Skip to main content

On a nonlocal problem for parabolic equation with time dependent coefficients

Abstract

This paper is devoted to the study of existence and uniqueness of a mild solution for a parabolic equation with conformable derivative. The nonlocal problem for parabolic equations appears in many various applications, such as physics, biology. The first part of this paper is to consider the well-posedness and regularity of the mild solution. The second one is to investigate the existence by using Banach fixed point theory.

Introduction

Let T be a positive number and \(\Omega \subset \mathbb{R}^{d}\) (\(d \ge 1\)) be a bounded domain with the smooth boundary Ω. In this paper, we consider the nonlocal value problem for parabolic equation as follows:

$$ \textstyle\begin{cases} {\frac{{} ^{\mathscr{C}} \partial ^{\beta} }{\partial t^{{\beta} }}} u(x,t) - \psi (t) \Delta u = F(x,t, u(x,t)), & x \in \Omega , t\in (0,T), \\ u(x,t) =0, & x \in \partial {\Omega} ,t\in (0,T), \\ a u(x,0) + bu (x,T) = \varphi (x), & x \in \Omega , \end{cases} $$
(1)

where the symbol \(\frac{{} ^{\mathscr{C}} \partial ^{\beta} v(t)}{\partial t^{\beta} }\) is called the conformable derivative which is defined clearly in Sect. 2. The function F represents external forces, and the function φ is the input datum which will be defined later. The function ψ is called time dependent coefficient.

There are applications of conformable derivative in various models, for example, the harmonic oscillator, the damped oscillator, and the forced oscillator (see [1]), electrical circuits (see [2]), chaotic systems in dynamics (see [3]), quantum mechanics [4]. Based on important notes in the article [5], we observe and think that studying the ODE problem with the compliance derivative is very different from studying the PDE problem with a suitable derivative. The positional results and methods for the ODE and PDEs models are not the same and completely different. In order for the reader to have more access to this kind of fractional diffusion equations with conformable derivative, we refer to [2, 617]. In addition, we can find the topics of initial and final problems, which are studied by many authors, in [1827].

Our paper is one of the first results on the nonlocal value problem given with parabolic equations with conformable derivative. In the linear part, we use the techniques of Hilbert scales space. In the nonlinear part, to establish the existence and uniqueness of the solution, we must use the Banach fixed mapping theorem combined with some techniques to evaluate inequality, some Sobolev embedding. One of the most difficult points is finding the right functional spaces for the solution. Another highlight in the results is to demonstrate the convergence of the mild solution as the parameter b approaches 0.

Preliminaries

Conformable derivative model: Let the function \(v:[0,\infty ) \to D \), where D is a Banach space. If the limitation

$$\begin{aligned} \frac{{} ^{\mathscr{C}} \partial ^{\beta} v(t)}{\partial t^{\beta} } :=\lim_{\varepsilon \to 0} \frac{v( t+\varepsilon t^{1-\beta} ) - v(t)}{\varepsilon} \quad \text{in } D \end{aligned}$$

for each \(t>0\) exists, then it is called be the conformable derivative of order \(\beta \in (0,1]\) of v. We can refer the reader to [11, 28].

Let \(\mathcal{A}\) be a linear, self-adjoint, unbounded, and positive definite operator. Assume that \(\mathcal{A}\) has the eigenvalues \(\lambda _{n}\) (\(n \in \mathbb{N}^{*}\)):

$$ 0 < \lambda _{1} \le \lambda _{2} \le \cdots \quad \text{with } \lambda _{n} \to \infty \text{ for } n \to \infty $$

and the corresponding eigenelements \(e_{n}\) which form an orthonormal basis. For \(\nu >0\), we introduce fractional powers of \(\mathcal{A}\) as follows:

$$ D\bigl(\mathcal{A}^{\nu }\bigr) = \Biggl\{ g \in L^{2}(\Omega ): \sum_{n=1}^{\infty } \bigl\vert \langle g, e_{n} \rangle \bigr\vert ^{2}\lambda _{n}^{2 \nu }< \infty \Biggr\} . $$
(2)

The space \(D(\mathcal{A}^{\nu }) \) is a Banach space in the following with the corresponding norm:

$$ \Vert g \Vert _{D(\mathcal{A}^{\nu })} := \Biggl( \sum_{n=1}^{\infty } \bigl\vert \langle g, e_{n} \rangle \bigr\vert ^{2} \lambda _{n}^{2 \nu } \Biggr) ^{\frac{1}{2}},\quad g \in D\bigl( \mathcal{A}^{\nu }\bigr). $$

The information for negative fractional power \(\mathcal{A}^{-\nu }\) can be defined by [29]. For any \(m >0\) and a Banach space \(\mathcal{B}\), we introduce the following space:

$$\begin{aligned} C^{m} \bigl( [0,T]; \mathcal{B} \bigr)= \biggl\{ v \in C \bigl( [0,T]; \mathcal{B} \bigr): \sup_{0 \le s< t \le T} \frac{ \Vert v(\cdot,t)-v(\cdot,s) \Vert _{\mathcal{B} } }{ \vert t-s \vert ^{m}}< \infty \biggr\} , \end{aligned}$$

corresponding to the following norm:

$$ \Vert v \Vert _{ C^{m} ( [0,T]; \mathcal{B} )}= \sup_{0 \le s< t \le T} \frac{ \Vert v(\cdot,t)-v(\cdot,s) \Vert _{\mathcal{B} } }{ \vert t-s \vert ^{m} }. $$

Let \(0< m <1\), and we recall the following space:

$$\begin{aligned} \mathcal{C}^{m} ( (0,T]; \mathcal{B})= \Bigl\{ v \in C (\bigl(0,T]; L^{2}( \Omega ) \bigr): \sup_{0< t \le T} t^{m} \bigl\Vert v(\cdot,t) \bigr\Vert _{\mathcal{B}} < \infty \Bigr\} , \end{aligned}$$

with the norm \(\|v\|_{\mathcal{C}^{m} ( (0,T]; \mathcal{B} )}:=\sup_{0< t \le T} t^{m} \|v(\cdot,t)\|_{\mathcal{B}}\).

Inhomogeneous problem

In this section, we consider the nonlocal value problem for equation as follows:

$$ \textstyle\begin{cases} \frac{{}^{\mathscr{C} }\partial ^{\beta }}{\partial t^{\beta }} u(x,t) - \psi (t) \Delta u = F(x,t), & x \in \Omega , t\in (0,T), \\ u(x,t) =0, & x \in \partial {\Omega },t\in (0,T), \\ a u(x,0) + bu (x,T) = \varphi (x), & x \in \Omega , \end{cases} $$
(3)

where F is defined later.

