Skip to main content

# A Kirchhoff-type problem involving concave-convex nonlinearities

## Abstract

A Kirchhoff-type problem with concave-convex nonlinearities is studied. By constrained variational methods on a Nehari manifold, we prove that this problem has a sign-changing solution with least energy. Moreover, we show that the energy level of this sign-changing solution is strictly larger than the double energy level of the ground state solution.

## Introduction

We study the following Kirchhoff-type equation with concave-convex nonlinearities:

$$\textstyle\begin{cases} (a+\lambda \int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}+\lambda b \int _{\mathbb{R}^{3}}u^{2} )(-\Delta u+b u) \\ \quad =Q(x) \vert u \vert ^{p-1} u+ \kappa G(x) \vert u \vert ^{q-1} u ,\quad x\in \mathbb{R}^{3}, \\ u\in H^{1}_{r}(\mathbb{R}^{3}),\end{cases}$$
(1.1)

where $$a>0$$, $$b>0$$, $$\lambda >0$$, $$\kappa <0$$, $$p\in (3,5)$$, $$q\in (0,1)$$, and $$Q,G\in C(\mathbb{R}^{3},\mathbb{R}^{+})$$ satisfying the following conditions:

$$(Q_{1})$$:

There exists $$\beta \in [0,p-2)$$ such that $$\limsup_{x\rightarrow +\infty }\frac{Q(x)}{|x|^{\beta }}<+\infty$$;

$$(G_{1})$$:

$$G(x)\in L^{2}(\mathbb{R}^{3},\mathbb{R}^{+})$$.

In recent years, the following elliptic problem has been investigated by many researchers [1, 3, 6, 9, 17, 20]:

$$\textstyle\begin{cases} - (a+b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2} )\Delta u=f(x,u),\quad x\in \mathbb{R}^{3}, \\ u\in H^{1}(\mathbb{R}^{3}), \end{cases}$$
(1.2)

where $$f\in C(\mathbb{R}^{3}\times \mathbb{R},\mathbb{R})$$ and $$a>0$$, $$b>0$$. The term $$\int _{\mathbb{R}^{3}}|\nabla u|^{2}$$ in (1.2) has an interesting physical application. Moreover, this problem is related to the stationary analogue of the following equation proposed by Kirchhoff :

$$u_{tt}- \biggl(a+b \int _{\Omega } \vert \nabla u \vert ^{2} \biggr) \Delta u=f(x,u).$$
(1.3)

Inspired by the variational framework given by Lions , problem (1.3) has been investigated by many researchers, and the reader is referred to [5, 7, 11, 13, 19, 22] and the references therein for more details.

Shuai  studied the ground state sign-changing solution of problem (1.2) by using Brouwer degree theory, where $$f(x,u)$$ is replaced with $$f(u)$$ with the following hypotheses:

$$(f_{1}^{\prime })$$::

$$f(s)=o(|s|)$$ as $$s\rightarrow 0$$;

$$(f_{2}^{\prime })$$::

For some constant $$p\in (4,2^{*})$$, $$\lim_{s\rightarrow \infty }\frac{f(s)}{s^{p-1}}=0$$, where $$2^{*}=+\infty$$ for $$N=1,2$$ and $$2^{*}=6$$ for $$N=3$$;

$$(f_{3}^{\prime })$$::

$$\lim_{s\rightarrow \infty }\frac{F(s)}{s^{4}}=+\infty$$, where $$F(s)=\int ^{s}_{0} f(t)\,dt$$;

$$(f_{4}^{\prime })$$::

$$\frac{f(s)}{|s|^{3}}$$ is an increasing function with respect to $$s\in \mathbb{R}\setminus \{0\}$$.

Huang and Liu  obtained the ground state sign-changing solutions of problem (1.4) with accurately two nodal domains

$$- \biggl(1+\lambda \int _{\mathbb{R}^{N}}\bigl( \vert \nabla u \vert ^{2}+V(x)u^{2}\bigr) \biggr)\bigl[\Delta u+V(x)u\bigr]= \vert u \vert ^{p-1}u, \quad x\in \mathbb{R}^{N},$$
(1.4)

where $$p\in (3,5)$$, $$\lambda >0$$ and $$V\in C(\mathbb{R}^{N},\mathbb{R})$$ is to ensure the establishment of compactness.

Deng et al.  showed the existence of radial sign-changing solutions $$u_{k}^{b}$$ of problem (1.5)

$$\textstyle\begin{cases} - (a+b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2} )\Delta u+V(x) u=f(x,u),\quad x\in \mathbb{R}^{3}, \\ u\in H^{1}_{r}(\mathbb{R}^{3}), \end{cases}$$
(1.5)

by constrained minimization on the Nehari manifold, where k is any positive integer. Ye  studied the existence of least energy sign-changing solutions for problem (1.5), where $$f(x,u)$$ is replaced with $$f(u)$$.

Shao and Mao  got at least one sign-changing solution of problem (1.6) with concave-convex nonlinearities

$$\textstyle\begin{cases} - (a+b\int _{\Omega } \vert \nabla u \vert ^{2} )\Delta u=\mu g(x,u)+ f(x,u),\quad \mbox{in }\Omega , \\ u=0,\quad \mbox{on }\partial \Omega , \end{cases}$$
(1.6)

by using the method of invariant sets of descending flow.

Motivated by the aforementioned works, we prove the existence of sign-changing solutions with least energy for problem (1.1) with concave-convex nonlinearities and unbounded potential by constrained variational methods on a Nehari manifold.

Now we will give the main results by Theorems 1.1 and 1.2.

### Theorem 1.1

Assume that $$(Q_{1})$$ and $$(G_{1})$$ hold, then, for $$a>0$$, $$b>0$$, $$\lambda >0$$, and $$\kappa <0$$, problem (1.1) has one least energy sign-changing solution with accurately two nodal domains.

### Theorem 1.2

Assume that $$(Q_{1})$$ and $$(G_{1})$$ hold, then, for $$a>0$$, $$b>0$$, $$\lambda >0$$, and $$\kappa <0$$, problem (1.1) has one least energy solution. Moreover $$m_{\lambda }>2c_{\lambda }$$, where $$m_{\lambda }$$ and $$c_{\lambda }$$ are defined by (2.3) and (2.5) respectively.

### Remark 1.3

Comparing with Shuai , Huang and Liu , Deng et al. , and Ye , the difference is to consider Kirchhoff-type equation with concave and convex terms, where $$Q(x)$$ is unbounded at infinity. Moreover, since $$H^{1}_{r}(\mathbb{R}^{3})\hookrightarrow L^{{q+1}}(\mathbb{R}^{3})$$ is not compact for $${q}\in (0,1)$$, this means that the appearance of concave and convex terms has greatly increased the difficulty of problem (1.1). Shao and Mao  got sign-changing solutions for Kirchhoff equation with concave and convex terms by using the method of invariant sets of descending flow. However, we want to obtain ground state sign-changing solutions of (1.1) by variational methods and constrained minimization on the sign-changing Nehari manifold. It should be addressed that our methods are different to those in .

The rest of the paper is organized as follows. In Sect. 2 we give some notations and the main lemmas related to the proof of our main results. Sections 3 and 4 give the proofs of Theorems 1.1 and 1.2, respectively.

## Some notations and preliminary lemmas

Here are some notations to be used in this paper.

• C denotes a positive constant;

• $$H^{1}({\mathbb{R}}^{3})$$ denotes the usual Sobolev space with the norm $$\|u\|^{2}=\int _{\mathbb{R}^{3}}(|\nabla u|^{2}+b |u|^{2})$$;

• $$|\cdot |$$ denotes the usual norm $$L^{\bar{q}}(\mathbb{R}^{3})$$ for $$\bar{q}\in [1,\infty )$$;

• $$H^{1}_{r}({\mathbb{R}}^{3}):=\{u:u\in H^{1}({\mathbb{R}}^{3}),u(x)=u(|x|) \}$$;

• $$u^{+}:=\max \{{u,0}\}$$ and $$u^{-}:=\min \{{u,0}\}$$.

