Skip to main content

Theory and Modern Applications

Table 6 μ-symmetry of Eq. (1)

From: Lie symmetry and μ-symmetry methods for nonlinear generalized Camassa–Holm equation

N(x), P(t)

\(\lambda _{1}\), \(\lambda _{2}\)

μ-symmetry

N(x)=0

\(\lambda _{1}=-\frac{G_{x}(x,t)}{G(x,t)}\)

\(X=G(x,t)\partial _{x}\)

P(t)=0

\(\lambda _{2}=-\frac{G_{t}(x,t)}{G(x,t)}\)

N(x)=0

\(\lambda _{1}=-\frac{G_{x}(x,t)}{G(x,t)}\)

\(X=G(x,t) (\partial _{t}+\frac{u}{c_{1}-pt} \partial _{u} )\)

\(h(t)=\frac{p}{p t-c_{1}}\)

\(\lambda _{2}=-\frac{G_{t}(x,t)}{G(x,t)}+\frac{p}{p t-c_{1}}\)

N(x)=0

\(\lambda _{1}=-\frac{G_{x}(x,t)}{G(x,t)}\)

\(\begin{array}[t]{l} X=G(x,t) (\frac{-1}{c_{1}t+c_{2}}\partial _{x} \\ \hphantom{X={}}{}+\partial _{t}-\frac{c_{1}u}{(c_{1}t+c_{2})p}\partial _{u} )\end{array}\)

\(P(t)=\frac{c_{1}}{c_{1}t+c_{2}}\)

\(\lambda _{2}=-\frac{G_{t}(x,t)}{G(x,t)}+\frac{c_{1}}{c_{1}t+c_{2}}\)