Existence and uniqueness of the mild solution

In this subsection, we state the existence and uniqueness of the mild solution.

Theorem 3.1

Let \(a_{0} \le \psi (t) \le b_{0}\), where \(a_{0}\), \(b_{0}\) are constants, \(\varphi \in D(\mathcal{A}^{\nu +\theta })\) and \(F \in L^{\infty } (0,T;D(\mathcal{A}^{\nu +\theta }) ) \), where \(\nu >0\), \(0<\theta <1\). Then we have the following regularity:

$$\begin{aligned} \bigl\Vert u(\cdot,t) \bigr\Vert _{D(\mathcal{A}^{\nu })} &\lesssim t^{-\beta \theta } \bigl( \Vert \varphi \Vert _{D(\mathcal{A}^{\nu +\theta })}+ \Vert F \Vert _{L^{2r} (0,T;D(\mathcal{A}^{\nu +\theta }) )} \bigr) \\ &\quad {} + \Vert F \Vert _{L^{\infty } (0,T;D(\mathcal{A}^{\nu +\theta }) )},\quad t>0. \end{aligned}$$
(4)

Proof

By a simple calculation, we get the following equality:

$$\begin{aligned} u_{n}(t)&= \bigl\langle u(\cdot,t) , e_{n} \bigr\rangle \\ &=\exp \biggl( -\lambda _{n} \int _{0}^{\frac{t^{\beta }}{\beta }} \psi (s) \,ds \biggr) \bigl\langle u( \cdot,0) , e_{n} \bigr\rangle \\ &\quad {}+ \int _{0}^{t} s^{\beta -1} \exp \biggl( - \lambda _{n} \int _{ \frac{s^{\beta }}{\beta }}^{\frac{t^{\beta }}{\beta }} \psi (r) \,dr \biggr) F_{n}(u) (s) \,ds, \end{aligned}$$
(5)

where \(F_{n} = \langle F, e_{n} \rangle \). Replacing t with T in the above expression, we get

$$\begin{aligned} u_{n}(T)&= \bigl\langle u(\cdot,t) , e_{n} \bigr\rangle \\ &= \exp \biggl( -\lambda _{n} \int _{0}^{\frac{T^{\beta }}{\beta }} \psi (s) \,ds \biggr) \bigl\langle u( \cdot,0) , e_{n} \bigr\rangle \\ &\quad {}+ \int _{0}^{T} s^{\beta -1} \exp \biggl( - \lambda _{n} \int _{ \frac{s^{\beta }}{\beta }}^{\frac{T^{\beta }}{\beta }} \psi (r) \,dr \biggr) F_{n}(u) (s) \,ds. \end{aligned}$$
(6)

The condition \(au(x,0)+b u(x,T)= \varphi (x)\) gives the following result:

$$\begin{aligned} & \biggl( a+ b \exp \biggl( -\lambda _{n} \int _{0}^{ \frac{T^{\beta }}{\beta }} \psi (s) \,ds \biggr) \biggr) u_{n}(0) \\ &\quad {}+ b \int _{0}^{T} s^{ \beta -1} \exp \biggl( - \lambda _{n} \int _{\frac{s^{\beta }}{\beta }}^{ \frac{T^{\beta }}{\beta }} \psi (r) \,dr \biggr) F_{n}(u) (s) \,ds= \varphi _{n}. \end{aligned}$$
(7)

By switching sides and combining them, we obtain the formula for \(u_{n}(0)\) as follows:

$$\begin{aligned} u_{n}(0)= \frac{\varphi _{n}- b\int _{0}^{T} s^{\beta -1} \exp ( -\lambda _{n} \int _{\frac{s^{\beta }}{\beta }}^{\frac{T^{\beta }}{\beta }} \psi (r) \,dr ) F_{n}(u)(s) \,ds }{ a+ b \exp ( -\lambda _{n} \int _{0}^{\frac{T^{\beta }}{\beta }} \psi (s) \,ds ) }. \end{aligned}$$
(8)

Inserting (8) into the above formula (5) and after the reduced transformation, we arrive at

$$\begin{aligned} u_{n}(t)&= \frac{\exp ( -\lambda _{n} \int _{0}^{\frac{t^{\beta }}{\beta }} \psi (s) \,ds )}{ a+ b \exp ( -\lambda _{n} \int _{0}^{\frac{T^{\beta }}{\beta }} \psi (s) \,ds ) } \varphi _{n} \\ &\quad {}- b \frac{\exp ( -\lambda _{n} \int _{0}^{\frac{t^{\beta }}{\beta }} \psi (s) \,ds )}{ a+ b \exp ( -\lambda _{n} \int _{0}^{\frac{T^{\beta }}{\beta }} \psi (s) \,ds ) } \int _{0}^{T} s^{\beta -1} \exp \biggl( - \lambda _{n} \int _{ \frac{s^{\beta }}{\beta }}^{\frac{T^{\beta }}{\beta }} \psi (r) \,dr \biggr) F_{n}(u) (s) \,ds \\ &\quad {}+ \int _{0}^{t} s^{\beta -1} \exp \biggl( - \lambda _{n} \int _{ \frac{s^{\beta }}{\beta }}^{\frac{t^{\beta }}{\beta }} \psi (r) \,dr \biggr) F_{n}(u) (s) \,ds. \end{aligned}$$
(9)

By the properties of Fourier series, we get that

$$\begin{aligned} &u(x,t) \\ &\quad {= \underbrace{\sum_{n=1}^{\infty } \frac{\exp ( -\lambda _{n} \int _{0}^{\frac{t^{\beta }}{\beta }} \psi (s) \,ds )}{ a+ b \exp ( -\lambda _{n} \int _{0}^{\frac{T^{\beta }}{\beta }} \psi (s) \,ds ) } \varphi _{n} e_{n}(x)}_{J_{1}(x,t)}} \\ &\qquad {}- \underbrace{ b \sum_{n=1}^{\infty } \frac{\exp ( -\lambda _{n} \int _{0}^{\frac{t^{\beta }}{\beta }} \psi (s) \,ds )}{ a+ b \exp ( -\lambda _{n} \int _{0}^{\frac{T^{\beta }}{\beta }} \psi (s) \,ds ) } \biggl( \int _{0}^{T} s^{\beta -1} \exp \biggl( - \lambda _{n} \int _{\frac{s^{\beta }}{\beta }}^{\frac{T^{\beta }}{\beta }} \psi (r) \,dr \biggr) F_{n}(s) \,ds \biggr) e_{n}(x)}_{{J_{2}(x,t)}} \\ &\qquad {}+ \sum_{n=1}^{\infty } \biggl( \int _{0}^{t} s^{\beta -1} \exp \biggl( - \lambda _{n} \int _{\frac{s^{\beta }}{\beta }}^{\frac{t^{\beta }}{\beta }} \psi (r) \,dr \biggr) F_{n}(s) \,ds \biggr) e_{n}(x). \end{aligned}$$
(10)