### Lemma 2.1

(see Berestycki and Lions )

Let $$N\geq 2$$ and $$u\in H_{r}^{1}({\mathbb{R}}^{N})$$, Then

$$\bigl|u(r)\bigr|\leq C_{0}\|u\|r^{\frac{1-N}{2}} \quad \textit{for } r\geq 1 ,$$

where $$C_{0}>0$$ is only related to N.

### Remark 2.2

For any $$u\in H_{r}^{1}({\mathbb{R}}^{3})$$, by $$(Q_{1})$$, $$(G_{1})$$, and Lemma 2.1, we have

$$0\leq \int _{\mathbb{R}^{3}}Q(x) \vert u \vert ^{p+1}\leq C_{1} \Vert u \Vert ^{p+1}$$

and

$$\biggl\vert \int _{\mathbb{R}^{3}}G(x) \vert u \vert ^{q+1} \biggr\vert \leq \int _{ \mathbb{R}^{3}} \bigl\vert G(x) \bigr\vert \vert u \vert ^{q+1}\leq \bigl\vert G(x) \bigr\vert _{2} \vert u \vert ^{q+1}_{2(q+1)}\leq C_{1} \Vert u \Vert ^{q+1}.$$

The energy functional $$J_{\lambda }\in C^{1}(H^{1}_{r}({\mathbb{R}}^{3}),\mathbb{R})$$ is well defined by

$$J_{\lambda }(u)=\frac{1}{2}a \Vert u \Vert ^{2} + \frac{1}{4}\lambda \Vert u \Vert ^{4}- \frac{1}{p+1} \int _{\mathbb{R}^{3}}Q(x) \vert u \vert ^{p+1}- \frac{1}{q+1}\kappa \int _{\mathbb{R}^{3}}G(x) \vert u \vert ^{q+1}.$$
(2.1)

For each $$u,v\in H^{1}_{r}({\mathbb{R}}^{3})$$,

$$\bigl\langle J^{\prime }_{\lambda }(u),v\bigr\rangle =a(u,v)+\lambda \Vert u \Vert ^{2}(u,v)- \int _{\mathbb{R}^{3}}Q(x) \vert u \vert ^{p-1}uv-\kappa \int _{\mathbb{R}^{3}}G(x) \vert u \vert ^{q-1}uv.$$
(2.2)

In order to get a sign-changing solution $$u^{\pm }\neq 0$$ of (1.1), the following functionals need to be established:

\begin{aligned}& J_{\lambda }(u)=J_{\lambda }\bigl(u^{+} \bigr)+J_{\lambda }\bigl(u^{-}\bigr)+ \frac{\lambda }{2} \bigl\Vert u^{+} \bigr\Vert ^{2} \bigl\Vert u^{-} \bigr\Vert ^{2}, \\& \bigl\langle J_{\lambda }^{\prime }(u),u^{+} \bigr\rangle =\bigl\langle J_{\lambda }^{\prime }\bigl(u^{+} \bigr),u^{+}\bigr\rangle +\lambda \bigl\Vert u^{-} \bigr\Vert ^{2} \bigl\Vert u^{+} \bigr\Vert ^{2}, \\& \bigl\langle J_{\lambda }^{\prime }(u),u^{-} \bigr\rangle =\bigl\langle J_{\lambda }^{\prime }\bigl(u^{-} \bigr),u^{-}\bigr\rangle +\lambda \bigl\Vert u^{+} \bigr\Vert ^{2} \bigl\Vert u^{-} \bigr\Vert ^{2}. \end{aligned}

Let us define

$$\mathcal{M}_{\lambda }=\bigl\{ u\in H^{1}_{r} \bigl({\mathbb{R}}^{3}\bigr):u^{\pm }\neq 0, \bigl\langle J^{\prime }_{\lambda }(u),u^{+}\bigr\rangle =\bigl\langle J^{\prime }_{ \lambda }(u),u^{-}\bigr\rangle =0\bigr\}$$

and

$$m_{\lambda }:=\inf \bigl\{ J_{\lambda }(u): u\in \mathcal{M}_{\lambda }\bigr\} .$$
(2.3)

In addition, we define

$$\mathcal{N}_{\lambda }=\bigl\{ u\in H^{1}_{r} \bigl({\mathbb{R}}^{3}\bigr)\setminus \{0 \}:\bigl\langle J^{\prime }_{\lambda }(u),u\bigr\rangle =0\bigr\}$$
(2.4)

and

$$c_{\lambda }:=\inf \bigl\{ J_{\lambda }(u):u\in \mathcal{N}_{\lambda } \bigr\} .$$
(2.5)

### Lemma 2.3

Assume that $$(Q_{1})$$, $$(G_{1})$$, and $$u_{n}\rightharpoonup u$$ in $$H^{1}_{r}(\mathbb{R}^{3})$$ hold, then

$$\lim_{n\rightarrow \infty } \int _{\mathbb{R}^{3}}G(x) \vert u_{n} \vert ^{q+1}= \int _{\mathbb{R}^{3}}G(x) \vert u \vert ^{q+1}.$$

In particular,

$$\lim_{n\rightarrow \infty } \int _{\mathbb{R}^{3}}G(x) \bigl\vert u_{n}^{\pm } \bigr\vert ^{q+1}= \int _{\mathbb{R}^{3}}G(x) \bigl\vert u^{\pm } \bigr\vert ^{q+1}.$$

### Proof

If $$u_{n}\rightharpoonup u$$ in $$H^{1}_{r}(\mathbb{R}^{3})$$, then $$u_{n}\rightarrow u$$ in $$L^{\bar{q}}(\mathbb{R}^{3})$$ for $$\bar{q}\in (2,6)$$. According to [18, Theorem A.4, p. 134], we can obtain that $$|u_{n}|^{q+1}\rightarrow |u|^{q+1}$$ in $$L^{2}(\mathbb{R}^{3})$$. By the Hölder inequality, we have

\begin{aligned} & \biggl\vert \int _{\mathbb{R}^{3}}G(x) \vert u_{n} \vert ^{q+1}- \int _{ \mathbb{R}^{3}}G(x) \vert u \vert ^{q+1} \biggr\vert \\ &\quad \leq \int _{\mathbb{R}^{3}} \bigl\vert G(x) \bigr\vert \bigl\vert \vert u_{n} \vert ^{q+1}- \vert u \vert ^{q+1} \bigr\vert \\ &\quad \leq \bigl\vert G(x) \bigr\vert _{2} \bigl\vert |u_{n} \vert ^{q+1}- \vert u \vert ^{q+1}\bigr|_{2} \rightarrow 0. \end{aligned}

Thus, $$\lim_{n\rightarrow \infty }\int _{\mathbb{R}^{3}}G(x)|u_{n}|^{q+1}= \int _{\mathbb{R}^{3}}G(x)|u|^{q+1}$$. Similarly, $$\lim_{n\rightarrow \infty }\int _{\mathbb{R}^{3}}G(x)|u_{n}^{\pm }|^{q+1}= \int _{\mathbb{R}^{3}}G(x)|u^{\pm }|^{q+1}$$. □

