Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments. Indag. Math. 29(2), 548–560 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bohner, M., Li, T.: Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient. Appl. Math. Lett. 37, 72–76 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chatzarakis, G.E., Grace, S.R., Jadlovská, I., Li, T., Tunç, E.: Oscillation criteria for third-order Emden–Fowler differential equations with unbounded neutral coefficients. Complexity 2019, Article ID 5691758 (2019)

    Article  MATH  Google Scholar 

  38. Chiu, K.-S., Li, T.: Oscillatory and periodic solutions of differential equations with piecewise constant generalized mixed arguments. Math. Nachr. 292(10), 2153–2164 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Džurina, J., Grace, S.R., Jadlovská, I., Li, T.: Oscillation criteria for second-order Emden–Fowler delay differential equations with a sublinear neutral term. Math. Nachr. 293(5), 910–922 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, T., Rogovchenko, Yu.V.: Oscillation of second-order neutral differential equations. Math. Nachr. 288(10), 1150–1162 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Li, T., Rogovchenko, Yu.V.: Oscillation criteria for even-order neutral differential equations. Appl. Math. Lett. 61, 35–41 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Li, T., Rogovchenko, Yu.V.: Oscillation criteria for second-order superlinear Emden–Fowler neutral differential equations. Monatshefte Math. 184(3), 489–500 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Li, T., Rogovchenko, Yu.V.: On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations. Appl. Math. Lett. 105, 1–7 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Khaled Mohamed Khedher would like to thank the Deanship of Scientific Research at King Khalid University for funding this work through the large research groups under grant number RGP.1/372/42. (Taher A. Nofal) Taif University Researchers Supporting Project number (TURSP-2020/031), Taif University, Taif, Saudi Arabia. We would like to thank reviewers for their careful reading and valuable comments that helped correcting and improving the paper. The authors thank the editors and the reviewers for their useful comments.

Authors’ information

Not applicable.

Funding

This research work was supported by the Deanship of Scientific Research at King Khalid University under Grant number RGP. 1/372/42.

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that they have read and approved the final manuscript.

Corresponding author

Correspondence to Omar Bazighifan.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santra, S.S., Ghosh, A., Bazighifan, O. et al. Second-order impulsive differential systems with mixed and several delays. Adv Differ Equ 2021, 318 (2021). https://doi.org/10.1186/s13662-021-03474-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-021-03474-x

MSC

Keywords