Using the inequality

$$ \exp \biggl( -\lambda _{n} \int _{0}^{\frac{t^{\beta }}{\beta }} \psi (s) \,ds \biggr) \le \exp \biggl( -\lambda _{n} {\frac{a_{0} t^{\beta }}{\beta }} \biggr) \le C_{\theta }a_{0}^{\mu } \beta ^{-\theta } \lambda _{n}^{\theta }t^{- \beta \theta }, $$

we get

$$\begin{aligned} \bigl\Vert J_{1}(\cdot,t) \bigr\Vert ^{2}_{D(\mathcal{A}^{\nu })}&= \sum_{n=1}^{\infty }\lambda _{n}^{2\nu } \biggl( \frac{\exp ( -\lambda _{n} \int _{0}^{\frac{t^{\beta }}{\beta }} \psi (s) \,ds )}{ a+ b \exp ( -\lambda _{n} \int _{0}^{\frac{T^{\beta }}{\beta }} \psi (s) \,ds ) } \biggr)^{2} \varphi _{n}^{2} \\ &\lesssim t^{-2\beta \theta } \sum_{n=1}^{\infty } \lambda _{n}^{2\nu +2 \theta } \varphi _{n}^{2}= t^{-2\beta \theta } \Vert \varphi \Vert _{D( \mathcal{A}^{\nu +\theta })}^{2}. \end{aligned}$$
(11)

Hence, we find that

$$\begin{aligned} \bigl\Vert J_{1}(\cdot,t) \bigr\Vert _{D(\mathcal{A}^{\nu })} \lesssim t^{-\beta \theta } \Vert \varphi \Vert _{D(\mathcal{A}^{\nu +\theta })}. \end{aligned}$$
(12)

We continue to estimate \(J_{2}\) as follows:

$$\begin{aligned} & \bigl\Vert J_{2}(\cdot,t) \bigr\Vert ^{2}_{D(\mathcal{A}^{\nu })} \\ &\quad =b^{2} \sum_{n=1}^{\infty } \lambda _{n}^{2\nu } \biggl( \frac{\exp ( -\lambda _{n} \int _{0}^{\frac{t^{\beta }}{\beta }} \psi (s) \,ds )}{ a+ b \exp ( -\lambda _{n} \int _{0}^{\frac{T^{\beta }}{\beta }} \psi (s) \,ds ) } \biggr)^{2} \\ &\qquad {}\times \biggl( \int _{0}^{T} s^{\beta -1} \exp \biggl( - \lambda _{n} \int _{\frac{s^{\beta }}{\beta }}^{\frac{T^{\beta }}{\beta }} \psi (r) \,dr \biggr) F_{n}(s) \,ds \biggr)^{2} \\ &\quad \lesssim t^{-2\beta \theta } \sum_{n=1}^{\infty } \lambda _{n}^{2\nu +2 \theta } \biggl( \int _{0}^{T} s^{\beta -1} \bigl\vert F_{n}(s) \bigr\vert ^{2} \,ds \biggr)= t^{-2\beta \theta } \biggl( \int _{0}^{T} s^{\beta -1} \bigl\Vert F( \cdot,s) \bigr\Vert ^{2}_{D(\mathcal{A}^{\nu +\theta })} \,ds \biggr). \end{aligned}$$
(13)

The Hölder inequality implies that

$$\begin{aligned} \int _{0}^{T} s^{\beta -1} \bigl\Vert F( \cdot,s) \bigr\Vert ^{2}_{D(\mathcal{A}^{ \nu +\theta })} \,ds \le \biggl( \int _{0}^{T} s^{(\beta -1)r^{*} \,ds} \biggr)^{\frac{1}{r^{*}}} \biggl( \int _{0}^{T} \bigl\Vert F(\cdot,s) \bigr\Vert ^{2r}_{D( \mathcal{A}^{\nu +\theta })} \,ds \biggr)^{1/r}, \end{aligned}$$
(14)

where \(\frac{1}{r}+ \frac{1}{r^{*}}=1\). Let us choose \(r > \frac{1}{\beta }\), we find that

$$\begin{aligned} \int _{0}^{T} s^{\beta -1} \bigl\Vert F( \cdot,s) \bigr\Vert ^{2}_{D(\mathcal{A}^{ \nu +\theta })} \,ds \lesssim \Vert F \Vert ^{2}_{L^{2r} (0,T;D( \mathcal{A}^{\nu +\theta }) )}. \end{aligned}$$
(15)

Inserting the latter estimate into (13), we arrive at

$$\begin{aligned} \bigl\Vert J_{2}(\cdot,t) \bigr\Vert _{D(\mathcal{A}^{\nu })} \lesssim t^{-\beta \theta } \Vert F \Vert _{L^{2r} (0,T;D(\mathcal{A}^{\nu +\theta }) )}. \end{aligned}$$
(16)

The quantity \(J_{3}\) is bounded by

$$\begin{aligned} & \bigl\Vert J_{3}(\cdot,t) \bigr\Vert ^{2}_{D(\mathcal{A}^{\nu })} \\ &\quad = \sum_{n=1}^{\infty }\lambda _{n}^{2\nu } \biggl( \int _{0}^{t} s^{ \beta -1} \exp \biggl( - \lambda _{n} \int _{\frac{s^{\beta }}{\beta }}^{ \frac{t^{\beta }}{\beta }} \psi (r) \,dr \biggr) F_{n}(s) \,ds \biggr)^{2}. \end{aligned}$$
(17)