### Lemma 2.4

Under the assumptions of Theorem 1.1. If $$u\in H^{1}_{r}({\mathbb{R}}^{3})$$ with $$u^{\pm }\neq 0$$, there exists a unique pair $$(s_{u},t_{u})\in (0,+\infty )\times (0,+\infty )$$ such that $$s_{u}u^{+}+t_{u}u^{-}\in \mathcal{M}_{\lambda }$$. Moreover,

$$J_{\lambda }\bigl(s_{u}u^{+}+t_{u}u^{-} \bigr)=\max_{s,t\geq 0}J_{\lambda }\bigl(su^{+}+tu^{-} \bigr).$$

### Proof

Let $$u\in H^{1}(\mathbb{R}^{3})$$ with $$u^{\pm }\neq 0$$. Define

\begin{aligned}& g_{1}(s,t)=a s^{2} \bigl\Vert u^{+} \bigr\Vert ^{2}+\lambda s^{4} \bigl\Vert u^{+} \bigr\Vert ^{4}+\lambda s^{2}t^{2} \bigl\Vert u^{+} \bigr\Vert ^{2} \bigl\Vert u^{-} \bigr\Vert ^{2} \\& \hphantom{g_{1}(s,t)={}}{}-s^{p+1} \int _{\mathbb{R}_{3}}Q(x) \bigl\vert u^{+} \bigr\vert ^{p+1}- \kappa s^{q+1} \int _{\mathbb{R}_{3}}G(x) \bigl\vert u^{+} \bigr\vert ^{q+1}, \end{aligned}
(2.6)
\begin{aligned}& g_{2}(s,t)=a t^{2} \bigl\Vert u^{-} \bigr\Vert ^{2}+\lambda t^{4} \bigl\Vert u^{-} \bigr\Vert ^{4}+\lambda s^{2}t^{2} \bigl\Vert u^{-} \bigr\Vert ^{2} \bigl\Vert u^{+} \bigr\Vert ^{2} \\& \hphantom{g_{2}(s,t)={}}{}-t^{p+1} \int _{\mathbb{R}_{3}}Q(x) \bigl\vert u^{-} \bigr\vert ^{p+1}- \kappa t^{q+1} \int _{\mathbb{R}_{3}}G(x) \bigl\vert u^{-} \bigr\vert ^{q+1}. \end{aligned}
(2.7)

According to Remark 2.2, for $$\kappa <0$$, we have $$g_{i}(s,s)>0$$ as $$s>0$$ small and $$g_{i}(t,t)<0$$ as $$t>0$$ large, where $$i=1,2$$. Then there exists $$0<\mu <\nu$$ such that

$$g_{i}(\mu ,\mu )>0,\qquad g_{i}(\nu ,\nu )< 0.$$
(2.8)

By (2.6), (2.7), (2.8), we have that

\begin{aligned}& g_{1}(\mu ,t)>0,\qquad g_{1}(\nu ,t)< 0,\quad t\in [\mu ,\nu ], \\& g_{2}(s,\mu )>0,\qquad g_{2}(s,\nu )< 0,\quad s\in [\mu ,\nu ]. \end{aligned}

From Miranda’s theorem , there exists a pair $$(s_{u},t_{u})$$ such that

$$g_{1}(s_{u},t_{u})=0,\qquad g_{2}(s_{u},t_{u})=0,\quad \mu < s_{u},t_{u}< \nu .$$

Thus, $$s_{u}u^{+}+t_{u}u^{-}\in \mathcal{M}_{\lambda }$$.

Secondly, we prove the uniqueness. Let both $$(s_{1},t_{1})$$ and $$(s_{2},t_{2})$$ satisfy $$u_{i}=s_{i}u^{+}+t_{i}u^{-}\in \mathcal{M}_{\lambda }$$ ($$i=1,2$$) and $$u_{1}=s_{1}u^{+}+t_{1}u^{-}= m s_{2}u^{+}+n t_{2}u^{-}=mu_{2}^{+}+nu^{-}_{2}$$, where $$m=\frac{s_{1}}{s_{2}}$$, $$n=\frac{t_{1}}{t_{2}}$$. By (2.6) and (2.7),

\begin{aligned}& g_{1}^{u_{1}}(1,1)=g_{1}^{u_{2}}(m,n)=g_{1}^{u_{2}}(1,1)=0, \end{aligned}
(2.9)
\begin{aligned}& g_{2}^{u_{1}}(1,1)=g_{2}^{u_{2}}(m,n)=g_{2}^{u_{2}}(1,1)=0. \end{aligned}
(2.10)

We only need to prove that $$m=n=1$$. Now, assume that $$0< m\leq n$$. By (2.9) and (2.10),

$$g_{1}^{u_{2}}(1,1)-\frac{g_{1}^{u_{2}}(m,n)}{m^{4}}=0$$
(2.11)

and

$$g_{2}^{u_{2}}(1,1)-\frac{g_{2}^{u_{2}}(m,n)}{n^{4}}=0.$$
(2.12)

If $$m<1$$, then

\begin{aligned}& \biggl(1-\frac{1}{m^{2}}\biggr)a \bigl\Vert u_{2}^{+} \bigr\Vert ^{2}+\biggl(1- \frac{n^{2}}{m^{2}}\biggr)\lambda \bigl\Vert u_{2}^{-} \bigr\Vert ^{2} \bigl\Vert u_{2}^{+} \bigr\Vert ^{2} \\& \quad =\bigl(1-m^{p-3}\bigr) \int _{\mathbb{R}^{3}}Q(x) \bigl\vert u_{2}^{+} \bigr\vert ^{p+1}+\bigl(1-m^{q-3}\bigr) \kappa \int _{\mathbb{R}^{3}}G(x) \bigl\vert u_{2}^{+} \bigr\vert ^{q+1}, \end{aligned}

this is impossible for $$\kappa <0$$. Then $$m\geq 1$$. Similarly, if $$n>1$$, (2.12) is impossible. Then $$n\leq 1$$. Thus $$m=n=1$$.

At last, let

\begin{aligned} H_{\lambda }(s,t)&=J_{\lambda } \bigl(su^{+}+tu^{-}\bigr) \\ &=\frac{a}{2}s^{2} \bigl\Vert u^{+} \bigr\Vert ^{2}+ \frac{\lambda }{4}s^{4} \bigl\Vert u^{+} \bigr\Vert ^{4}-\frac{s^{p+1}}{p+1} \int _{ \mathbb{R}^{3}}Q(x) \bigl\vert u^{+} \bigr\vert ^{p+1}-\frac{s^{q+1}}{q+1}\kappa \int _{ \mathbb{R}_{3}}G(x) \bigl\vert u^{+} \bigr\vert ^{q+1} \\ &\quad {} +\frac{a}{2}t^{2} \bigl\Vert u^{-} \bigr\Vert ^{2}+\frac{\lambda }{4}t^{4} \bigl\Vert u^{-} \bigr\Vert ^{4}- \frac{t^{p+1}}{p+1} \int _{\mathbb{R}^{3}}Q(x) \bigl\vert u^{-} \bigr\vert ^{p+1}- \frac{t^{q+1}}{q+1}\kappa \int _{\mathbb{R}_{3}}G(x) \bigl\vert u^{-} \bigr\vert ^{q+1} \\ &\quad {} +\frac{\lambda }{2}s^{2}t^{2} \bigl\Vert u^{-} \bigr\Vert ^{2} \bigl\Vert u^{+} \bigr\Vert ^{2}. \end{aligned}

Then, for $$\kappa <0$$, we have $$H_{\lambda }(s,t)>0$$ as $$|(s,t)|\rightarrow 0$$, $$H_{\lambda }(s,t)<0$$ as $$|(s,t)|\rightarrow \infty$$, and $$H_{\lambda }$$ cannot achieve the maximum point on $$\partial {\mathbb{R}^{+}}^{2}$$. Without loss of generality, we only prove that $$(0,t_{0})$$ is not a maximum point of $$H_{\lambda }$$. For $$s>0$$ small enough,

\begin{aligned} \frac{\partial H_{\lambda }}{\partial s}(s,t_{0})={}&a s \bigl\Vert u^{+} \bigr\Vert ^{2}+ \lambda s^{3} \bigl\Vert u^{+} \bigr\Vert ^{4}+\lambda st_{0}^{2} \bigl\Vert u^{-} \bigr\Vert ^{2} \bigl\Vert u^{+} \bigr\Vert ^{2} \\ &{}-s^{p} \int _{\mathbb{R}^{3}}Q(x) \bigl\vert u^{+} \bigr\vert ^{p+1}-{s^{q}}\kappa \int _{ \mathbb{R}_{3}}G(x) \bigl\vert u^{+} \bigr\vert ^{q+1}>0, \end{aligned}

this implies that $$H_{\lambda }(s,t_{0})$$ is an increasing function with respect to s, where $$s>0$$ is small enough, then $$(0,t_{0})$$ is not a maximum point of $$H_{\lambda }$$. Thus, there exists $$(s_{u},t_{u})\in {\mathbb{R}^{+}}^{2}$$ such that

$$J_{\lambda }\bigl(s_{u}u^{+}+t_{u}u^{-} \bigr)=\max_{s,t\geq 0}J_{\lambda }\bigl(su^{+}+tu^{-} \bigr).$$

□

### Lemma 2.5

Under the assumptions of Theorem 1.1. If $$\langle J^{\prime }_{\lambda }(u),u^{\pm }\rangle \leq 0$$, there exists $$(s_{u},t_{u})\in (0,1]\times (0,1]$$ such that $$s_{u}u^{+}+t_{u}u^{-}\in \mathcal{M}_{\lambda }$$ for $$u\in H^{1}_{r}({\mathbb{R}}^{3})$$ with $$u^{\pm }\neq 0$$.

### Proof

Let $$u\in H^{1}_{r}({\mathbb{R}}^{3})$$ with $$u^{\pm }\neq 0$$, by Lemma 2.4, there exists a pair $$(s_{u},t_{u})$$ such that

\begin{aligned}& s_{u}^{2}a \bigl\Vert u^{+} \bigr\Vert ^{2}+s_{u}^{4} \lambda \bigl\Vert u^{+} \bigr\Vert ^{4}+s_{u}^{2}t_{u}^{2} \lambda \bigl\Vert u^{-} \bigr\Vert ^{2} \bigl\Vert u^{+} \bigr\Vert ^{2} \\& \quad{} -s_{u}^{p+1} \int _{\mathbb{R}^{3}}Q(x) \bigl\vert u^{+} \bigr\vert ^{p+1}-s_{u}^{q+1} \kappa \int _{\mathbb{R}^{3}}G(x) \bigl\vert u^{+} \bigr\vert ^{q+1}=0. \end{aligned}
(2.13)

Since $$\langle J^{\prime }_{\lambda }(u),u^{\pm }\rangle \leq 0$$, we have that

$$a \bigl\Vert u^{+} \bigr\Vert ^{2}+ \lambda \bigl\Vert u^{+} \bigr\Vert ^{4}+\lambda \bigl\Vert u^{-} \bigr\Vert ^{2} \bigl\Vert u^{+} \bigr\Vert ^{2}- \int _{\mathbb{R}^{3}}Q(x) \bigl\vert u^{+} \bigr\vert ^{p+1}-\kappa \int _{ \mathbb{R}^{3}}G(x) \bigl\vert u^{+} \bigr\vert ^{q+1}\leq 0.$$
(2.14)

Now, assume that $$0< t_{u}\leq s_{u}$$. If $$s_{u}>1$$, by (2.13) and (2.14),

\begin{aligned}& \biggl(1-\frac{1}{s_{u}^{2}}\biggr)a \bigl\Vert u^{+} \bigr\Vert ^{2}+\biggl(1-\frac{t_{u}^{2}}{s_{u}^{2}} \biggr) \lambda \bigl\Vert u^{-} \bigr\Vert ^{2} \bigl\Vert u^{+} \bigr\Vert ^{2} \\& \quad \leq \bigl(1-s_{u}^{p-3}\bigr) \int _{ \mathbb{R}^{3}}Q(x) \bigl\vert u^{+} \bigr\vert ^{p+1}+\bigl(1-s_{u}^{q-3}\bigr)\kappa \int _{ \mathbb{R}^{3}}G(x) \bigl\vert u^{+} \bigr\vert ^{q+1}, \end{aligned}

which is contradictory for $$\kappa <0$$. Then $$s_{u}\leq 1$$. From $$0< t_{u}\leq s_{u}$$, we obtain that $$0< t_{u}\leq s_{u}\leq 1$$. □

### Lemma 2.6

Under the assumptions of Theorem 1.1, $$m_{\lambda }>0$$ can be achieved.

### Proof

For all $$u\in \mathcal{M}_{\lambda }$$, by the Sobolev embedding theorem, we have

$$a \Vert u \Vert ^{2}\leq a \Vert u \Vert ^{2}+ \lambda \Vert u \Vert ^{4}= \int _{\mathbb{R}^{3}}Q(x) \vert u \vert ^{p+1}+ \kappa \int _{\mathbb{R}^{3}}G(x) \vert u \vert ^{q+1}\leq C_{1} \Vert u \Vert ^{p+1}.$$

Then there exists $$C\geq C_{1}$$ such that $$\|u\|\geq (\frac{a}{C} )^{\frac{1}{p-1}}>0$$. Since

\begin{aligned}[b] J_{\lambda }(u)&=J_{\lambda }(u)- \frac{1}{4}\bigl\langle J_{ \lambda }^{\prime }(u),u\bigr\rangle \\ &=\frac{a}{2} \Vert u \Vert ^{2}+\frac{\lambda }{4} \Vert u \Vert ^{4}-\frac{1}{p+1} \int _{ \mathbb{R}^{3}}Q(x) \vert u \vert ^{p+1}- \frac{1}{q+1}\kappa \int _{\mathbb{R}^{3}}G(x) \vert u \vert ^{q+1} \\ & -\frac{a}{4} \Vert u \Vert ^{2}- \frac{\lambda }{4} \Vert u \Vert ^{4}+\frac{1}{4} \int _{\mathbb{R}^{3}}Q(x) \vert u \vert ^{p+1}+ \frac{1}{4}\kappa \int _{ \mathbb{R}^{3}}G(x) \vert u \vert ^{q+1} \\ &=\frac{a}{4} \Vert u \Vert ^{2}+ \biggl( \frac{1}{4}-\frac{1}{p+1} \biggr) \int _{ \mathbb{R}^{3}}Q(x) \vert u \vert ^{p+1}- \biggl( \frac{1}{q+1}-\frac{1}{4} \biggr) \kappa \int _{\mathbb{R}^{3}}G(x) \vert u \vert ^{q+1} \\ &\geq \frac{a}{8} \Vert u \Vert ^{2} \end{aligned}
(2.15)

for $$\kappa <0$$. Then

$$m_{\lambda }=\inf_{u\in {\mathcal{M}_{\lambda }}} J_{\lambda }(u)>0.$$

Let $$\{u_{n}\}\subset \mathcal{M}_{\lambda }$$ and $$J_{\lambda }(u_{n})\rightarrow m_{\lambda }$$. By Remark 2.2, we have

$$1+m_{\lambda } \geq J_{\lambda }(u_{n})- \frac{1}{p+1}\bigl\langle J_{\lambda }^{ \prime }(u_{n}),u_{n} \bigr\rangle \geq \frac{a}{8} \Vert u_{n} \Vert ^{2}.$$