It follows from the inequality

$$ \exp \biggl( -2\lambda _{n} \int _{\frac{s^{\beta }}{\beta }}^{ \frac{t^{\beta }}{\beta }} \psi (r) \,dr \biggr) \le \exp \biggl( -\lambda _{n} {\frac{a_{0} (t^{\beta }-s^{\beta })}{\beta }} \biggr) \le C_{\theta }a_{0}^{\mu } \beta ^{-\theta } \lambda _{n}^{\theta } \bigl( t^{\beta } -s^{\beta } \bigr)^{-\theta } $$

for any \(0\le s \le t\), that

$$\begin{aligned} \bigl\Vert J_{3}(\cdot,t) \bigr\Vert ^{2}_{D(\mathcal{A}^{\nu })} &\lesssim \sum_{n=1}^{\infty } \lambda _{n}^{2\nu +2\theta } \biggl( \int _{0}^{t} s^{\beta -1} \bigl( t^{\beta } -s^{\beta } \bigr)^{-\theta } F_{n}^{2}(s) \,ds \biggr) \\ &\lesssim \int _{0}^{t} s^{\beta -1} \bigl( t^{\beta } -s^{\beta } \bigr)^{-\theta } \bigl\Vert F(\cdot,s) \bigr\Vert ^{2}_{D(\mathcal{A}^{\nu + \theta })} \,ds \\ &= \Vert F \Vert ^{2}_{L^{\infty } (0,T;D(\mathcal{A}^{\nu +\theta }) )} \int _{0}^{t} s^{\beta -1} \bigl( t^{\beta } -s^{\beta } \bigr)^{- \theta } \,ds. \end{aligned}$$
(18)

Next, we continue to compute the integral term. Set the variable \(\vartheta = s^{\beta }\). Then we get \(d \vartheta = \beta s^{\beta -1} \,ds\). Then it follows from \(0< \theta <1\) that

$$\begin{aligned} \int _{0}^{t} s^{\beta -1} \bigl( t^{\beta } -s^{\beta } \bigr)^{- \theta } \,ds= \frac{1}{\beta } \int _{0}^{t^{\beta }} \bigl( t^{\beta } - \vartheta \bigr)^{-\theta } \,d \vartheta = \frac{ t^{ \beta (1-\theta )}}{\beta (1-\theta )} \le \frac{ T^{ \beta (1-\theta )}}{\beta (1-\theta )}. \end{aligned}$$
(19)

This together with (18) yields that

$$\begin{aligned} \bigl\Vert J_{3}(\cdot,t) \bigr\Vert _{D(\mathcal{A}^{\nu })} \lesssim \Vert F \Vert _{L^{\infty } (0,T;D(\mathcal{A}^{\nu +\theta }) )} . \end{aligned}$$
(20)

Combining (12), (16), and (20), we deduce that

$$\begin{aligned} & \bigl\Vert u(\cdot,t) \bigr\Vert _{D(\mathcal{A}^{\nu })} \\ &\quad \le \sum_{j=1}^{3} \bigl\Vert J_{j}(\cdot,t) \bigr\Vert _{D(\mathcal{A}^{\nu })} \\ &\quad \lesssim t^{-\beta \theta } \bigl( \Vert \varphi \Vert _{D( \mathcal{A}^{\nu +\theta })}+ \Vert F \Vert _{L^{2r} (0,T;D(\mathcal{A}^{ \nu +\theta }) )} \bigr)+ \Vert F \Vert _{L^{\infty } (0,T;D( \mathcal{A}^{\nu +\theta }) )}. \end{aligned}$$
(21)

 □

The mild solution for nonlinear problem

By the previous section, we define the following definition of a mild solution of the problem as follows.

Definition 4.1

The function u is called a mild solution of the problem if u belongs to the space \(L^{\infty }(0,T;L^{2}(\Omega ))\) and it also satisfies equality (1).

We recall that the formula of the solution u is performed as the following form:

$$\begin{aligned} u(x,t)&=\sum_{n=1}^{\infty } \frac{\exp ( -\lambda _{n} \int _{0}^{\frac{t^{\beta }}{\beta }} \psi (s) \,ds )}{ a+ b \exp ( -\lambda _{n} \int _{0}^{\frac{T^{\beta }}{\beta }} \psi (s) \,ds ) } \varphi _{n} e_{n}(x) \\ &\quad {}- b \sum_{n=1}^{\infty } \frac{\exp ( -\lambda _{n} \int _{0}^{\frac{t^{\beta }}{\beta }} \psi (s) \,ds )}{ a+ b \exp ( -\lambda _{n} \int _{0}^{\frac{T^{\beta }}{\beta }} \psi (s) \,ds ) } \\ &\quad {}\times \biggl( \int _{0}^{T} s^{\beta -1} \exp \biggl( - \lambda _{n} \int _{\frac{s^{\beta }}{\beta }}^{\frac{T^{\beta }}{\beta }} \psi (r) \,dr \biggr) F_{n}(u) (s) \,ds \biggr) e_{n}(x) \\ &\quad {}+ \sum_{n=1}^{\infty } \biggl( \int _{0}^{t} s^{\beta -1} \exp \biggl( - \lambda _{n} \int _{\frac{s^{\beta }}{\beta }}^{\frac{t^{\beta }}{\beta }} \psi (r) \,dr \biggr) F_{n}(u) (s) \,ds \biggr) e_{n}(x) . \end{aligned}$$
(22)

Theorem 4.1

Let \(\varphi \in L^{2}(\Omega )\), and there exists a constant \(K_{f} \ge 0\) such that

$$\begin{aligned} \bigl\Vert F (v_{1}) (\cdot ,t) - F (v_{2}) (\cdot ,t) \bigr\Vert _{L^{2}( \Omega )} \le K_{f} \bigl\Vert v_{1}(\cdot ,t) - v_{2}(\cdot ,t) \bigr\Vert _{L^{2}(\Omega )}. \end{aligned}$$
(23)

If the condition \(1> (\frac{b}{a}+1 ) \frac{K_{f} T^{\beta }}{\beta } \) is true, then problem (22) has a mild solution u which belongs to the space \(L^{\infty } ( 0,T;L^{2}(\Omega ) )\).

Proof

Set the following:

$$\begin{aligned} \mathscr{H} (u) (t) = \mathscr{H}_{0} + \mathscr{H}_{1} (u) (t)+ \mathscr{H}_{2} (u) (t), \end{aligned}$$
(24)

where

$$ \mathscr{H}_{0}= \sum_{n=1}^{\infty } \frac{\exp ( -\lambda _{n} \int _{0}^{\frac{t^{\beta }}{\beta }} \psi (s) \,ds )}{ a+ b \exp ( -\lambda _{n} \int _{0}^{\frac{T^{\beta }}{\beta }} \psi (s) \,ds ) } \varphi _{n} e_{n}(x) $$

and

$$\begin{aligned} \mathscr{H}_{1} (u) &= - b \sum_{n=1}^{\infty } \frac{\exp ( -\lambda _{n} \int _{0}^{\frac{t^{\beta }}{\beta }} \psi (s) \,ds )}{ a+ b \exp ( -\lambda _{n} \int _{0}^{\frac{T^{\beta }}{\beta }} \psi (s) \,ds ) } \\ &\quad {} \times \biggl( \int _{0}^{T} s^{\beta -1} \exp \biggl( - \lambda _{n} \int _{\frac{s^{\beta }}{\beta }}^{\frac{T^{\beta }}{\beta }} \psi (r) \,dr \biggr) F_{n}(u) (s) \,ds \biggr) e_{n}(x) \end{aligned}$$
(25)

and

$$\begin{aligned} \mathscr{H}_{2,\beta } (u) (t)= \sum_{n=1}^{\infty } \biggl( \int _{0}^{t} s^{ \beta -1} \exp \biggl( - \lambda _{n} \int _{\frac{s^{\beta }}{\beta }}^{ \frac{t^{\beta }}{\beta }} \psi (r) \,dr \biggr) F_{n}(u) (s) \,ds \biggr) e_{n}(x). \end{aligned}$$
(26)