This shows that $$\{u_{n}\}$$ is bounded in $$H^{1}_{r}(\mathbb{R}^{3})$$. Then there exists $$u_{\lambda }\in H^{1}_{r}(\mathbb{R}^{3})$$ such that $$u_{n}^{\pm }\rightharpoonup u_{\lambda }^{\pm }$$ in $$H^{1}_{r}(\mathbb{R}^{3})$$, $$u_{n}^{\pm }\rightarrow u_{\lambda }^{\pm }$$ in $$L^{q}(\mathbb{R}^{3})$$ for $$q\in (2,6)$$ and $$u_{n}^{\pm }(x) \rightarrow u_{\lambda }^{\pm }(x)$$ a.e. on $$\mathbb{R}^{3}$$. Since $$\{u_{n}\}\subset \mathcal{M}_{\lambda }$$, we have

$$0< C\leq a \bigl\Vert u_{n}^{\pm } \bigr\Vert ^{2}+\lambda \bigl\Vert u_{n}^{\pm } \bigr\Vert ^{4}+\lambda \bigl\Vert u_{n}^{+} \bigr\Vert ^{2} \bigl\Vert u_{n}^{-} \bigr\Vert ^{2}= \int _{\mathbb{R}^{3}}Q(x) \bigl\vert u_{n}^{\pm } \bigr\vert ^{p+1}+ \kappa \int _{\mathbb{R}^{3}}G(x) \bigl\vert u_{n}^{\pm } \bigr\vert ^{q+1}.$$

By Fatou’s lemma and Lemma 2.3,

$$a \bigl\Vert u_{\lambda }^{\pm } \bigr\Vert ^{2}+\lambda \bigl\Vert u_{\lambda }^{\pm } \bigr\Vert ^{4}+\lambda \bigl\Vert u_{ \lambda }^{+} \bigr\Vert ^{2} \bigl\Vert u_{\lambda }^{-} \bigr\Vert ^{2}\leq \int _{\mathbb{R}^{3}}Q(x) \bigl\vert u_{ \lambda }^{\pm } \bigr\vert ^{p+1}+\kappa \int _{\mathbb{R}^{3}}G(x) \bigl\vert u_{\lambda }^{\pm } \bigr\vert ^{q+1},$$

this implies that

$$\bigl\langle J^{\prime }_{\lambda }(u_{\lambda }),u_{\lambda }^{\pm } \bigr\rangle \leq 0.$$

By Lemmas 2.4 and 2.5, there exists $$(s_{{u}_{\lambda }},t_{{u}_{\lambda }})\in (0,1]\times (0,1]$$ such that $$\widetilde{u}_{\lambda }=s_{{u}_{\lambda }}u^{+}_{\lambda }+t_{{u}_{ \lambda }}u^{-}_{\lambda }\in \mathcal{M}_{\lambda }$$. Then

\begin{aligned} m_{\lambda } \leq& J_{\lambda }(\widetilde{u}_{\lambda })- \frac{1}{p+1}\bigl\langle J^{\prime }_{\lambda }( \widetilde{u}_{\lambda }), \widetilde{u}_{\lambda }\bigr\rangle \\ =& \biggl(\frac{1}{2}-\frac{1}{p+1} \biggr)a \Vert \widetilde{u}_{\lambda } \Vert ^{2}+ \biggl( \frac{1}{4}-\frac{1}{p+1} \biggr)\lambda \Vert \widetilde{u}_{\lambda } \Vert ^{4}- \biggl( \frac{1}{q+1}-\frac{1}{p+1} \biggr)\kappa \int _{\mathbb{R}^{3}}G(x) \vert \widetilde{u}_{\lambda } \vert ^{q+1} \\ \leq& \frac{p-1}{2(p+1)}a \Vert {u}_{\lambda } \Vert ^{2}+ \frac{p-3}{4(p+1)}\lambda \Vert {u}_{\lambda } \Vert ^{4}-\frac{p-q}{(q+1)(p+1)} \kappa \int _{\mathbb{R}^{3}}G(x) \vert {u}_{\lambda } \vert ^{q+1} \\ \leq& \liminf_{n} \biggl\{ \frac{p-1}{2(p+1)}a \Vert {u}_{n} \Vert ^{2}+ \frac{p-3}{4(p+1)}\lambda \Vert {u}_{n} \Vert ^{4}-\frac{p-q}{(q+1)(p+1)} \kappa \int _{\mathbb{R}^{3}}G(x) \vert {u}_{n} \vert ^{q+1} \biggr\} \\ =&\liminf_{n} \biggl(J_{\lambda }(u_{n})- \frac{1}{p+1} \bigl\langle J^{\prime }_{\lambda }({u}_{n}),{u}_{n} \bigr\rangle \biggr) \\ =&m_{\lambda }, \end{aligned}

this implies that $$s_{u_{\lambda }}=t_{u_{\lambda }}=1$$. Thus, $$\widetilde{u}_{\lambda }=u_{\lambda }$$ and $$J_{\lambda }(u_{\lambda })=m_{\lambda }$$. □

## Sign-changing solutions

### Lemma 3.1

Under the assumptions of Theorem 1.1. If $$u_{\lambda }\in \mathcal{M}_{\lambda }$$ and $$J_{\lambda }(u_{\lambda })=m_{\lambda }$$, then $$J^{\prime }_{\lambda }(u_{\lambda })=0$$.

### Proof

Suppose that $$J_{\lambda }^{\prime }(u_{\lambda })\neq 0$$, then there are σ, $$\delta >0$$ such that

$$\bigl\Vert J_{\lambda }^{\prime }(u) \bigr\Vert \geq \sigma ,\quad \forall \Vert u-u_{ \lambda } \Vert \leq 3\delta .$$

Let $$D=(0.5,1.5)\times (0.5,1.5)$$. By Lemma 2.4, we obtain that

$$\iota :=\max_{(s,t)\in \partial D}J_{\lambda } \bigl(su_{\lambda }^{+}+tu_{ \lambda }^{-} \bigr)< m_{\lambda }.$$
(3.1)

For $$\varepsilon :=\min \{(m_{\lambda }-\iota )/2,\sigma \delta /8\}$$ and $$S:=B(u_{\lambda },\delta )$$, Willem [18, Lemma 2.3] produce a deformation η such that

1. (i)

$$\eta (1,u)=u$$ if $$u\notin J_{\lambda }^{-1}([m_{\lambda }-2\varepsilon ,m_{\lambda }+2 \varepsilon ])\cap S_{2\delta }$$;

2. (ii)

$$\eta (1,J_{\lambda }^{m_{\lambda }+\varepsilon }\cap S)\subset J_{ \lambda }^{m_{\lambda }-\varepsilon }$$;

3. (iii)

$$J_{\lambda }(\eta (1,u))\leq J_{\lambda }(u)$$ for all $$u\in H_{r}^{1}(\mathbb{R}^{3})$$.

At first, we show that

$$\max_{(s,t)\in \bar{D}}J_{\lambda }\bigl(\eta \bigl(1,su_{\lambda }^{+}+tu^{-}_{ \lambda } \bigr)\bigr)< m_{\lambda }.$$

For all $$(s,t)\in \bar{D}$$, by Lemma 2.4, we obtain $$J_{\lambda }(su_{\lambda }^{+}+tu_{\lambda }^{-})\leq m_{\lambda }< m_{ \lambda }+\varepsilon$$, that is, $$su_{\lambda }^{+}+tu_{\lambda }^{-}\in J_{\lambda }^{m_{\lambda }+ \varepsilon }$$. Therefore, $$J_{\lambda }(\eta (1,su_{\lambda }^{+}+tu_{\lambda }^{-}))\leq m_{ \lambda }-\varepsilon$$.

Next, we prove that

$$\eta \bigl(1,su_{\lambda }^{+}+tu_{\lambda }^{-} \bigr)\cap \mathcal{M}_{\lambda }\neq \emptyset ,\quad \forall (s,t)\in \bar{D}.$$

Define $$h(s,t)=\eta (1,su_{\lambda }^{+}+tu_{\lambda }^{-})$$ and $$\psi :[0,1]\times \bar{D}\rightarrow \mathbb{R}^{2}$$, for any $$\vartheta \in [0,1]$$, we have

\begin{aligned} \psi \bigl(\vartheta ,(s,t)\bigr) =&\bigl(\bigl\langle J_{\lambda }^{\prime } \bigl(\eta \bigl(\vartheta ,su_{ \lambda }^{+}+tu_{\lambda }^{-} \bigr)\bigr),\bigl(\eta \bigl(\vartheta ,su_{\lambda }^{+}+tu_{ \lambda }^{-} \bigr)\bigr)^{+}\bigr\rangle , \\ &\bigl\langle J_{\lambda }^{\prime } \bigl(\eta \bigl( \vartheta ,su_{\lambda }^{+}+tu_{\lambda }^{-} \bigr)\bigr),\bigl(\eta \bigl(\vartheta ,su_{ \lambda }^{+}+tu_{\lambda }^{-} \bigr)\bigr)^{-}\bigr\rangle \bigr). \end{aligned}

Let

\begin{aligned}& \psi _{0}=\psi _{0}(1,\cdot )=\bigl\langle J_{\lambda }^{\prime }\bigl(su_{\lambda }^{+}+tu_{ \lambda }^{-} \bigr)su_{\lambda }^{+},J_{\lambda }^{\prime } \bigl(su_{\lambda }^{+}+tu_{ \lambda }^{-} \bigr)tu_{\lambda }^{-}\bigr\rangle , \\& \psi _{1}=\psi _{1}(1,\cdot )=\bigl\langle J_{\lambda }^{\prime }\bigl(h(s,t)\bigr)h^{+}(s,t),J_{ \lambda }^{\prime } \bigl(h(s,t)\bigr)h^{-}(s,t)\bigr\rangle . \end{aligned}

By a simple calculation, $$\operatorname{deg}(\psi _{0},D,0)=1$$. According to (3.1), we obtain that $$u_{\lambda }=h$$ on ∂D and from homotopy invariance that

$$\deg (\psi _{1},D,0)=\deg (\psi _{0},D,0)=1.$$

Then there exists a pair $$(s_{0},t_{0})\in D$$ such that $$\psi _{1}(s_{0},t_{0})=0$$ and $$\eta (1,s_{0}u_{\lambda }^{+}+t_{0}u^{-}_{\lambda })=h(s_{0},t_{0}) \in \mathcal{M}_{\lambda }$$, which contradicts (3.1). Therefore, $$u_{\lambda }$$ is a critical point of $$J_{\lambda }$$, and so a sign-changing solution of (1.1). □

### Proof of Theorem 1.1

Firstly, by the preceding lemmas, there exists $$u_{\lambda }\in \mathcal{M}_{\lambda }$$ such that $$J_{\lambda }(u_{\lambda })=m_{\lambda }$$ and $$J_{\lambda }^{\prime }(u_{\lambda })=0$$. Thus, problem (1.1) has one least energy sign-changing solution $$u_{\lambda }$$.

Secondly, we prove that $$u_{\lambda }$$ has only two nodal domains. Assume that $$u_{\lambda }=u_{1}+u_{2}+u_{3}$$ with

\begin{aligned}& u_{i} \not \equiv 0, \qquad u_{1}\geq 0, \qquad u_{2}\leq 0, \\& \operatorname{supp} (u_{i})\cap \operatorname{supp} (u_{j})=\emptyset , \quad i\neq j , i,j=1,2,3 . \end{aligned}

Setting $$w=u_{1}+u_{2}$$ with $$w^{+}=u_{1}$$ and $$w^{-}=u_{2}$$, i.e., $$w^{\pm }\neq 0$$. Since $$J_{\lambda }^{\prime }(u_{\lambda })=0$$, we get

\begin{aligned}& \bigl\langle J_{\lambda }^{\prime }(w),w^{+}\bigr\rangle =\bigl\langle J_{\lambda }^{ \prime }(u_{1}+u_{2}),u_{1} \bigr\rangle \leq \bigl\langle J_{\lambda }^{\prime }(u_{\lambda }),u_{1} \bigr\rangle =0, \\& \bigl\langle J_{\lambda }^{\prime }(w),w^{-}\bigr\rangle =\bigl\langle J_{\lambda }^{ \prime }(u_{1}+u_{2}),u_{2} \bigr\rangle \leq \bigl\langle J_{\lambda }^{\prime }(u_{\lambda }),u_{2} \bigr\rangle =0. \end{aligned}

By Lemma 2.5, there exists $$(s_{w},t_{w})\in (0,1]\times (0,1]$$ such that

$$s_{w}w^{+}+t_{w}w^{-}=s_{w}u_{1}+t_{w}u_{2} \in \mathcal{M}_{\lambda },\quad m_{\lambda }\leq J_{\lambda }(s_{w}u_{1}+t_{w}u_{2}).$$

Note that $$\langle J_{\lambda }^{\prime }(u_{\lambda }),u_{\lambda }\rangle =0$$ and $$\langle J_{\lambda }^{\prime }(s_{w}u_{1}+t_{w}u_{2}),s_{w}u_{1}+t_{w}u_{2} \rangle =0$$, we have

\begin{aligned} m_{\lambda } =&J_{\lambda }(u_{\lambda })- \frac{1}{p+1} \bigl\langle J_{\lambda }^{\prime }(u_{\lambda }),u_{\lambda } \bigr\rangle \\ =& \biggl(\frac{1}{2}-\frac{1}{p+1} \biggr)a \Vert u_{\lambda } \Vert ^{2}+ \biggl(\frac{1}{4}- \frac{1}{p+1} \biggr)\lambda \bigl( \Vert u_{\lambda } \Vert ^{2}\bigr)^{2} \\ &{}- \biggl(\frac{1}{q+1}- \frac{1}{p+1} \biggr)\kappa \int _{\mathbb{R}^{3}}G(x) \vert u_{\lambda } \vert ^{q+1} \\ >& \biggl(\frac{1}{2}-\frac{1}{p+1} \biggr)a \bigl( \Vert u_{1} \Vert ^{2}+ \Vert u_{2} \Vert ^{2} \bigr) \\ &{}+ \biggl(\frac{1}{4}-\frac{1}{p+1} \biggr) \lambda \bigl( \Vert u_{1} \Vert ^{4}+2 \Vert u_{1} \Vert ^{2} \Vert u_{2} \Vert ^{2}+ \Vert u_{2} \Vert ^{4} \bigr) \\ &{} - \biggl(\frac{1}{q+1}-\frac{1}{p+1} \biggr)\kappa \int _{\mathbb{R}^{3}}G(x) \bigl( \vert u_{1} \vert ^{q+1}+ \vert u_{2} \vert ^{q+1} \bigr) \\ \geq &\biggl(\frac{1}{2}-\frac{1}{p+1} \biggr)a \bigl( \Vert s_{w}u_{1} \Vert ^{2}+ \Vert t_{w}u_{2} \Vert ^{2} \bigr) \\ &{}+ \biggl( \frac{1}{4}-\frac{1}{p+1} \biggr)\lambda \bigl( \Vert s_{w}u_{1} \Vert ^{4}+2 \Vert s_{w}u_{1} \Vert ^{2} \Vert t_{w}u_{2} \Vert ^{2}+ \Vert t_{w}u_{2} \Vert ^{4} \bigr) \\ &{}- \biggl(\frac{1}{q+1}-\frac{1}{p+1} \biggr)\kappa \int _{\mathbb{R}^{3}}G(x) \bigl( \vert s_{w}u_{1} \vert ^{q+1}+ \vert t_{w}u_{2} \vert ^{q+1} \bigr) \\ =& \biggl(\frac{1}{2}-\frac{1}{p+1} \biggr)a \Vert s_{w}u_{1}+t_{w}u_{2} \Vert ^{2}+ \biggl(\frac{1}{4}-\frac{1}{p+1} \biggr) \lambda \bigl( \Vert s_{w}u_{1}+t_{w}u_{2} \Vert ^{2} \bigr)^{2} \\ &{} - \biggl(\frac{1}{q+1}-\frac{1}{p+1} \biggr)\kappa \int _{\mathbb{R}^{3}}G(x) \vert s_{w}u_{1}+t_{w}u_{2} \vert ^{q+1} \\ =&J_{\lambda }(s_{w}u_{1}+t_{w}u_{2})- \frac{1}{p+1}\bigl\langle J_{ \lambda }^{\prime }(s_{w}u_{1}+t_{w}u_{2}),s_{w}u_{1}+t_{w}u_{2} \bigr\rangle \\ =&J_{\lambda }(s_{w}u_{1}+t_{w}u_{2}) \\ \geq& m_{\lambda }, \end{aligned}