We have to show that the equation \(\mathscr{H} u=u\) has a unique solution. Applying the Hölder inequality, we find that

$$\begin{aligned} & \bigl\Vert \mathscr{H}_{2,\beta } (u) (t)- \mathscr{H}_{2,\beta } (v) (t) \bigr\Vert _{L^{2}(\Omega )}^{2} \\ &\quad = \sum_{n=1}^{\infty } \biggl[ \int _{0}^{t} s^{\beta -1} \exp \biggl( - \lambda _{n} \int _{\frac{s^{\beta }}{\beta }}^{\frac{t^{\beta }}{\beta }} \psi (r) \,dr \biggr) \bigl( F_{n}(u) (s)- F_{n}(v) (s) \bigr) \,ds \biggr]^{2} \\ &\quad \le \sum_{n=1}^{\infty } \biggl[ \int _{0}^{t} s^{\beta -1} \,ds \biggr] \biggl[ \int _{0}^{t} s^{\beta -1} \exp \biggl( -2 \lambda _{n} \int _{ \frac{s^{\beta }}{\beta }}^{\frac{t^{\beta }}{\beta }} \psi (r) \,dr \biggr) \bigl( F_{n}(u) (s)- F_{n}(v) (s) \bigr)^{2} \,ds \biggr] \\ &\quad \le \frac{T^{\beta }}{\beta } \biggl[ \int _{0}^{t} s^{\beta -1} \bigl\Vert F(u) ( \cdot,s) - F(v) (\cdot,s) \bigr\Vert ^{2}_{L^{2}(\Omega )} \,ds \biggr] \\ &\quad \le \frac{T^{\beta }}{\beta } K_{f}^{2} \Vert u-v \Vert _{L^{\infty }( 0,T;L^{2}( \Omega ))}^{2} \biggl[ \int _{0}^{t} s^{\beta -1} \,ds \biggr]= \frac{K_{f}^{2} T^{2\beta }}{\beta ^{2}} \Vert u-v \Vert _{L^{\infty }( 0,T;L^{2}( \Omega ))}^{2} , \end{aligned}$$
(27)

and using the inequality

$$ \biggl\vert -b \frac{\exp ( -\lambda _{n} \int _{0}^{\frac{t^{\beta }}{\beta }} \psi (s) \,ds )}{ a+ b \exp ( -\lambda _{n} \int _{0}^{\frac{T^{\beta }}{\beta }} \psi (s) \,ds ) } \biggr\vert \le \frac{b}{a}, $$

we get that

$$\begin{aligned} & \bigl\Vert \mathscr{H}_{1,\beta } (u) (t)- \mathscr{H}_{1,\beta } (v) (t) \bigr\Vert _{L^{2}(\Omega )}^{2} \\ &\quad \le \frac{b^{2}}{a^{2}} \sum_{n=1}^{\infty } \biggl( \int _{0}^{T} s^{ \beta -1} \exp \biggl( - \lambda _{n} \int _{\frac{s^{\beta }}{\beta }}^{ \frac{T^{\beta }}{\beta }} \psi (r) \,dr \biggr) \bigl( F_{n}(u) (s)- F_{n}(v) (s) \bigr) \,ds \biggr)^{2} \\ &\quad \le \frac{b^{2}}{a^{2}} \sum_{n=1}^{\infty } \biggl[ \int _{0}^{t} s^{ \beta -1} \,ds \biggr] \biggl( \int _{0}^{T} s^{\beta -1} \exp \biggl( -2 \lambda _{n} \int _{\frac{s^{\beta }}{\beta }}^{\frac{T^{\beta }}{\beta }} \psi (r) \,dr \biggr) \bigl( F_{n}(u) (s)- F_{n}(v) (s) \bigr)^{2} \,ds \biggr) \\ &\quad \le \frac{b^{2}}{a^{2}} \frac{T^{\beta }}{\beta } \biggl( \int _{0}^{T} s^{ \beta -1} \bigl( F_{n}(u) (s)- F_{n}(v) (s) \bigr)^{2} \,ds \biggr) \le \frac{b^{2}}{a^{2}} \frac{K_{f}^{2} T^{2\beta }}{\beta ^{2}} \Vert u-v \Vert _{L^{\infty }( 0,T;L^{2}(\Omega ))}^{2} . \end{aligned}$$
(28)

Combining (27) and (28) leads to

$$\begin{aligned} & \bigl\Vert \mathscr{H}_{\beta } (u) (t)- \mathscr{H}_{\beta } (v) (t) \bigr\Vert _{L^{2}( \Omega )} \\ &\quad = \bigl\Vert \mathscr{H}_{1,\beta } (u) (t)- \mathscr{H}_{1,\beta } (v) (t) \bigr\Vert _{L^{2}(\Omega )}+ \bigl\Vert \mathscr{H}_{2,\beta } (u) (t)- \mathscr{H}_{2,\beta } (v) (t) \bigr\Vert _{L^{2}(\Omega )} \\ &\quad \le \frac{K_{f} T^{\beta }}{\beta } \biggl( 1+\frac{b}{a} \biggr) \Vert u-v \Vert _{L^{\infty }( 0,T;L^{2}(\Omega ))} . \end{aligned}$$
(29)

Since the left-hand side of the above observation is independent of t, we deduce that

$$\begin{aligned} \bigl\Vert \mathscr{H}_{\beta } (u)- \mathscr{H}_{\beta } (v) \bigr\Vert _{L^{\infty }( 0,T;L^{2}( \Omega ))} \le \frac{K_{f} T^{\beta }}{\beta } \biggl( 1+\frac{b}{a} \biggr) \Vert u-v \Vert _{L^{\infty }( 0,T;L^{2}(\Omega ))}. \end{aligned}$$
(30)

Let us choose T such that

$$ T \le \biggl( \frac{\beta a }{(a+b) K_{f}} \biggr)^{1/\beta }, $$

we know that \(\mathscr{H} \) is a contraction mapping. Next, we continue to show that if \(v \in L^{\infty }( 0,T;L^{2}(\Omega ))\), then \(\mathscr{H}_{\beta } (v) \in L^{\infty }( 0,T;L^{2}(\Omega ))\). We only check that if \(v=0\), then

$$\begin{aligned} \mathscr{H}_{\beta } (v) (\cdot,t)= \sum_{n=1}^{\infty } \frac{\exp ( -\lambda _{n} \int _{0}^{\frac{t^{\beta }}{\beta }} \psi (s) \,ds )}{ a+ b \exp ( -\lambda _{n} \int _{0}^{\frac{T^{\beta }}{\beta }} \psi (s) \,ds ) } \varphi _{n} e_{n}(x), \end{aligned}$$
(31)

which allows us to obtain that

$$\begin{aligned} \bigl\Vert \mathscr{H}_{\beta } (v) (\cdot,t) \bigr\Vert ^{2}_{L^{2}(\Omega )} &= \sum_{n=1}^{\infty } \biggl( \frac{\exp ( -\lambda _{n} \int _{0}^{\frac{t^{\beta }}{\beta }} \psi (s) \,ds )}{ a+ b \exp ( -\lambda _{n} \int _{0}^{\frac{T^{\beta }}{\beta }} \psi (s) \,ds ) } \biggr)^{2} \varphi _{n}^{2} \\ &\le \frac{1}{a^{2}}\sum_{n=1}^{\infty } \varphi _{n}^{2} \\ & = \frac{1}{a^{2}} \Vert \varphi \Vert ^{2}_{L^{2}(\Omega )}. \end{aligned}$$
(32)

The latter estimate leads to \(\mathscr{H}_{\beta } : L^{\infty }( 0,T;L^{2}(\Omega )) \to L^{\infty }( 0,T;L^{2}( \Omega ))\). By applying the Banach fixed point theory, we can deduce that our problem (1) has a unique solution \(u \in L^{\infty }( 0,T;L^{2}(\Omega ))\). □

Theorem 4.2

Let \(w_{a}\) be the solution of the initial value problem

$$ \textstyle\begin{cases} \frac{{ }^{\mathscr{C} }\partial ^{\beta }}{\partial t^{\beta }} u(x,t) - \psi (t) \Delta u = F(x,t), & x \in \Omega , t\in (0,T), \\ u(x,t) =0, & x \in \partial {\Omega },t\in (0,T), \\ a u(x,0) = \varphi (x), & x \in \Omega . \end{cases} $$
(33)

Then we have

$$\begin{aligned} \lim_{b \to 0} \Vert w_{a,\beta }-u_{a,b, \beta } \Vert _{L^{\infty }( 0,T;L^{2}( \Omega ))}=0 \end{aligned}$$
(34)

and

$$\begin{aligned} \Vert w_{a,\beta }-u_{a,b, \beta } \Vert _{L^{\infty }( 0,T;L^{2}(\Omega ))} \le \frac{ b \Vert \varphi \Vert _{L^{2}(\Omega )}}{ a^{2} ( 1- (\frac{b}{a}+1 ) \frac{K_{f} T^{\beta }}{\beta } ) }. \end{aligned}$$
(35)

Proof

It is easy to see that the mild solution of problem (33) is given by

$$\begin{aligned} &w_{a,\beta }(x,t) \\ &\quad =\sum_{n=1}^{\infty }\frac{\exp ( -\lambda _{n} \int _{0}^{\frac{t^{\beta }}{\beta }} \psi (s) \,ds )}{ a } \varphi _{n} e_{n}(x) \\ &\qquad {}- b \sum_{n=1}^{\infty } \frac{\exp ( -\lambda _{n} \int _{0}^{\frac{t^{\beta }}{\beta }} \psi (s) \,ds )}{ a } \\ &\qquad {}\times\biggl( \int _{0}^{T} s^{\beta -1} \exp \biggl( - \lambda _{n} \int _{ \frac{s^{\beta }}{\beta }}^{\frac{T^{\beta }}{\beta }} \psi (r) \,dr \biggr) F_{n}( w_{a,\beta }) (s) \,ds \biggr) e_{n}(x) \\ &\qquad {}+ \sum_{n=1}^{\infty } \biggl( \int _{0}^{t} s^{\beta -1} \exp \biggl( - \lambda _{n} \int _{\frac{s^{\beta }}{\beta }}^{\frac{t^{\beta }}{\beta }} \psi (r) \,dr \biggr) F_{n}( w_{a,\beta }) (s) \,ds \biggr) e_{n}(x). \end{aligned}$$
(36)

This together with (22) yields

$$\begin{aligned} &u_{a,b, \beta }(x,t)- w_{a,\beta }(x,t) \\ &\quad = \sum_{n=1}^{\infty } \biggl( \frac{\exp ( -\lambda _{n} \int _{0}^{\frac{t^{\beta }}{\beta }} \psi (s) \,ds )}{ a } - \frac{\exp ( -\lambda _{n} \int _{0}^{\frac{t^{\beta }}{\beta }} \psi (s) \,ds )}{ a+ b \exp ( -\lambda _{n} \int _{0}^{\frac{T^{\beta }}{\beta }} \psi (s) \,ds ) } \biggr) \varphi _{n} e_{n}(x) \\ &\qquad {}- b \sum_{n=1}^{\infty } \frac{\exp ( -\lambda _{n} \int _{0}^{\frac{t^{\beta }}{\beta }} \psi (s) \,ds )}{ a } \\ &\qquad {}\times \biggl[ \int _{0}^{T} s^{\beta -1} \exp \biggl( - \lambda _{n} \int _{\frac{s^{\beta }}{\beta }}^{\frac{T^{\beta }}{\beta }} \psi (r) \,dr \biggr) \Big( F_{n}( w_{a,\beta }) (s) -F_{n}(u_{a,b, \beta }) (s )\Big) \,ds \biggr] e_{n}(x) \\ &\qquad {}+ \sum_{n=1}^{\infty } \biggl[ \int _{0}^{t} s^{\beta -1} \exp \biggl( - \lambda _{n} \int _{\frac{s^{\beta }}{\beta }}^{\frac{t^{\beta }}{\beta }} \psi (r) \,dr \biggr) \Big( F_{n}( w_{a,\beta }) (s) - F_{n}\bigl( u_{a,b, \beta})(s) \Big) \,ds \biggr] e_{n}(x) \\ &\quad = A_{1}+ A_{2}+ A_{3}. \end{aligned}$$
(37)

The term \(A_{1}\) is bounded by

$$\begin{aligned} \Vert A_{1} \Vert ^{2}_{L^{2}(\Omega )}&= \frac{b^{2}}{a^{2}} \sum_{n=1}^{\infty } \biggl( \frac{\exp ( -\lambda _{n} \int _{0}^{\frac{t^{\beta }}{\beta }} \psi (s) \,ds ) \exp ( -\lambda _{n} \int _{0}^{\frac{T^{\beta }}{\beta }} \psi (s) \,ds ) }{ a+ b \exp ( -\lambda _{n} \int _{0}^{\frac{T^{\beta }}{\beta }} \psi (s) \,ds ) } \biggr)^{2} \varphi _{n}^{2} \\ &\le \frac{b^{2}}{a^{4}} \sum_{n=1}^{\infty } \varphi _{n}^{2}= \frac{b^{2}}{a^{4}} \Vert \varphi \Vert ^{2}_{L^{2}(\Omega )}. \end{aligned}$$
(38)

Using \(\exp ( -2\lambda _{n} \int _{0}^{\frac{t^{\beta }}{\beta }} \psi (s) \,ds ) \le 1\), the term \(A_{2}\) is bounded by

$$\begin{aligned} & \Vert A_{2} \Vert ^{2}_{L^{2}(\Omega )} \\ &\quad = \frac{b^{2}}{a^{2}} \sum_{n=1}^{\infty } \biggl[ \int _{0}^{T} s^{\beta -1} \exp \biggl( - \lambda _{n} \int _{\frac{s^{\beta }}{\beta }}^{\frac{T^{\beta }}{\beta }} \psi (r) \,dr \biggr) \bigl( F_{n}( w_{a,\beta }) (s) -F_{n}(u_{a,b, \beta } )\bigr) (s ) \,ds \biggr]^{2} \\ &\quad \le \frac{b^{2}}{a^{2}} \sum_{n=1}^{\infty } \biggl( \int _{0}^{T} s^{ \beta -1} \,ds \biggr) \\ &\qquad {}\times \int _{0}^{T} s^{ \beta -1} \exp \biggl( -2 \lambda _{n} \int _{\frac{s^{\beta }}{\beta }}^{\frac{T^{\beta }}{\beta }} \psi (r) \,dr \biggr) \Big( F_{n}( w_{a,\beta }) (s) -F_{n}(u_{a,b, \beta } ) (s) \Big)^{2} \,ds \\ &\quad \le \frac{b^{2}}{a^{2}} \frac{T^{\beta }}{\beta } \biggl[ \int _{0}^{t} s^{ \beta -1} \bigl\Vert F( w_{a,\beta }) (\cdot,s) - F(u_{a,b, \beta }) (\cdot,s) \bigr\Vert ^{2}_{L^{2}( \Omega )} \,ds \biggr] \\ &\quad \le \frac{b^{2}}{a^{2}} \frac{K_{f}^{2} T^{2\beta }}{\beta ^{2}} \Vert w_{a, \beta }-u_{a,b, \beta } \Vert _{L^{\infty }( 0,T;L^{2}(\Omega ))}^{2}. \end{aligned}$$
(39)

The term \(A_{3}\) can be estimated as follows:

$$\begin{aligned} \Vert A_{3} \Vert ^{2}_{L^{2}(\Omega )} & =\sum _{n=1}^{\infty } \biggl[ \int _{0}^{t} s^{\beta -1} \exp \biggl( - \lambda _{n} \int _{ \frac{s^{\beta }}{\beta }}^{\frac{t^{\beta }}{\beta }} \psi (r) \,dr \biggr) \bigl( F_{n}( w_{a,\beta }) (s) - F_{n}\bigl( u_{a,b, \beta }(s) \bigr) \,ds \biggr]^{2} \\ &\le \sum_{n=1}^{\infty } \biggl[ \int _{0}^{T} s^{\beta -1} \,ds \biggr] \biggl[ \int _{0}^{t} s^{\beta -1} \bigl\Vert F( w_{a,\beta }) (\cdot,s) - F(u_{a,b, \beta }) (\cdot,s) \bigr\Vert ^{2}_{L^{2}(\Omega )} \,ds \biggr] \\ &\le \frac{K_{f}^{2} T^{2\beta }}{\beta ^{2}} \Vert w_{a,\beta }-u_{a,b, \beta } \Vert _{L^{\infty }( 0,T;L^{2}(\Omega ))}^{2}. \end{aligned}$$
(40)

Therefore, we find that

$$\begin{aligned} \Vert A_{3} \Vert _{L^{2}(\Omega )} \le \frac{K_{f} T^{\beta }}{\beta } \Vert w_{a,\beta }-u_{a,b, \beta } \Vert _{L^{\infty }( 0,T;L^{2}(\Omega ))}. \end{aligned}$$
(41)

Some above observations lead to

$$\begin{aligned} & \Vert w_{a,\beta }-u_{a,b, \beta } \Vert _{L^{\infty }( 0,T;L^{2}(\Omega ))} \\ &\quad \le \Vert A_{1} \Vert _{L^{2}(\Omega )} + \Vert A_{2} \Vert _{L^{2}( \Omega )}+ \Vert A_{3} \Vert _{L^{2}(\Omega )} \\ &\quad \le \frac{b}{a^{2}} \Vert \varphi \Vert _{L^{2}(\Omega )}+ \biggl( \frac{b}{a}+1 \biggr) \frac{K_{f} T^{\beta }}{\beta } \Vert w_{a,\beta }-u_{a,b, \beta } \Vert _{L^{\infty }( 0,T;L^{2}(\Omega ))}. \end{aligned}$$
(42)

Hence, we find that

$$\begin{aligned} \Vert w_{a,\beta }-u_{a,b, \beta } \Vert _{L^{\infty }( 0,T;L^{2}(\Omega ))} \le \frac{ b \Vert \varphi \Vert _{L^{2}(\Omega )}}{ a^{2} ( 1- (\frac{b}{a}+1 ) \frac{K_{f} T^{\beta }}{\beta } ) }. \end{aligned}$$
(43)

It is easy to see that

$$\begin{aligned} \lim_{b \to 0} \Vert w_{a,\beta }-u_{a,b, \beta } \Vert _{L^{\infty }( 0,T;L^{2}( \Omega ))}=0. \end{aligned}$$
(44)

 □

Availability of data and materials

Not applicable.

References

  1. 1.

    Chung, W.S.: Fractional Newton mechanics with conformable fractional derivative. J. Comput. Appl. Math. 290, 150–158 (2015)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Morales-Delgado, V.F., Gómez-Aguilar, J.F., Escobar-Jiménez, R.F., Taneco-Hernández, M.A.: Fractional conformable derivatives of Liouville-Caputo type with low-fractionality. Phys. A, Stat. Mech. Appl. 503, 424–438 (2018)

    MathSciNet  Article  Google Scholar 

  3. 3.

    He, S., Sun, K., Mei, X., Yan, B., Xu, S.: Numerical analysis of a fractional-order chaotic system based on conformable fractional-order derivative. Eur. Phys. J. Plus 132, 36 (2017)

    Article  Google Scholar 

  4. 4.

    Anderson, R., Ulness, J.D.: Properties of the Katugampola fractional derivative with potential application in quantum mechanics. J. Math. Phys. 6, 063502 (2015) 18 pp

    MathSciNet  Article  Google Scholar 

  5. 5.

    Tuan, N.H., Ngoc, T.B., Baleanu, D., O’Regan, D.: On well-posedness of the sub-diffusion equation with conformable derivative model. Commun. Nonlinear Sci. Numer. Simul. 89, 105332 (2020)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Alharbi, F.M., Baleanu, D., Ebaid, A.: Physical properties of the projectile motion using the conformable derivative. Chin. J. Phys. 58, 18–28 (2019)

    Article  Google Scholar 

  7. 7.

    Baleanu, D., Fernandez, A.: On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 59, 444–462 (2018)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Baleanu, D., Fernandez, A., Fokas, A.S.: Solving PDEs of fractional order using the unified transform method. Appl. Math. Comput. 339, 738–749 (2018)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Baleanu, D., Mousalou, A., Rezapour, S.: A new method for investigating approximate solutions of some fractional integro-differential equations involving the Caputo-Fabrizio derivative. Adv. Differ. Equ. 2017, Paper No. 51 (2017)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Aphithana, A., Ntouyas, S.K., Tariboon, J.: Forced oscillation of fractional differential equations via conformable derivatives with damping term. Bound. Value Probl. 2019, 47 (2019)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Atangana, A., Baleanu, D., Alsaedi, A.: New properties of conformable derivative. Open Math. 13, 889–898 (2015)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Çenesiz, Y., Baleanu, D., Kurt, A., Tasbozan, O.: New exact solutions of Burgers’ type equations with conformable derivative. Waves Random Complex Media 27(1), 103–116 (2017)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Karapinar, E., Binh, H.D., Luc, N.H., Can, N.H.: On continuity of the fractional derivative of the time-fractional semilinear pseudo-parabolic systems. Adv. Differ. Equ. 2021(1), 70, 1–24 (2021)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Tuan, N.H., Thach, T.N., Can, N.H., O’Regan, D.: Regularization of a multidimensional diffusion equation with conformable time derivative and discrete data. Math. Methods Appl. Sci. 44(4), 2879–2891 (2021)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Binh, T.T., Luc, N.H., O’Regan, D., Can, N.H.: On an initial inverse problem for a diffusion equation with a conformable derivative. Adv. Differ. Equ. 2019(1), 481, 1–24 (2019)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Tuan, N.H., Zhou, Y., Can, N.H.: Identifying inverse source for fractional diffusion equation with Riemann–Liouville derivative. Comput. Appl. Math. 39(2), 1–16 (2020)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Tuan, N.H., Baleanu, D., Thach, T.N., O’Regan, D., Can, N.H.: Approximate solution for a 2-D fractional differential equation with discrete random noise. Chaos Solitons Fractals 133, 109650 (2020)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Tuan, N.H., Huynh, L.N., Baleanu, D., Can, N.H.: On a terminal value problem for a generalization of the fractional diffusion equation with hyper-Bessel operator. Math. Methods Appl. Sci. 43(6), 2858–2882 (2020)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Luc, N.H., Baleanu, D., Long, L.D., Can, N.-H.: Reconstructing the right-hand side of a fractional subdiffusion equation from the final data. J. Inequal. Appl. 2020, 53 (2020)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Tuan, N.H., Baleanu, D., Thach, T.N., O’Regan, D., Can, N.H.: Final value problem for nonlinear time fractional reaction-diffusion equation with discrete data. J. Comput. Appl. Math. 376, 112883 (2020)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Triet, A.N., O’Regan, D., Baleanu, D., Luc, N.H., Can, N.: A filter method for inverse nonlinear sideways heat equation. Adv. Differ. Equ. 2020, 149 (2020)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Afshari, H., Kalantari, S., Karapinar, E.: Solution of fractional differential equations via coupled fixed point. Electron. J. Differ. Equ. 2015, 286 (2015)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Afshari, H., Karapınar, E.: A discussion on the existence of positive solutions of the boundary value problems via ψ-Hilfer fractional derivative on b-metric spaces. Adv. Differ. Equ. 2020(1), 1 (2020)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Sevinik Adigüzel, R., Aksoy, Ü., Karapinar, E., Erhan, İ.M.: On the solution of a boundary value problem associated with a fractional differential equation. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6652

    Article  Google Scholar 

  25. 25.

    Patil, J., Chaudhari, A., Mohammed, A.B.D.O., Hardan, B.: Upper and lower solution method for positive solution of generalized Caputo fractional differential equations. Adv. Theor. Nonlinear Anal. Appl. 4(4), 279–291 (2020)

    Google Scholar 

  26. 26.

    Baitiche, Z., Derbazi, C., Benchohra, M.: ψ-Caputo fractional differential equations with multi-point boundary conditions by topological degree theory. Results Nonlinear Anal. 3(4), 166–178 (2020)

    Google Scholar 

  27. 27.

    Kandasamy, M., Annamalai, A.: Existence results for fractional integrodifferential systems with interval impulse via sectorial operator. Results Nonlinear Anal. 2(4), 169–181 (2019)

    Google Scholar 

  28. 28.

    Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by Industrial University of Ho Chi Minh City (IUH) under grant number 66/HÐ-ÐHCN. The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that improved the quality of this paper.

Funding

Not applicable.

Author information

Affiliations

Authors

Contributions

The authors declare that the study was realized in collaboration with the same responsibility. All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dang Van Yen.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Phuong, N.D., Binh, H.D., Long, L.D. et al. On a nonlocal problem for parabolic equation with time dependent coefficients. Adv Differ Equ 2021, 209 (2021). https://doi.org/10.1186/s13662-021-03370-4

Download citation

MSC

  • 35R11
  • 35B65
  • 26A33

Keywords

  • Parabolic equation
  • Existence and regularity
  • Conformable derivative
\