which is a contradiction. □

## Ground state solutions

### Lemma 4.1

(Mountain pass theorem )

Let X be a Banach space, $$I \in C^{1}(X, \mathbb{R})$$, $$e \in X$$, and $$\rho > 0$$ such that $$\|e\|> \rho$$ and

$$\inf_{\|u\|=\rho } I(u) > I(0) \geq I(e).$$

If I satisfies the $$(PS)_{c}$$ condition with

\begin{aligned}& c := \inf_{\gamma \in \Gamma }\max_{t\in [0,1]}I\bigl(\gamma (t)\bigr), \\& \Gamma := \bigl\{ \gamma \in C\bigl([0, 1], X\bigr) : \gamma (0) = 0, \gamma (1) = e \bigr\} , \end{aligned}

then c is a critical value of I.

### Lemma 4.2

Under the assumptions of Theorem 1.2, there exist $$e\in H^{1}_{r}(\mathbb{R}^{3})$$ and $$\rho > 0$$ such that $$\|e\|>\rho$$ and $$\inf_{\|u\|=\rho }J_{\lambda }(u)>J_{\lambda }(0)> J_{\lambda }(e)$$.

### Proof

For all $$u\in H^{1}_{r}(\mathbb{R}^{3})$$, by Remark 2.2,

\begin{aligned} J_{\lambda }(u)&=\frac{a}{2} \Vert u \Vert ^{2}+\frac{\lambda }{4} \Vert u \Vert ^{4}- \frac{1}{p+1} \int _{\mathbb{R}^{3}}Q(x) \vert u \vert ^{p+1}- \frac{\kappa }{q+1} \int _{\mathbb{R}^{3}}G(x) \vert u \vert ^{q+1} \\ &\geq \frac{a}{2} \Vert u \Vert ^{2}+ \frac{\lambda }{4} \Vert u \Vert ^{4}- \frac{C_{1}}{p+1} \Vert u \Vert ^{p}, \end{aligned}

then there exists $$\rho >0$$ such that

$$b:=\inf_{\|u\|=\rho }J_{\lambda }(u)>0=J_{\lambda }(0).$$

Let $$t\geq 0$$, we have

$$J_{\lambda }(tu)=\frac{t^{2}}{2}a \Vert u \Vert ^{2}+\frac{t^{4}}{4}\lambda \Vert u \Vert ^{4}- \frac{t^{p+1}}{p+1} \int _{\mathbb{R}^{3}}Q(x) \vert u \vert ^{p+1}- \frac{t^{q+1}}{q+1}\kappa \int _{\mathbb{R}^{3}}G(x) \vert u \vert ^{q+1},$$

then there exists $$e:=tu$$ such that $$\|e\|>\rho$$ and $$J_{\lambda }(e)<0$$. □

### Lemma 4.3

Under the assumptions of Theorem 1.2. $$J_{\lambda }$$ satisfies the $$(P S)_{c}$$ condition.

### Proof

Let $$\{u_{n}\}\subset H_{r}^{1}(\mathbb{R}^{3})$$ and $$J_{\lambda }(u_{n})\rightarrow c$$, $$J_{\lambda }(u_{n})\rightarrow 0$$ as $$n\rightarrow \infty$$. By (2.15) in Lemma 2.6 above, it is easy to see that $$\{u_{n}\}$$ is bounded in $$H_{r}^{1}(\mathbb{R}^{3})$$. Going if necessary to a subsequence, $$u_{n}\rightharpoonup u$$ in $$H^{1}_{r}(\mathbb{R}^{3})$$, $$u_{n}\rightarrow u$$ in $$L^{s}(\mathbb{R}^{3})$$ for $$s\in (2,6)$$, and $$u_{n}(x)\rightarrow u(x)$$ a.e. on $$\mathbb{R}^{3}$$, then by $$(G_{1})$$ we have

\begin{aligned}& \biggl\vert \int _{\mathbb{R}^{3}}G(x) \vert u_{n} \vert ^{q}(u_{n}-u) \biggr\vert \\& \quad \leq \int _{\mathbb{R}^{3}} \bigl\vert G(x) \bigr\vert \bigl| \vert u_{n} \vert ^{q}|u_{n}-u \vert \bigr\vert \\& \quad \leq \biggl( \int _{\mathbb{R}^{3}} \bigl\vert G(x) \bigr\vert ^{2} \biggr)^{ \frac{1}{2}} \biggl( \int _{\mathbb{R}^{3}} \vert u_{n} \vert ^{2q} \vert u_{n}-u \vert ^{2} \biggr)^{\frac{1}{2}} \\& \quad \leq \bigl\vert G(x) \bigr\vert _{2} \biggl( \int _{\mathbb{R}^{3}} \vert u_{n} \vert ^{2q+2} \biggr)^{\frac{q}{2q+2}} \biggl( \int _{\mathbb{R}^{3}} \vert u_{n}-u \vert ^{2q+2} \biggr)^{\frac{1}{2q+2}} \\& \quad \leq C \bigl\vert G(x) \bigr\vert _{2} \Vert u_{n} \Vert ^{q} \vert u_{n}-u \vert _{2q+2}\rightarrow 0. \end{aligned}

Since

\begin{aligned}& \bigl\langle J^{\prime }_{\lambda }(u_{n})-J^{\prime }_{\lambda }(u),u_{n}-u \bigr\rangle \rightarrow 0, \\& \int _{\mathbb{R}^{3}}Q(x) \bigl(\vert u_{n} \vert ^{p}-\vert u \vert ^{p}\bigr)(u_{n}-u)\rightarrow 0 \end{aligned}

and

\begin{aligned} &\bigl(a+\lambda \Vert u_{n} \Vert ^{2}\bigr) \Vert u_{n}-u \Vert ^{2} \\ &\quad = \bigl\langle J^{\prime }_{\lambda }(u_{n})-J^{\prime }_{\lambda }(u),u_{n}-u \bigr\rangle +\lambda \bigl( \Vert u \Vert ^{2}- \Vert u_{n} \Vert ^{2} \bigr) \langle u,u_{n}-u \rangle \\ &\quad\quad {}+ \int _{\mathbb{R}^{3}}Q(x) \bigl(\vert u_{n} \vert ^{p}-\vert u \vert ^{p}\bigr)(u_{n}-u)+ \int _{\mathbb{R}^{3}}G(x) \bigl(\vert u_{n} \vert ^{p}-\vert u \vert ^{p}\bigr)(u_{n}-u). \end{aligned}

Thus, $$u_{n}\rightarrow u$$ in $$H^{1}_{r}(\mathbb{R}^{3})$$. □

Set

$$c_{1}=\inf_{u\in H_{r}^{1}(\mathbb{R}^{3})\setminus \{0\}}\max_{t \geq 0}J_{\lambda }(tu).$$

### Lemma 4.4

Under the assumptions of Theorem 1.2, we have $${c}=c_{\lambda }=c_{1}$$.

### Proof

Similar to the proof of Lemma 2.4, for all $$u\in H_{r}^{1}(\mathbb{R}^{3})\setminus \{0\}$$, there exists unique $$t_{u}u\in \mathcal{N}$$ such that $$J_{\lambda }(t_{u}u)=\max_{t\geq 0}J_{\lambda }(tu)$$, this implies that $$c_{\lambda }\leq c_{1}$$.

For each $$\gamma \in \Gamma$$, it follows from the property of $$\mathcal{N}$$ that $$\gamma (t)$$ crosses $$\mathcal{N}$$ as t varying over $$[0,1]$$. Since $$\gamma (0)=0$$, $$J_{\lambda }(\gamma (1))<0$$, then

$$\max_{t\in [0,1]}J_{\lambda } \bigl(\gamma (t)\bigr)\geq \inf_{u\in \mathcal{N}}J_{\lambda }(u)=c_{\lambda }.$$

Therefore $$c\geq c_{\lambda }$$. On the other hand, for $$u\in H_{r}^{1}(\mathbb{R}^{3})\setminus \{0\}$$, we have that $$J_{\lambda }(tu)<0$$ for t large enough, and then

$$\max_{t\geq 0}J_{\lambda }(tu) \geq \max_{t\in [0,1]}J_{\lambda }(tu) \geq \inf _{\gamma \in \Gamma }\max_{t\in [0,1]}J_{\lambda }\bigl( \gamma (t)\bigr)=c.$$

Therefore $$c_{1}\geq c$$. □

### Proof of Theorem 1.2

According to Lemmas 4.1, 4.2, 4.3, and 4.4, we obtain that problem (1.1) has one least energy solution.

Now we prove $$m_{\lambda }>2c_{\lambda }$$. By the proof of Theorem 1.1, there exists $$u_{\lambda }\in \mathcal{M}_{\lambda }$$ such that $$J_{\lambda }(u_{\lambda })=m_{\lambda }$$. By Lemmas 2.4 and 4.4, we have

\begin{aligned} m_{\lambda }&=J_{\lambda }(u_{\lambda }) \\ &\geq J_{\lambda }\bigl(su_{\lambda }^{+}+tu_{\lambda }^{-} \bigr) \\ &= J_{\lambda }\bigl(su_{\lambda }^{+} \bigr)+J_{\lambda }\bigl(tu_{\lambda }^{-}\bigr)+ \frac{s^{2}t^{2}}{2}\lambda \bigl\Vert u_{\lambda }^{+} \bigr\Vert ^{2} \bigl\Vert u_{\lambda }^{-} \bigr\Vert ^{2} \\ &> J_{\lambda }\bigl(su_{\lambda }^{+} \bigr)+J_{\lambda }\bigl(tu_{\lambda }^{-}\bigr) \\ &\geq 2c_{\lambda }. \end{aligned}

□

## Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

## References

1. 1.

Alves, C.O., Corrêa, F.J.S.A., Ma, T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49, 85–93 (2005)

2. 2.

Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)

3. 3.

Cheng, B.T., Wu, X.: Existence results of positive solutions of Kirchhoff problems. Nonlinear Anal. 71, 4883–4892 (2009)

4. 4.

Deng, Y.B., Peng, S.J., Shuai, W.: Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $$\mathbb{R}^{3}$$. J. Funct. Anal. 269, 3500–3527 (2015)

5. 5.

Duan, Y.L., Zhou, Y.G.: Existence of solutions for Kirchhoff-type equations with unbounded potential. Electron. J. Differ. Equ. 2017, 184 (2017)

6. 6.

He, H.M., Zou, W.M.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in $$\mathbb{R}^{3}$$. J. Differ. Equ. 2, 1813–1834 (2012)

7. 7.

He, Y., Li, G.B., Peng, S.J.: Concentrating bound states for Kirchhoff-type problems in $$\mathbb{R}^{3}$$ involving critical Sobolev exponents. Adv. Nonlinear Stud. 14(2), 483–510 (2014)

8. 8.

Huang, Y.S., Liu, Z.: On a class of Kirchhoff type problems. Arch. Math. 102, 127–139 (2014)

9. 9.

Jeanjean, L.: On the existence of bounded Palais–Smale sequences and application to a Landsman–Lazer-type problem set on $$\mathbb{R}^{N}$$. Proc. R. Soc. Edinb., Sect. A 129(2), 787–809 (1999)

10. 10.

Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

11. 11.

Liang, S.H., Zhang, J.H.: Existence of solutions for Kirchhoff-type problems with critical nonlinearity in $$\mathbb{R}^{3}$$. Nonlinear Anal., Real World Appl. 17, 126–136 (2014)

12. 12.

Lions, J.L.: On some questions in boundary value problems of mathematical physics. In: Contemporary Developments in Continuum Mechanics and Partial Differential Equations, Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, 1977. North-Holland Math. Stud., vol. 30, pp. 284–346. North-Holland, Amsterdam (1978)

13. 13.

Mao, A.M., Luan, S.X.: Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems. J. Math. Anal. Appl. 383(1), 239–243 (2011)

14. 14.

Miranda, C.: Un’osservazione su un teorema di Brouwer. Boll. Unione Mat. Ital. 3(2), 5–7 (1940)

15. 15.

Shao, M.Q., Mao, A.M.: Signed and sign-changing solutions of Kirchhoff type problems. J. Fixed Point Theory Appl. 20(1), 2 (2018)

16. 16.

Shuai, W.: Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains. J. Differ. Equ. 259(4), 1256–1274 (2015)

17. 17.

Sun, J.T., Tang, C.L.: Existence and multiplicity of solutions for Kirchhoff type equations. Nonlinear Anal. 74, 1212–1222 (2011)

18. 18.

Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

19. 19.

Wu, X.: Existence of nontrivial solutions and high energy solutions for Schrödinger–Kirchhoff-type equations in $$\mathbb{R}^{3}$$. Nonlinear Anal., Real World Appl. 12, 1278–1287 (2011)

20. 20.

Xie, Q.L., Wu, X.P., Tang, C.L.: Existence and multiplicity of solutions for Kirchhoff type problems with critical exponent. Commun. Pure Appl. Anal. 12(6), 2773–2786 (2013)

21. 21.

Ye, H.Y.: The existence of least energy nodal solutions for some class of Kirchhoff equations and Choquard equations in $$\mathbb{R}^{N}$$. J. Math. Anal. Appl. 431(2), 935–954 (2015)

22. 22.

Zhang, Z.T., Perera, K.: Sign-changing solutions of Kirchhoff-type problems via invariant sets of descent flow. J. Math. Anal. Appl. 317(2), 456–463 (2006)

Download references

## Acknowledgements

The authors would like to thank the referees for their useful suggestions which have significantly improved the paper.

## Funding

This work was supported financially by the National Natural Science Foundation of China (11871302).

## Author information

Authors

### Contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

### Corresponding author

Correspondence to Lishan Liu.

## Ethics declarations

Not applicable.

### Competing interests

The authors declare that they have no competing interests.

Not applicable.

## Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions 