Skip to main content

On Chandrasekhar functional integral inclusion and Chandrasekhar quadratic integral equation via a nonlinear Urysohn–Stieltjes functional integral inclusion

Abstract

We investigate the existence of solutions for a nonlinear integral inclusion of Urysohn–Stieltjes type. As applications, we give a Chandrasekhar quadratic integral equation and a nonlinear Chandrasekhar integral inclusion.

Introduction

The integral equations of Urysohn–Stieltjes (U-S) type have been studied by some authors; see, for example, [3, 5, 1115], and [1622], and reference therein.

The quadratic Chandrasekhar integral equation

$$ x(t)=a(t) + x(t) \int _{0}^{1}\frac{t}{t+s}b_{1}(s)x(s) \,ds , \quad t\in I= [0,1] $$

has been studied in some papers; see, for example, [1, 4, 710], and [24] and references therein.

Our aim is to study the existence of solutions \(x\in C[0,1]\) of the U-S nonlinear functional integral inclusion

$$ x(t)-a(t)\in \int _{0}^{1}F \biggl(t,s,x(s), \int _{0}^{1}h \bigl(s,\theta ,x( \theta ) \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr)\,d_{s}g_{1}(t,s), \quad t\in I= [0,1]. $$
(1.1)

As applications, we will prove the existence of solutions \(x\in C[0,1]\) of the nonlinear Chandrasekhar functional integral inclusion

$$ x(t) - a(t) \in \int _{0}^{1}\frac{t}{t+s}F \biggl(b_{1}(s)x(s), \int _{0}^{1}\frac{s}{s+\theta } b_{2}(s) x( \theta ) \,d{\theta } \biggr)\,d{s}, \quad t\in I= [0,1], $$

and the Chandrasekhar quadratic integral equation

$$ x(t)=a(t)+ \int _{0}^{1}\frac{t}{t+s}b_{1}(s)x(s) \cdot \biggl( \int _{0}^{1} \frac{s}{s+\theta } b_{2}(s) x(\theta ) \,d{\theta } \biggr)\,d{s}, \quad t\in I= [0,1]. $$

The paper is organized as follows. In Sect. 2, we establish the existence and uniqueness results for single-valued nonlinear U-S equations. We also prove the continuous dependence of the unique solution on the \(g_{i} \) (\(i=1,2\)). As an application, we discuss some particular cases by presenting the existence of solutions of nonlinear Chandrasekhar quadratic functional integral equations. In Sect. 3, we add conditions to our problem in order to obtain a new existence result with an application. Our results are generalized in Sect. 4, where we discuss the existence of solutions for set-valued equation (1.1) with continuous dependence on the set \(S_{F}\) and demonstrate a particular case of inclusion by presenting the existence of solutions for set-valued Chandrasekhar nonlinear functional integral equations.

Single-valued problem

Here we consider the nonlinear single-valued functional integral equation of U-S type

$$ x(t) = a(t) + \int _{0}^{1}f \biggl(t,s,x(s), \int _{0}^{1}h \bigl(s,\theta ,x( \theta ) \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr)\,d_{s}g_{1}(t,s), \quad t\in [0,1]. $$
(2.1)

Existence of solutions I

Consider the U-S functional integral equation (2.1) under the following assumptions:

  1. (i)

    \(a: [0,1]\rightarrow [0,1] \) is a continuous function, with \(a = \sup_{t\in [0,1]} \vert a(t) \vert \).

  2. (ii)
    1. a)

      \(f:[0,1]\times [0,1]\times R \times R \rightarrow R \) is a continuous function, and there exist two continuous functions \(m_{1},k_{1}:[0,1]\times [0,1]\rightarrow R\) such that

      $$ \bigl\vert f(t,s,x,y) \bigr\vert \leq m_{1}(t,s)+k_{1}(t,s) \bigl( \vert x \vert + \vert y \vert \bigr). $$
    2. b)

      \(h:[0,1]\times [0,1]\times R \rightarrow R \) is a continuous function, and there exist two continuous functions \(m_{2},k_{2}:[0,1]\times [0,1]\rightarrow R\) such that

      $$ \bigl\vert h(t,s,x) \bigr\vert \leq m_{2}(t,s)+k_{2}(t,s) \vert x \vert . $$
    3. c)

      \(k=\sup \{ k_{i}(t,s):t, s\in [0,1]\}\), and \(m=\sup \{ m_{i}(t,s):t, s\in [0,1], i=1,2\}\).

  3. (iii)

    \(g_{i}:[0,1]\times R \rightarrow R\), \(i=1,2\), are continuous functions with

    $$ \mu =\max \bigl\{ \sup \bigl\vert g_{i}(t,1) \bigr\vert +\sup \bigl\vert g_{i}(t,0) \bigr\vert , \text{on } [0,1] \bigr\} . $$
  4. (iv)

    For all \(t_{1},t_{2}\in I\), \(t_{1}< t_{2}\), the functions \(s \rightarrow g_{i}(t_{2},s)-g_{i}(t_{1},s)\) are nondecreasing on \([0,1]\).

  5. (v)

    \(g_{i}(0,s)= 0\) for \(s \in [0,1]\).

  6. (vi)

    \(k\mu +k^{2}\mu ^{2}<1\).

Let E be a Banach space with the norm \(\Vert \cdot \Vert _{E}\), and let \(I = [0, 1]\). Denote by \(C = C (I, E)\) the space of all continuous functions on I taking values in the space E. This space becomes a Banach space with supnorm

$$ \Vert x \Vert _{C} = \sup_{t\in I} \bigl\Vert x(t) \bigr\Vert _{E}. $$

Remark 2.1

(see [11])

Note that the function \(s\rightarrow g(t,s)\) is nondecreasing on the interval \([0,1]\). Indeed, for \(s_{1}, s_{2}\in [0,1]\) with \(s_{1}< s_{2}\), from assumptions (iv) and (v) we obtain

$$ g(t,s_{2})-g(t,s_{1})= \bigl[g(t,s_{2})-g(0,s_{2}) \bigr]- \bigl[g(t,s_{1})-g(0,s_{1}) \bigr] \geq 0. $$

Lemma 2.2

([11])

Assume that a function g satisfies assumption (v). Then for arbitrary \(s_{1}, s_{2}\in I\) with \(s_{1}< s_{2}\), the function \(t\rightarrow g(t,s_{2})-g(t,s_{1})\) is nondecreasing on I.

Indeed, take \(t_{1},t_{2}\in [0,1]\) such that \(t_{1}< t_{2}\). Then by assumption (vi) we get

$$ \bigl[g(t_{2},s_{2})-g(t_{2},s_{1}) \bigr]- \bigl[g(t_{1},s_{2})-g(t_{1},s_{1}) \bigr]= \bigl[g(t_{2},s_{2})-g(t_{1},s_{2}) \bigr]- \bigl[g(t_{2},s_{1})-g(t_{1},s_{1}) \bigr] \geq 0. $$

For the existence of at least one solution of the U-S nonlinear functional integral equation (2.1), we have the following theorem.

Theorem 2.3

Let the assumptions (i)(vi) be satisfied. Then the functional integral equation (2.1) has at least one solution \(x\in C[0,1]\).

Proof

Define the operator A by

$$ A x(t)= a(t)+ \int _{0}^{1}f \biggl(t,s,x(s), \int _{0}^{1}h \bigl(s,\theta ,x( \theta ) \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr)\,d_{s}g_{1}(t,s), \quad t\in I, $$
(2.2)

and define let the set

$$ Q_{r}= \bigl\{ x \in R: \vert x \vert \leq r \bigr\} \subseteq C[0,1], $$

where

$$ r=\frac{a+m\mu +km\mu ^{2}}{1-[k\mu +k^{2}\mu ^{2}]}. $$

It is clear that \(Q_{r}\) is a nonempty, bounded, closed, and convex set.

Let \(x\in Q_{r} \). Then

$$\begin{aligned} \bigl\vert A x(t) \bigr\vert =& \biggl\vert a(t)+ \int _{0}^{1}f \biggl(t,s,x(s), \int _{0}^{1}h \bigl(s, \theta ,x(\theta ) \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr)\,d_{s}g_{1}(t,s) \biggr\vert \\ \leq & \bigl\vert a(t) \bigr\vert + \int _{0}^{1} \biggl\vert f \biggl(t,s,x(s), \int _{0}^{1}h \bigl(s, \theta ,x(\theta ) \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr) \biggr\vert \,d_{s}g_{1}(t,s) \\ \leq &a+ \int _{0}^{1} \biggl(m_{1}(t,s)+k_{1}(t,s) \biggl( \bigl\vert x(t) \bigr\vert + \int _{0}^{1} \bigl\vert h \bigl(s, \theta ,x( \theta ) \bigr) \bigr\vert \,d_{\theta }g_{2}(s,\theta ) \biggr) \biggr)\,d_{s}g_{1}(t,s) \\ \leq &a+ \int _{0}^{1} \biggl(m_{1}(t,s)+k_{1}(t,s) \biggl( \bigl\vert x(t) \bigr\vert \\ &{}+ \int _{0}^{1} \bigl(m_{2}(s,\theta )+k_{2}(s,\theta ) \bigl\vert x(\theta ) \bigr\vert \,d_{ \theta }g_{2}(s,\theta ) \bigr) \biggr)\,d_{s}g_{1}(t,s) \biggr) \\ \leq &a+ \int _{0}^{1} (m_{1}(t,s)+k_{1}(t,s) \bigl( \bigl\vert x(t) \bigr\vert +(m+kr)\mu \bigr)\,d_{s}g_{1}(t,s) \\ \leq &a+ \bigl(m+k \bigl(r+(m+kr) \mu \bigr) \bigr)\mu \leq r. \end{aligned}$$

This proves that the operator \(A: Q_{r} \rightarrow Q_{r}\) and the class \(\{A x\}\) is uniformly bounded on \(Q_{r}\).

Then, for \(x\in Q_{r} \) and \(y(s)=\int _{0}^{1}h(s,\theta ,x(\theta )) \,d_{\theta }g_{2}(s,\theta )\), define the set

$$\begin{aligned} \theta (\delta ) ={}&\sup \bigl\{ \bigl\vert f(t_{2},s,x,y)-f(t_{1},s,x,y) \bigr\vert : t_{1},t_{2},s \in [0,1], t_{1}< t_{2}, \\ & \vert t_{2}-t_{1} \vert < \delta , \vert x \vert \leq r, \vert y \vert \leq r \bigr\} . \end{aligned}$$
(2.3)

Then from the uniform continuity of the function \(f: [0,1]\times [0,1]\times Q_{r}\times Q_{r} \rightarrow R \) and assumption (ii) we deduce that \(\theta (\delta ) \rightarrow 0 \) as \(\delta \rightarrow 0\), independently of \(x \in Q_{r}\).

Now let \(t_{2}, t_{1} \in [0,1]\), \(\vert t_{2}-t_{1} \vert <\delta\). Then we have

$$\begin{aligned}& \bigl\vert Ax(t_{2})- Ax(t_{1}) \bigr\vert \\ & \quad = \biggl\vert a(t_{2})+ \int _{0}^{1}f \biggl( t_{2},s,x(s), \int _{0}^{1}h \bigl(s, \theta ,x(\theta ) \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr)\,d_{s}g_{1}(t_{2},s) \\ & \quad\quad {} - a(t_{1})- \int _{0}^{1}f \biggl(t_{1},s,x(s), \int _{0}^{1}h \bigl(s, \theta ,x(\theta ) \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr)\,d_{s}g_{1}(t_{1},s) \biggr\vert \\ & \quad \leq \bigl\vert a(t_{2})- a(t_{1}) \bigr\vert + \biggl\vert \int _{0}^{1}f \biggl(t_{2},s,x(s), \int _{0}^{1}h \bigl(s,\theta ,x(\theta ) \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr)\,d_{s}g_{1}(t_{2},s) \\ & \quad\quad {} - \int _{0}^{1}f \biggl(t_{1},s,x(s), \int _{0}^{1}h \bigl(s,\theta ,x( \theta ) \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr)\,d_{s}g_{1}(t_{1},s) \biggr\vert \\ & \quad \leq \bigl\vert a(t_{2})- a(t_{1}) \bigr\vert \\ & \quad \quad {} + \biggl\vert \int _{0}^{1}f \bigl(t_{2},s,x(s),y(s) \bigr)\,d_{s}g_{1}(t_{2},s)- \int _{0}^{1}f \bigl(t_{1},s,x(s),y(s) \bigr)\,d_{s}g_{1}(t_{2},s) \\ & \quad \quad {} + \int _{0}^{1}f \bigl(t_{1},s,x(s),y(s) \bigr)\,d_{s}g_{1}(t_{2},s) - \int _{0}^{1}f \bigl(t_{1},s,x(s),y(s) \bigr)\,d_{s}g_{1}(t_{1},s) \biggr\vert \\ & \quad \leq \bigl\vert a(t_{2})- a(t_{1}) \bigr\vert + \int _{0}^{1} \bigl\vert (f \bigl(t_{2},s,x(s),y(s) \bigr)- f \bigl(t_{1},s,x(s),y(s) \bigr) \bigr\vert \,d_{s}g_{1}(t_{2},s) \\ & \quad \quad {} + \int _{0}^{1} \bigl\vert f \bigl(t_{1},s,x(s),y(s) \bigr) \bigr\vert \,d_{s} \bigl[g_{1}(t_{2},s)-g_{1}(t_{1},s) \bigr] \\ & \quad \leq \bigl\vert a(t_{2})- a(t_{1}) \bigr\vert + \int _{0}^{1}\theta (\delta )\,d_{s}g_{1}(t_{2},s) \\ & \quad\quad {} + \int _{0}^{1} \bigl(m_{1}(t, s)+k_{1}(t, s) \bigl( \vert x \vert + \vert y \vert \bigr) \bigr)\,d_{s} \bigl[g_{1}(t_{2},s)-g_{1}(t_{1},s) \bigr]. \end{aligned}$$

This inequality means that the class of functions \(\{A{x}\} \) is equicontinuous.

Therefore by the Arzelà–Ascoli theorem [25] A is compact.

Let \(\{x_{n}\}\subset Q_{r}\), \(x_{n}\rightarrow x\). Then

$$\begin{aligned}& Ax_{n}(t) \\& \quad =a(t) + \int _{0}^{1}f \biggl(t,s,x_{n}(s), \int _{0}^{1}h \bigl(s,\theta ,x_{n}( \theta ) \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr) \,d_{s}g_{1}(t,s), \\& \lim_{n\rightarrow \infty }Ax_{n}(t) \\& \quad =\lim_{n\rightarrow \infty } \biggl(a(t)+ \int _{0}^{1}f \biggl(t,s,x_{n}(s), \int _{0}^{1}h \bigl(s,\theta ,x_{n}( \theta ) \bigr)\,d_{\theta }g_{2}(s,\theta ) \biggr) \,d_{s}g_{1}(t,s) \biggr), \end{aligned}$$

and from assumption (ii) (see [23]) we get

$$\begin{aligned}& \lim_{n\rightarrow \infty } Ax_{n}(t) \\& \quad = a(t) + \int _{0}^{1}\lim_{n\rightarrow \infty } f \biggl(t,s,x_{n}(s), \int _{0}^{1}h \bigl(s,\theta ,x_{n}( \theta ) \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr) \,d_{s}g_{1}(t,s) \\& \quad = a(t) + \int _{0}^{1} f \biggl(t,s,\lim_{n\rightarrow \infty }x_{n}(s), \int _{0}^{1}h \Bigl(s,\theta ,\lim _{n\rightarrow \infty }x_{n}(\theta ) \Bigr)\,d_{ \theta }g_{2}(s, \theta ) \biggr)\,d_{s}g_{1}(t,s) \\& \quad = a(t)+ \int _{0}^{1}f \biggl(t,s,x(s), \int _{0}^{1} h \bigl(s,\theta ,x( \theta ) \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr)\,d_{s}g_{1}(t,s) \\& \quad = Ax(t). \end{aligned}$$

This proves that \(Ax_{n}(t)\rightarrow A x(t)\) and A is continuous.

Now (see [23]) A has at least one fixed point \(x \in Q_{r}\), and (2.1) has at least one solution \(x \in Q_{r}\subset C[0,1]\). □

Uniqueness of the solution

To prove the existence of a unique solution of U-S functional integral equation (2.1), let us replace condition (ii) by

\((\mathrm{ii})^{*}\):
  1. a)

    the function \(f:I\times I\times R \times R \rightarrow R \) is continuous and satisfies the Lipschitz condition

    $$ \bigl\vert f(t,s,x_{1},y_{1})-f(t,s,x_{2},y_{2}) \bigr\vert \leq k_{1} \bigl( \vert x_{1}-x_{2} \vert + \vert y_{1}-y_{2} \vert \bigr). $$
  2. b)

    \(h:I\times I\times R \rightarrow R \) is continuous and satisfies the Lipschitz condition

    $$ \bigl\vert h(t,s,x)-h(t,s,y) \bigr\vert \leq k_{2} \vert x-y \vert . $$
By condition \((\mathrm{ii})^{*}\) we have

$$ \bigl\vert f \bigl(t,s,x(s),y(s) \bigr) \bigr\vert - \bigl\vert f(t,s,0,0) \bigr\vert \leq \bigl\vert f \bigl(t,s,x(s),y(s) \bigr)-f(t,s,0,0) \bigr\vert \leq k_{1} \bigl( \vert x \vert + \vert y \vert \bigr). $$

Then

$$ \bigl\vert f \bigl(t,s,x(s),y(s) \bigr) \bigr\vert \leq k_{1} \bigl( \vert x \vert + \vert y \vert \bigr)+ \bigl\vert f_{1}(t,s,0,0) \bigr\vert , $$

and

$$ \bigl\vert f \bigl(t,s,x(s),y(s) \bigr) \bigr\vert \leq k_{1} \bigl( \vert x \vert + \vert y \vert \bigr)+m_{1}, $$

where \(m_{1}=\sup_{t\times s\in I\times I} \vert f(t,s,0,0) \vert \), and

$$ \bigl\vert h \bigl(t,s,x(s) \bigr) \bigr\vert - \bigl\vert h(t,s,0) \bigr\vert \leq \bigl\vert h \bigl(t,s,x(s) \bigr)-h(t,s,0) \bigr\vert \leq k_{2} \vert x \vert . $$

Then

$$ \bigl\vert h \bigl(t,s,x(s) \bigr) \bigr\vert \leq k_{2} \vert x \vert + \bigl\vert f_{2}(t,s,0) \bigr\vert , $$

and

$$ \bigl\vert h \bigl(t,s,x(s) \bigr) \bigr\vert \leq k_{2} \vert x \vert +m_{2}, $$

where \(m_{2}=\sup_{t\times s\in I\times I} \vert h(t,s,0) \vert \), \(m=\max \{m_{1},m_{2}\}\), and \(k=\max \{k_{1},k_{2}\}\).

Theorem 2.4

Let conditions (i), \((\mathit{ii})^{*}\), (iii), and (iv)(v) be satisfied with \(\mu k+k^{2}\mu ^{2}\leq 1\). Then the functional integral equation (2.1) has unique solution \(x \in C[0,1] \).

Proof

Let \(x_{1}\), \(x_{2}\) be solutions of the integral equation (2.1). Then

$$\begin{aligned}& \bigl\vert x_{1}(t)-x_{2}(t) \bigr\vert \\& \quad = \biggl\vert a(t)+ \int _{0}^{1}f \biggl(t,s,x_{1}(s), \int _{0}^{1}h \bigl(s, \theta ,x_{1}( \theta ) \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr) \,d_{s}g_{1}(t,s) \\& \quad\quad {} - a(t)+ \int _{0}^{1}f \biggl(t,s,x_{2}(s), \int _{0}^{1}h \bigl(s,\theta ,x_{2}( \theta ) \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr) \,d_{s}g_{1}(t,s) \biggr\vert \\& \quad \leq \int _{0}^{1} \biggl\vert f \biggl(t,s,x_{1}(s), \int _{0}^{1}h \bigl(s,\theta ,x_{1}( \theta ) \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr) \\& \quad \quad {}-f \biggl(t,s,x_{2}(s), \int _{0}^{1}h \bigl(s,\theta ,x_{2}( \theta ) \bigr) \,d_{ \theta }g_{2}(s,\theta ) \biggr) \biggr\vert \,d_{s}g_{1}(t,s) \\& \quad \leq \int _{0}^{1}k_{1} \biggl( \bigl\vert x_{1}(s)-x_{2}(s) \bigr\vert + \int _{0}^{1} \bigl\vert \bigl(h \bigl(s, \theta ,x_{1}(\theta ) \bigr)-h \bigl(s,\theta ,x_{2}(\theta ) \bigr) \bigr) \bigr\vert \,d_{\theta }g_{2}(s, \theta ) \biggr) \,d_{s}g_{1}(t,s) \\& \quad \leq \int _{0}^{1}k_{1} \biggl( \bigl\vert x_{1}(s)-x_{2}(s) \bigr\vert + \int _{0}^{1}k_{2} \bigl( \bigl\vert x_{1}( \theta )-x_{2}(\theta ) \bigr\vert \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr)\,d_{s}g_{1}(t,s) \\& \quad \leq \int _{0}^{1}k_{1} \bigl( \bigl\vert x_{1}(s)-x_{2}(s) \bigr\vert +k_{2} \Vert x_{1}-x_{2} \Vert \mu \bigr)\,d_{s}g_{1}(t,s) \\& \quad \leq k \Vert x_{1}-x_{2} \Vert \mu +k^{2} \Vert x_{1}-x_{2} \Vert \mu ^{2}. \end{aligned}$$

Hence we have

$$ \Vert x_{1} -x_{2} \Vert \leq \bigl(\mu k+k^{2}\mu ^{2} \bigr) \Vert x_{1}-x_{2} \Vert $$

and

$$ \bigl(1- \bigl(\mu +k^{2}\mu ^{2} \bigr) \bigr) \Vert x_{1} -x_{2} \Vert \leq 0, $$

which implies

$$ x_{1}(t)=x_{2}(t). $$

 □

Continuous dependence of solution on functions \(g_{i}(t,s)\)

Here we show that the solution of U-S functional integral equation (2.1) continuously depends on the functions \(g_{i}\).

Definition 2.5

The solutions of functional integral equation (2.1) continuously depends on the functions \(g_{i}(t,s)\), \(i=1,2\), if for every \(\epsilon >0\), there exists \(\delta >0 \) such that

$$ \bigl\vert g_{i}(t,s)-g_{i}^{*}(t,s) \bigr\vert \leq \delta \quad \Rightarrow \quad \bigl\Vert x-x^{*} \bigr\Vert \leq \epsilon . $$

Theorem 2.6

Let the assumptions of Theorem 2.4be satisfied. Then the solution of (2.1) depends continuously on functions \(g_{i}(t,s)\), \(i=1,2\).

Proof

Let \(\delta >0\) be such that \(\vert g_{i}(t,s)-g_{i}^{*}(t,s) \vert \leq \delta \) for all \(t \geq 0 \). Then

$$\begin{aligned}& \bigl\vert x(t)-x^{*}(t) \bigr\vert \\& \quad = \biggl\vert a(t)+ \int _{0}^{1}f \biggl(t,s,x(s), \int _{0}^{1}h \bigl(s,\theta ,x( \theta ) \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr)\,d_{s}g_{1}(t,s) \\& \quad \quad {} - a(t)+ \int _{0}^{1}f \biggl(t,s,x^{*}(s), \int _{0}^{1}h \bigl(s,\theta ,x^{*}( \theta ) \bigr) \,d_{\theta }g^{*}_{2}(s,\theta ) \biggr) \,d_{s}g^{*}_{1}(t,s) \biggr\vert \\& \quad \leq \biggl\vert \int _{0}^{1}f \biggl(t,s,x(s), \int _{0}^{1}h \bigl(s,\theta ,x( \theta ) \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr)\,d_{s}g_{1}(t,s) \\& \quad \quad {} - \int _{0}^{1}f \biggl(t,s,x^{*}(s), \int _{0}^{1}h \bigl(s,\theta ,x^{*}( \theta ) \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr) \,d_{s}g_{1}(t,s) \\& \quad \quad {} + \int _{0}^{1}f \biggl(t,s,x^{*}(s), \int _{0}^{1}h \bigl(s,\theta ,x^{*}( \theta ) \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr) \,d_{s}g_{1}(t,s)) \\& \quad \quad {} - \int _{0}^{1}f \biggl(t,s,x^{*}(s), \int _{0}^{1}h \bigl(s,\theta ,x^{*}( \theta ) \bigr) \,d_{\theta }g^{*}_{2}(s,\theta ) \biggr) \,d_{s}g^{*}_{1}(t,s) \biggr\vert \\& \quad \leq \int _{0}^{1} \biggl\vert f \biggl(t,s,x(s), \int _{0}^{1} h \bigl(s, \theta ,x(\theta ) \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr) \\& \quad \quad {} - f \biggl(t,s,x^{*}(s), \int _{0}^{1} h \bigl(s,\theta ,x^{*}( \theta ) \bigr) \,d_{ \theta }g_{2}(s,\theta ) \biggr) \bigl\vert \,d_{s}g_{1}(t,s) \\& \quad\quad {} + \bigr\vert \int _{0}^{1}f \biggl(t,s,x^{*}(s), \int _{0}^{1} h \bigl(s,\theta ,x^{*}( \theta ) \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr) \\& \quad \quad {} - f \biggl(t,s,x^{*}(s), \int _{0}^{1} h \bigl(s,\theta ,x^{*}( \theta ) \bigr) \,d_{ \theta }g^{*}_{2}(s,\theta ) \biggr) \,d_{s}g^{*}_{1}(t,s) \biggr\vert \\& \quad \leq \int _{0}^{1}k_{1} \biggl( \bigl\vert x(s)-x^{*}(s) \bigr\vert \\& \quad \quad {} + \int _{0}^{1} \bigl\vert h \bigl(s,\theta ,x( \theta ) \bigr)-h \bigl(s,\theta ,x^{*}(\theta ) \bigr) \bigr\vert \,d_{ \theta }g_{2}(s,\theta ) \biggr)\,d_{s}g_{1}(t,s) \\& \quad\quad {} + \biggl\vert \int _{0}^{1}f \biggl(t,s,x^{*}(s), \int _{0}^{1}h \bigl(s,\theta ,x^{*}( \theta ) \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr) \,d_{s}g_{1}(t,s)) \\& \quad \quad {} - \int _{0}^{1}f \biggl(t,s,x^{*}(s), \int _{0}^{1}h \bigl(s,\theta ,x^{*}( \theta ) \bigr) \,d_{\theta }g^{*}_{2}(s,\theta ) \biggr) \,d_{s}g_{1}(t,s)) \\& \quad \quad {} + \int _{0}^{1}f \biggl(t,s,x^{*}(s), \int _{0}^{1}h \bigl(s,\theta ,x^{*}( \theta ) \bigr) \,d_{\theta }g^{*}_{2}(s,\theta ) \biggr) \,d_{s}g_{1}(t,s)) \\& \quad \quad {} - \int _{0}^{1}f \biggl(t,s,x^{*}(s), \int _{0}^{1}h \bigl(s,\theta ,x^{*}( \theta ) \bigr) \,d_{\theta }g^{*}_{2}(s,\theta ) \biggr) \,d_{s}g^{*}_{1}(t,s)) \biggr\vert \\& \quad \leq \int _{0}^{1}k \biggl( \bigl\vert x(s)-x^{*}(s) \bigr\vert + \int _{0}^{1}k \bigl\vert x(\theta )-x^{*}( \theta ) \bigr\vert \,d_{\theta }g_{2}(s, \theta ) \biggr)\,d_{s}g_{1}(t,s) \\& \quad \quad {} + \int _{0}^{1} \biggl\vert f \biggl(t,s,x^{*}(s), \int _{0}^{1}h \bigl(s,\theta ,x^{*}( \theta ) \bigr) \,d_{\theta }g_{2}(s,\theta ) \biggr) \\& \quad \quad {} - f \biggl(t,s,x^{*}(s), \int _{0}^{1}h \bigl(s,\theta ,x^{*}( \theta ) \bigr) \,d_{ \theta }g^{*}_{2}(s,\theta ) \biggr) \biggl\vert \,d_{s}g_{1}(t,s)) \\& \quad \quad {} + \int _{0}^{1} \biggr\vert f \biggl(t,s,x^{*}(s), \int _{0}^{1}h \bigl(s,\theta ,x^{*}( \theta ) \bigr) \,d_{\theta }g^{*}_{2}(s,\theta ) \biggr) \biggr\vert \bigl[d_{s}g_{1}(t,s)-d_{s}g^{*}_{1}(t,s) \bigr] \\& \quad \leq \int _{0}^{1}k \biggl( \bigl\vert x(s)-x^{*}(s) \bigr\vert + \int _{0}^{1}k \bigl\vert x(\theta )-x^{*}( \theta ) \bigr\vert \,d_{\theta }g_{2}(s, \theta ) \biggr)\,d_{s}g_{1}(t,s) \\& \quad \quad {} + \int _{0}^{1}k \biggl( \biggl\vert \int _{0}^{1}h \bigl(s,\theta ,x^{*}( \theta ) \bigr) \,d_{ \theta }g_{2}(s,\theta ) - \int _{0}^{1}h \bigl(s,\theta ,x^{*}( \theta ) \bigr) \,d_{ \theta }g^{*}_{2}(s,\theta ) \biggr\vert \biggr)\,d_{s}g_{1}(t,s)) \\& \quad \quad {} + \int _{0}^{1} \biggl\vert f \biggl(t,s,x^{*}(s), \int _{0}^{1}h \bigl(s,\theta ,x^{*}( \theta ) \bigr) \,d_{\theta }g^{*}_{2}(s,\theta ) \biggr) \biggr\vert \bigl[d_{s}g_{1}(t,s)-d_{s}g^{*}_{1}(t,s) \bigr] \\& \quad \leq \int _{0}^{1}k \biggl( \bigl\vert x(s)-x^{*}(s) \bigr\vert + \int _{0}^{1}k \bigl\vert x(\theta )-x^{*}( \theta ) \bigr\vert \,d_{\theta }g_{2}(s, \theta ) \biggr)\,d_{s}g_{1}(t,s) \\& \quad \quad {} + \int _{0}^{1}k \biggl( \int _{0}^{1} \bigl\vert h \bigl(s,\theta ,x^{*}(\theta ) \bigr) \bigr\vert \bigl[ d_{\theta }g_{2}(s, \theta )- d_{\theta }g^{*}_{2}(s,\theta ) \bigr] \biggr) \,d_{s}g_{1}(t,s)) \\& \quad \quad {} + \int _{0}^{1} \biggl[ m+ k \biggl( \bigl\vert x^{*}(s) \bigr\vert + \int _{0}^{1} \bigl\vert h \bigl(s,\theta ,x^{*}( \theta ) \bigr) \bigr\vert \,d_{\theta}g^{*}_{2}(s, \theta ) \biggr) \biggr] \bigl[d_{s}g_{1}(t,s)-d_{s}g^{*}_{1}(t,s) \bigr] \\& \quad \leq \int _{0}^{1}k \biggl( \bigl\vert x(s)-x^{*}(s) \bigr\vert + \int _{0}^{1}k \bigl\vert x(\theta )-x^{*}( \theta ) \bigr\vert \,d_{\theta}g_{2}(s, \theta ) \biggr)\,d_{s}g_{1}(t,s) \\& \quad \quad {} + \int _{0}^{1}k \biggl( \int _{0}^{1} \bigl[m+k \bigl\vert x^{*}( \theta ) \bigr\vert \bigr] \bigl[ d_{\theta }g_{2}(s, \theta )- d_{\theta }g^{*}_{2}(s,\theta ) \bigr] \biggr) \,d_{s}g_{1}(t,s) \\& \quad\quad {} + \int _{0}^{1} \biggl[m+ k \biggl( \bigl\vert x^{*}(s) \bigr\vert + \int _{0}^{1} \bigl[m+k \bigl\vert x^{*}( \theta ) \bigr\vert \bigr] \,d_{\theta}g^{*}_{2}(s, \theta ) \biggr) \biggr] \bigl[d_{s}g_{1}(t,s)-d_{s}g^{*}_{1}(t,s) \bigr] \\& \quad \leq k \mu \bigl\Vert x-x^{*} \bigr\Vert +k^{2}\mu ^{2} \bigl\Vert x-x^{*} \bigr\Vert +k[m+kr]\mu \bigl[ g_{2}(s,1)- g^{*}_{2}(s,1) \bigr] \\& \quad \quad {} + \bigl[m+k[r+m+kr] \bigr]\mu \bigl[ g_{1}(t,1)- g^{*}_{1}(t,1) \bigr]. \end{aligned}$$

Taking the supremum over \(t\in I\), we get

$$\begin{aligned} \bigl\Vert x-x^{*} \bigr\Vert \leq &k \mu \bigl\Vert x-x^{*} \bigr\Vert +k^{2}\mu ^{2} \bigl\Vert x-x^{*} \bigr\Vert +[km+kr] \mu \delta + \bigl[m+k[r+kr+m] \bigr]\mu \delta . \end{aligned}$$

Then

$$\begin{aligned} \bigl\Vert x-x^{*} \bigr\Vert \leq &\frac{(2km+2kr+k^{2}r+m)\mu \delta }{1-(k \mu +k^{2}\mu ^{2})}= \epsilon . \end{aligned}$$

Now we get that the solution of (2.1) continuously depends on the functions \(g_{i}\), \(i=1,2\). □

Existence of solutions II

Now we replace assumptions (ii) a), (vi) by

(\(\mathrm{ii} ^{*}\)):

\(\mathrm{a}^{*}\)):

\(f:[0,1]\times [0,1]\times R \times R \rightarrow R \) is a function, and there exist two continuous functions \(m_{1},k_{1}:[0,1]\times [0,1]\rightarrow R \) such that

$$ \bigl\vert f(t,s,x,y) \bigr\vert \leq m_{1}(t,s)+k_{1}(t,s) \vert x \vert \cdot \vert y \vert . $$

(\(\mathrm{vi} ^{*}\)):

There exists a positive root l of the algebraic equation

$$ \mu ^{2}k^{2} l^{2}+ \bigl(k\mu ^{2}m-1 \bigr) l+(a+m \mu )=0. $$

Theorem 3.1

Let the assumptions of Theorem 2.3be satisfied with (iia) and (vi) replaced by (\(ii^{*}\)\(a^{*})\) and (\(vi^{*}\)), respectively. Then equation (2.1) has at least one solution \(x\in C[0,1]\).

Proof

Define the operator \(A^{*}\) by

$$ A^{*} x(t)= a(t)+ \int _{0}^{1}f \biggl(t,s,x(s), \int _{0}^{1}h \bigl(s, \theta ,x(\theta ) \bigr) \,d_{\theta}g_{2}(s,\theta ) \biggr)\,d_{s}g_{1}(t,s), \quad t\in [0,1], $$

and define the set

$$ Q_{l}= \bigl\{ x \in R: \vert x \vert \leq l \bigr\} \subseteq C \bigl([0,1] \bigr), $$

where l is a positive root of the algebraic equation

$$ \mu ^{2}k^{2} l^{2}+ \bigl(k\mu ^{2}m-1 \bigr) l+(a+m \mu )=0. $$

It is clear that \(Q_{l}\) is a nonempty, bounded, closed, and convex set.

Now let \(x\in Q_{l} \). Then

$$\begin{aligned}& \bigl\vert A^{*} x(t) \bigr\vert \\& \quad = \biggl\vert a(t)+ \int _{0}^{1}f \biggl(t,s,x(s), \int _{0}^{1}h \bigl(s,\theta ,x( \theta ) \bigr) \,d_{\theta}g_{2}(s,\theta ) \biggr)\,d_{s}g_{1}(t,s) \biggr\vert \\& \quad \leq a+ \int _{0}^{1} \biggl\vert f \biggl(t,s,x(s), \int _{0}^{1}h \bigl(s,\theta ,x( \theta ) \bigr) \,d_{\theta}g_{2}(s,\theta ) \biggr) \biggr\vert \,d_{s}g_{1}(t,s) \\& \quad \leq a+ \int _{0}^{1} \biggl(m_{1}(t,s)+k_{1}(t,s) \biggl( \bigl\vert x(t) \bigr\vert \cdot \biggl\vert \int _{0}^{1}h \bigl(s,\theta ,x(\theta ) \bigr) \,d_{\theta}g_{2}(s,\theta ) \biggr) \biggr) \biggr\vert \,d_{s}g_{1}(t,s) \\& \quad \leq a+ \int _{0}^{1} (m_{1}(t,s)+k_{1}(t,s) ( \bigl\vert x(t) \bigr\vert \cdot \int _{0}^{1} \bigl(m_{2}(s, \theta )+k_{2}(s,\theta ) \bigl\vert x(\theta ) \bigr\vert \,d_{\theta}g_{2}(s,\theta ) \bigr)\,d_{s}g_{1}(t,s) \\& \quad \leq a+ \int _{0}^{1}(m_{1}(t,s)+k_{1}(t,s) \bigl( \bigl\vert x(t) \bigr\vert \cdot (m+kl) \mu \bigr) \,d_{s}g_{1}(t,s) \\& \quad \leq a+ \bigl(m+k \bigl(l\cdot (m+k l) \mu \bigr) \bigr)\mu \leq l. \end{aligned}$$

This proves that \(A^{*}: Q_{l} \rightarrow Q_{l} \) and the class \(\{A^{*} x\}\) is uniformly bounded on \(Q_{l}\).

Now for \(x\in Q_{r} \) and \(y(s)=\int _{0}^{1}h(s,\theta ,x(\theta )) \,d_{\theta}g_{2}(s,\theta )\), define the set

$$\begin{aligned} \theta (\delta )={}&\sup \bigl\{ \bigl\vert f(t_{2},s,x,y)-f(t_{1},s,x, y) \bigr\vert : t_{1},t_{2}, s \in [0,1], t_{1}< t_{2}, \\ & \vert t_{2}-t_{1} \vert < \delta , \vert x \vert \leq l, \vert y \vert \leq l \bigr\} . \end{aligned}$$

Then from the uniform continuity of the function \(f: [0,1]\times [0,1]\times Q_{l}\times Q_{l} \rightarrow R \) and assumption (\(\mathrm{ii} ^{*}\)) we deduce that \(\theta (\delta ) \rightarrow 0 \) as \(\delta \rightarrow 0\), independently of \(x \in Q_{l}\).

Now let \(t_{2}, t_{1} \in [0,1] \) be such that \(\vert t_{2}-t_{1} \vert <\delta \). Then we have

$$\begin{aligned}& \bigl\vert A^{*}x(t_{2})- A^{*}x(t_{1}) \bigr\vert \\& \quad = \biggl\vert a(t_{2})+ \int _{0}^{1}f \biggl( t_{2},s,x(s), \int _{0}^{1}h \bigl(s, \theta ,x(\theta ) \bigr) \,d_{\theta}g_{2}(s,\theta ) \biggr)\,d_{s}g_{1}(t_{2},s) \\& \quad \quad {} - a(t_{1})- \int _{0}^{1}f \biggl(t_{1},s,x(s), \int _{0}^{1}h \bigl(s, \theta ,x(\theta ) \bigr) \,d_{\theta}g_{2}(s,\theta ) \biggr)\,d_{s}g_{1}(t_{1},s) \biggr\vert \\& \quad \leq \bigl\vert a(t_{2})- a(t_{1}) \bigr\vert + \biggl\vert \int _{0}^{1}f \biggl(t_{2},s,x(s), \int _{0}^{1}h \bigl(s,\theta ,x(\theta ) \bigr) \,d_{\theta}g_{2}(s,\theta ) \biggr)\,d_{s}g_{1}(t_{2},s) \\& \quad \quad {} - \int _{0}^{1}f \biggl(t_{1},s,x(s), \int _{0}^{1}h \bigl(s,\theta ,x( \theta ) \bigr) \,d_{\theta}g_{2}(s,\theta ) \biggr)\,d_{s}g_{1}(t_{1},s) \biggr\vert \\& \quad \leq \bigl\vert a(t_{2})- a(t_{1}) \bigr\vert \\& \quad \quad {} + \biggl\vert \int _{0}^{1}f \bigl(t_{2},s,x(s),y(s) \bigr)\,d_{s}g_{1}(t_{2},s)- \int _{0}^{1}f \bigl(t_{1},s,x(s),y(s) \bigr)\,d_{s}g_{1}(t_{2},s) \\& \quad \quad {} + \int _{0}^{1}f \bigl(t_{1},s,x(s),y(s) \bigr)\,d_{s}g_{1}(t_{2},s)- \int _{0}^{1}f \bigl(t_{1},s,x(s),y(s) \bigr)\,d_{s}g_{1}(t_{1},s) \biggr\vert \\& \quad \leq \bigl\vert a(t_{2})- a(t_{1}) \bigr\vert + \int _{0}^{1} \bigl\vert \bigl(f \bigl(t_{2},s,x(s),y(s) \bigr)- f \bigl(t_{1},s,x(s),y(s) \bigr) \bigr) \bigr\vert \,d_{s}g_{1}(t_{2},s) \\& \quad \quad {} + \int _{0}^{1} \bigl\vert f \bigl(t_{1},s,x(s),y(s) \bigr) \bigr\vert \,d_{s} \bigl[g_{1}(t_{2},s)-g_{1}(t_{1},s) \bigr] \\& \quad \leq \bigl\vert a(t_{2})- a(t_{1}) \bigr\vert \\& \quad \quad {} + \int _{0}^{1}\theta (\delta )\,d_{s}g_{1}(t_{2},s) + \int _{0}^{1} \bigl(m_{1}(t, s)+k_{1}(t, s) \bigl( \vert x \vert \cdot \vert y \vert \bigr) \bigr)\,d_{s} \bigl[g_{1}(t_{2},s)-g_{1}(t_{1},s) \bigr]. \end{aligned}$$

This inequality means that the class of functions \(\{A^{*}{x}\} \) is equicontinuous. Therefore \(A^{*} \) is compact by the Arzelà–Ascoli theorem [25].

Let \(\{x_{n}\}\subset Q_{l}\), \(x_{n}\rightarrow x\). Then

$$\begin{aligned}& A^{*}x_{n}(t) =a(t)+ \int _{0}^{1}f \biggl(t,s,x_{n}(s), \int _{0}^{1}h \bigl(s, \theta ,x_{n}( \theta ) \bigr) \,d_{\theta}g_{2}(s,\theta ) \biggr) \,d_{s}g_{1}(t,s), \\& \begin{aligned} \lim_{n\rightarrow \infty } A^{*}x_{n}(t)&= \lim _{n\rightarrow \infty } \biggl(a(t) \\ &\quad {} + \int _{0}^{1}f \biggl(t,s,x_{n}(s), \int _{0}^{1}h \bigl(s,\theta ,x_{n}( \theta ) \bigr) \,d_{\theta}g_{2}(s,\theta ) \biggr) \,d_{s}g_{1}(t,s) \biggr), \end{aligned} \end{aligned}$$

and by assumption (\(\mathrm{ii} ^{*}\)) (see [23]) we get

$$\begin{aligned}& \lim_{n\rightarrow \infty } A^{*}x_{n}(t) \\& \quad = a(t)+ \int _{0}^{1}\lim_{n\rightarrow \infty } f \biggl(t,s,x_{n}(s), \int _{0}^{1}h \bigl(s,\theta ,x_{n}( \theta ) \bigr)\,d_{\theta}g_{2}(s,\theta ) \biggr) \,d_{s}g_{1}(t,s) \\& \quad = a(t)+ \int _{0}^{1} f \biggl(t,s,\lim_{n\rightarrow \infty }x_{n}(s), \int _{0}^{1}h \Bigl(s,\theta ,\lim _{n\rightarrow \infty }x_{n}(\theta ) \Bigr)\,d_{ \theta }g_{2}(s, \theta ) \biggr)\,d_{s}g_{1}(t,s) \\& \quad = a(t)+ \int _{0}^{1}f \biggl(t,s,x(s), \int _{0}^{1} h \bigl(s,\theta ,x( \theta ) \bigr) \,d_{\theta}g_{2}(s,\theta ) \biggr)\,d_{s}g_{1}(t,s) = A^{*} x(t). \end{aligned}$$

This proves that \(A^{*}x_{n}(t)\rightarrow A^{*} x(t)\) and \(A^{*}\) is continuous. So (see [23]) \(A^{*}\) has at least one fixed point \(x \in Q_{r}\), and (2.1) has at least one solution \(x \in Q_{l}\subset C([0,1])\). □

Application

Let in equation (2.1), \(h(t,s,x(s))=b_{2}(t)x(s)\),

$$\begin{aligned} g_{1}(t,s) =& \textstyle\begin{cases} t \ln \frac{t+s}{t} & \text{for }t\in (0,1], s\in I, \\ 0 & \text{for }t=0, s\in I, \end{cases}\displaystyle \end{aligned}$$

and

$$\begin{aligned} g_{2}(s,\theta ) =& \textstyle\begin{cases} s \ln \frac{s+\theta }{s} & \text{for }s\in (0,1], \theta \in I, \\ 0 & \text{for }s=0, \theta \in I. \end{cases}\displaystyle \end{aligned}$$

Then \(g_{1}\), \(g_{2}\) satisfy our assumptions (iii)–(v), and we obtain the nonlinear Chandrasekhar functional integral equation

$$ x(t)=a(t)+ \int _{0}^{1}\frac{t}{t+s}f \biggl(t,s,x(s), \int _{0}^{1} \frac{s}{s+\theta }b_{2}(s)x( \theta )\,d\theta \biggr)\,ds. $$
(3.1)

Let, in equation (3.1), \(f(t,s,x(s),y(s))=b_{1}(s)x(s)\cdot y(s)\), where

$$ y(s)= \int _{0}^{1}\frac{s}{s+\theta }b_{2}(s)x( \theta )\,d\theta . $$

Then we obtain the Chandrasekhar quadratic functional integral equation of the form

$$ x(t)=a(t)+ \int _{0}^{1}\frac{t}{t+s}b_{1}(s)x(s) \cdot \biggl( \int _{0}^{1} \frac{s}{s+\theta }b_{2}(s)x( \theta )\,d\theta \biggr)\,ds. $$
(3.2)

Now, under the assumptions of Theorem 3.1, the Chandrasekhar quadratic functional integral equation (3.2) has at least one solution \(x\in C[0,1]\).

Example

Consider the following Chandrasekhar quadratic functional integral equation:

$$ x(t)=\frac{e^{-t}}{9+e^{t}}+ \int _{0}^{1}\frac{t}{t+s}\cdot \frac{2\cos (s) x(s)}{7e^{2s} (1+\cos ^{2} (s))}\cdot \biggl( \int _{0}^{1} \frac{s}{s+\theta }\cdot \frac{\sin (s)}{4(1+\sin ^{2}(s))} x(\theta )\,d \theta \biggr)\,ds. $$
(3.3)

First, note that equation (3.3) is a particular case of equation (3.2) if we put

$$\begin{aligned} &a(t)=\frac{e^{-t}}{9+e^{t}}, \\ &h \bigl(t,s,x(s) \bigr)=\frac{\sin (t)}{4(1+\sin ^{2}(t))} x(s), \\ &f \bigl(t,s,x(s),y(s) \bigr)=\frac{2\cos (s) x(s)}{7e^{2s} (1+\cos ^{2} (s))} \cdot y(s), \\ &y(s)= \int _{0}^{1}\frac{s}{s+\theta } \frac{\sin (s)}{4(1+\sin ^{2}(s))}x( \theta )\,d\theta , \end{aligned}$$

\(b_{1}(s)=\frac{2\cos (s) }{7e^{2s} (1+\cos ^{2} (s))}\), \(b_{2}(s)=\frac{\sin (s)}{4(1+\sin ^{2}(s))}\), with \(k_{1}=\frac{2}{7}\) and \(k_{2}=\frac{1}{4}\).

Thus conditions (i), (\(\mathrm{ii} ^{*}\)) and (iii) are satisfied with \(a=\frac{1}{10}\), \(k=\frac{1}{4}\), and \(m=0\). By all facts established above, we deduce that condition (\(\mathrm{vi} ^{*}\)) of the form

$$ \mu ^{2}k^{2} l^{2}+ \bigl(k\mu ^{2} m-1 \bigr) l+(a+m \mu )=0 $$

has a positive solution l. For example, if \(l \thickapprox 0.1\) or \(l \thickapprox 33\), then assumption (\(\mathrm{vi} ^{*}\)) will be satisfied if we choose one of this values.

As all the conditions of Theorem 3.1 are satisfied, equation (3.3) has at least one solution \(x\in C[0,1]\).

Set-valued problem

Consider the U-S nonlinear functional integral inclusion (1.1),

$$ x(t)\in a(t)+ \int _{0}^{1}F \biggl(t,s,x(s), \int _{0}^{1}h \bigl(s,\theta ,x( \theta ) \bigr) \,d_{\theta}g_{2}(s,\theta ) \biggr)\,d_{s}g_{1}(t,s), \quad t\in I, $$

under the following assumptions:

(i):

\(a: [0,1]\rightarrow [0,1] \) is a continuous function.

\((\mathrm{ii})^{***}\):
  1. (a)

    \(F : [0,1] \times [0,1] \times R \times R \rightarrow P(R) \), is a Lipschitzian set-valued map with a nonempty compact convex subset of \(2^{R}\), with a Lipschitz constant \(k_{1} > 0\):

    $$ \bigl\Vert F(t, s,x_{1},y_{1}) - F(t,s,x_{2},y_{2}) \bigr\Vert \leq k_{1} \bigl( \vert x_{1}-x_{2} \vert + \vert y_{1}-y_{2} \vert \bigr). $$

    Remark. From this assumption and Theorem 1 from [2, Sect. 9, Chap. 1] on the existence of Lipschitzian selection we deduce that the set of Lipschitz selections of F is not empty and there exists \(f\in F\) such that

    $$ \bigl\vert f(t,s,x_{1},y_{1})-f(t,s,x_{2},y_{2}) \bigr\vert \leq k_{1} \bigl( \vert x_{1}-x_{2} \vert + \vert y_{1}-y_{2} \vert \bigr). $$
  2. (b)

    \(h:[0,1]\times [0,1]\times R \rightarrow R \) is a continuous function such that

    $$ \bigl\vert h(t,s,x) \bigr\vert \leq m_{2}(t,s)+k_{2}(t,s) \vert x \vert . $$
  3. (c)

    \(k=\sup_{(t, s)\in [0,1]\times [0,1]} k_{i}(t,s)\) and \(m=\sup_{(t, s)\in [0,1]\times [0,1]} m_{i}(t,s)\).

(iii):

\(g_{i}:[0,1]\times R \rightarrow R\), \(i=1,2\), are continuous with

$$ \mu =\max \bigl\{ \sup \bigl\vert g_{i} \bigl(t,\varphi (t) \bigr) \bigr\vert +\sup \bigl\vert g_{i}(t,0) \bigr\vert \text{ on } [0,1] \bigr\} . $$
(iv):

For all \(t_{1},t_{2}\in [0,1]\), \(t_{1}< t_{2}\), the functions \(s\rightarrow g_{i}(t_{2},s)-g_{i}(t_{1},s)\) are nondecreasing on \([0,1]\).

(v):

\(g_{i}(0,s)= 0\) for any \(s \in [0,1]\).

(vi):

\(k\mu +k^{2}\mu ^{2}<1\).

Existence of solution

Theorem 4.1

Let assumptions \((i)\)\((ii)^{***}\), and \((iv)\)\((vi)\) be satisfied. Then (1.1) has at least one solution \(x\in C[0,1]\).

Proof

By assumption \((\mathrm{ii})^{***}\)-(a) it is clear that the set of Lipschitz selection of F is nonempty. So, the solution of the single-valued (2.1) where \(f \in S_{F}\) is a solution to (1.1).

Note that the Lipschitz selection \(f: [0,1]\times [0,1]\times R \times R \rightarrow R\) satisfies

$$ \bigl\vert f(t,s,x_{1},y_{1})-f(t,s,x_{2},y_{2}) \bigr\vert \leq k_{1} \bigl( \vert x_{1}-x_{2} \vert + \vert y_{1}-y_{2} \vert \bigr). $$

From this condition with \(m_{1}=\sup_{(t,s) \in I \times I} \vert f(t,s,0,0) \vert \) we have

$$ \bigl\vert f \bigl(t,s,x(s),y(s) \bigr) \bigr\vert - \bigl\vert f(t,s,0,0) \bigr\vert \leq \bigl\vert f \bigl(t,s,x(s),y(s) \bigr)-f(t,s,0,0) \bigr\vert \leq k_{1} \bigl( \vert x \vert + \vert y \vert \bigr). $$

Then

$$ \bigl\vert f \bigl(t,s,x(s),y(s) \bigr) \bigr\vert \leq k_{1} \bigl( \vert x \vert + \vert y \vert \bigr)+ \bigl\vert f(t,s,0,0) \bigr\vert , $$

and

$$ \bigl\vert f \bigl(t,s,x(s),y(s) \bigr) \bigr\vert \leq k_{1} \bigl( \vert x \vert + \vert y \vert \bigr)+m_{1}, $$

that is, assumption (ii) of Theorem 2.3 is satisfied. So, all conditions of Theorem 2.3 hold.

Note that if \(x \in C(I,R)\) is a solution of (2.1), then x is a solution to (1.1). □

Continuous dependence on the set of selection \(S_{F}\)

Here we study the continuous dependence on the set \(S_{F}\) of all selections of the set-valued function F.

Definition 4.2

The solution of (1.1) continuously depends on the set \(S_{F}\) if for all \(\epsilon >0\), there exists \(\delta >0 \) such that if

$$\begin{aligned} \bigl\vert f(t,s,x,y)-f^{*}(t,s,x,y) \bigr\vert < &\delta , \quad f, f^{*} \in S_{F} , t\in [0,1], \end{aligned}$$

then \(\Vert x - x^{*} \Vert < \epsilon \).

Now we have the following theorem.

Theorem 4.3

Let the assumptions of Theorem 4.1be satisfied with

$$ \bigl\vert h(t,s,x)-h(t,s,y) \bigr\vert \leq k_{2} \vert x-y \vert . $$

Then the solution of (1.1) continuously depends on the set \(S_{F}\) of all Lipschitzian selections of F.

Proof

For two solutions \(x(t)\) and \(x^{*}(t)\) of (1.1) corresponding to two selections \(f, f^{*} \in S_{F}\), we have

$$\begin{aligned}& \bigl\vert x(t)-x^{*}(t) \bigr\vert \\& \quad = \biggl\vert a(t)+ \int _{0}^{1}f \biggl(t,s,x(s), \int _{0}^{1}f \bigl(s, \theta ,x(\theta ) \bigr) \,d_{\theta}g_{2}(s,\theta ) \biggr)\,d_{s}g_{1}(t,s) \\& \quad \quad {} - a(t)+ \int _{0}^{1}f^{*} \biggl(t,s,x^{*}(s), \int _{0}^{1}h \bigl(s, \theta ,x^{*}( \theta ) \bigr) \,d_{\theta}g_{2}(s,\theta ) \biggr) ) \,d_{s}g_{1}(t,s) \biggr\vert \\& \quad \leq \int _{0}^{1} \biggl\vert f \biggl(t,s,x(s), \int _{0}^{1} h \bigl(s, \theta ,x(\theta ) \bigr) \,d_{\theta}g_{2}(s,\theta ) \biggr) \\& \quad \quad {} - f^{*} \biggl(t,s,x^{*}(s), \int _{0}^{1}h \bigl(s,\theta ,x^{*}( \theta ) \bigr)\,d_{ \theta }g_{2}(s,\theta ) \biggr) ) \biggr\vert \,d_{s} g_{1}(t,s) \\& \quad \leq \int _{0}^{1} \biggl\vert f \biggl(t,s,x(s), \int _{0}^{1} h \bigl(s, \theta ,x(\theta ) \bigr) \,d_{\theta}g_{2}(s,\theta ) \biggr) \\& \quad \quad {} - f \biggl(t,s,x^{*}(s), \int _{0}^{1} h \bigl(s,\theta ,x^{*}( \theta ) \bigr)\,d_{ \theta }g_{2}(s,\theta ) \biggr) \biggl\vert \,d_{s}g_{1}(t,s) \\& \quad \quad {} + \int _{0}^{1} \biggr\vert f \biggl(t,s,x^{*}(s), \int _{0}^{1} h \bigl(s, \theta ,x^{*}( \theta ) \bigr)\,d_{\theta}g_{2}(s,\theta ) \biggr) \\& \quad \quad {} - f^{*} \biggl(t,s,x^{*}(s), \int _{0}^{1} h \bigl(s,\theta ,x^{*}( \theta ) \bigr)\,d_{ \theta }g_{2}(s,\theta ) \biggr) \biggr\vert \,d_{s}g_{1}(t,s) \\& \quad \leq \int _{0}^{1} \biggl\vert f \biggl(t,s,x(s), \int _{0}^{1} h \bigl(s,\theta ,x( \theta ) \bigr) \,d_{\theta}g_{2}(s,\theta ) \biggr) \\& \quad \quad {} - f \biggl(t,s,x^{*}(s), \int _{0}^{1}h \bigl(s,\theta ,x^{*}( \theta ) \bigr)\,d_{\theta}g_{2}(s, \theta ) \biggr) \biggr\vert \,d_{s}g_{1}(t,s) + \delta \int _{0}^{1} \,d_{s}g_{1}(t,s) \\& \quad \leq \int _{0}^{1} \biggl\vert f \biggl(t,s,x(s), \int _{0}^{1} h \bigl(s,\theta ,x( \theta ) \bigr) \,d_{\theta}g_{2}(s,\theta ) \biggr) \\& \quad \quad {} - f \biggl(t,s,x^{*}(s), \int _{0}^{1}h \bigl(s,\theta ,x(\theta ) \bigr) \,d_{\theta}g_{2}(s, \theta ) \biggr) \biggr\vert \,d_{s}g_{1}(t,s) \\& \quad \quad {} + \int _{0}^{1} \biggl\vert f \biggl(t,s,x^{*}(s), \int _{0}^{1}h \bigl(s,\theta ,x( \theta ) \bigr) \,d_{\theta}g_{2}(s,\theta ) \biggr) \\& \quad \quad {} - f \biggl(t,s,x^{*}(s), \int _{0}^{1}h \bigl(s,\theta ,x^{*}( \theta ) \bigr)\,d_{\theta}g_{2}(s, \theta ) \biggr) \biggr\vert \,d_{s}g_{1}(t,s) + \delta \int _{0}^{1} \,d_{s}g_{1}(t,s) \\& \quad \leq \int _{0}^{1}k_{1} \biggl( \bigl\vert x(s)-x^{*}(s) \bigr\vert + \int _{0}^{1} \bigl\vert h \bigl(s, \theta ,x( \theta ) \bigr) -h \bigl(s,\theta ,x^{*}(\theta ) \bigr) \bigr\vert \,d_{\theta}g_{2}(s, \theta ) \biggr) \,d_{s}g_{1}(t,s) \\& \quad \quad {} + \delta \int _{0}^{1} \,d_{s}g_{1}(t,s) \\& \quad \leq \int _{0}^{1} k_{1} \biggl( \bigl\vert x(s)-x^{*}(s) \bigr\vert + \int _{0}^{1} k_{2} \bigl\vert x( \theta )-x^{*}(\theta ) \bigr\vert \,d_{\theta}g_{2}(s, \theta ) \biggr) \,d_{s}g_{1}(t,s) \\& \quad \quad {} + \delta \int _{0}^{1} \,d_{s}g_{1}(t,s). \end{aligned}$$

Now, taking the supremum over \(t\in I\), we get

$$\begin{aligned} \bigl\Vert x-x^{*} \bigr\Vert \leq & k\mu \bigl\Vert x-x^{*} \bigr\Vert + k^{2}\mu ^{2} \bigl\Vert x-x^{*} \bigr\Vert + \delta \mu . \end{aligned}$$

Hence

$$\begin{aligned} \bigl\Vert x-x^{*} \bigr\Vert \leq \frac{\delta \mu }{1-(k\mu + k^{2}\mu ^{2})}=\epsilon . \end{aligned}$$

Thus from last inequality we get

$$\begin{aligned} \bigl\Vert x-x^{*} \bigr\Vert \leq & \epsilon . \end{aligned}$$

This proves the continuous dependence of the solution on the set \(S_{F}\). □

Set-valued Chandrasekhar nonlinear quadratic functional integral inclusion

Now, as an application of the nonlinear set-valued functional integral equations of U-S type (1.1), we have the following. Let the functions \(g_{i} \) be defined by

$$\begin{aligned} g_{1}(t,s) =& \textstyle\begin{cases} t \ln \frac{t+s}{t} & \text{for }t\in (0,1], s\in I, \\ 0 & \text{for }t=0, s\in I, \end{cases}\displaystyle \end{aligned}$$

and

$$\begin{aligned} g_{2}(s,\theta ) =& \textstyle\begin{cases} s \ln \frac{s+\theta }{s} & \text{for }s\in (0,1], \theta \in I, \\ 0 & \text{for }s=0, \theta \in I. \end{cases}\displaystyle \end{aligned}$$

Let, in (1.1), \(h(t,s,x(s))=b_{2}(s) x(s)\) and \(F (t,s,x(s),y(s) )=F (b_{1}(s) x(s),y(s) )\), where

$$ y(s)= \int _{0}^{s}\frac{s}{s+\theta }b_{2}(s)x( \theta )\,d\theta . $$

Further, since the functions \(g_{i}\) satisfy assumptions (iii)–(v) (see [6]), we obtain the nonlinear Chandrasekhar functional integral inclusion

$$ x(t)\in a(t)+ \int _{0}^{1} \frac{t}{t+s}F \biggl(b_{1}(s)x(s), \int _{0}^{1} \frac{s}{s+\theta } b_{2}(s)x( \theta )\,d\theta \biggr)\,ds, \quad t\in [0,1]. $$
(4.1)

Now we can state the following existence result for (4.1).

Theorem 4.4

Under the assumptions of Theorem 4.1, inclusion (4.1) has at least one continuous solution \(x \in C[0,1]\).

Example

Consider the following nonlinear Chandrasekhar functional integral inclusion:

$$ x(t)\in te^{-4t}+ \int _{0}^{1} \frac{t}{t+s} \frac{\sqrt{\pi } e^{-2t}x(s)}{\pi +e^{t}} \int _{0}^{1} \frac{s}{s+\theta } \frac{\sqrt{s}}{e^{s+1} }x( \theta )\,d\theta \,ds ,\quad t\in [0,1]. $$
(4.2)

Note that this inclusion is a particular case of inclusion (4.1) if we choose \(F:[0,1]\times \mathbb{R}\to 2^{\mathbb{R}^{+}}\) in (4.2) as follows:

$$ F \bigl(b_{1}(s)x(s),y(s) \bigr)= \biggl[0,\frac{s}{s^{2}+1}x(s) \int _{0}^{1} \frac{s}{s+\theta } \frac{\sqrt{s}}{e^{s+1} } x(\theta ) \,d\theta \,ds \biggr]. $$

Further, note that now the terms involved in (4.1) have the form

$$ a(t)= te^{-4t}, \quad\quad y(s)= \int _{0}^{s}\frac{s}{s+\theta } \frac{1}{{s^{2}+1}}x( \theta )\,d\theta , \quad\quad h \bigl(t,s,x(s) \bigr)= \frac{\sqrt{s}}{e^{s+1}} x( \theta ), $$

with \(b_{1}(s)=\frac{1}{{s^{2}+1}}\) and \(b_{2}(s)=\frac{\sqrt{s}}{e^{s+1}}\).

Let \(f:[0,1]\times {R}\to {R}\) be a continuous map. Note that if \(f \in S_{F}\), then we have

$$ \bigl\vert f \bigl(b_{1}(s)x_{1}(s),y_{1}(s) \bigr)-f \bigl(b_{1}(s)x_{2}(s),y_{2}(s) \bigr) \bigr\vert \leq \frac{\sqrt{\pi }}{e^{2} (\pi +1 )} \vert x_{1}-x_{2} \vert $$

and

$$ \bigl\vert h \bigl(t,s,x_{1}(t) \bigr)-h \bigl(t,s,x_{2}(t) \bigr) \bigr\vert \leq \frac{1}{e^{2}} \vert x_{1}-x_{2} \vert . $$

Thus conditions (i) and \((\mathrm{ii})^{*}\) are satisfied with \(a=e\), \(k_{1}=\frac{\sqrt{\pi }}{e^{2} (\pi +1 )}\), and \(k_{2}=\frac{1}{e^{2}}\).

Moreover, we have

$$ k \mu +k^{2} \mu ^{2}\thickapprox 0.102607< 1. $$

This shows that assumption (vii) is satisfied. So, as all the conditions of Theorem 4.4 are satisfied, inclusion (4.2) has at least one solution \(x \in C[0,1]\).

Availability of data and materials

Not applicable.

References

  1. 1.

    Argyros, I.K.: Quadratic equations and applications to Chandrasekhar’s and related equations. Bull. Aust. Math. Soc. 32(2), 275–292 (1985)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Aubin, J.P., Cellina, A.: Differential Inclusions: Set-Valued Maps and Viability Theory, vol. 264. Springer, Berlin (2012)

    Google Scholar 

  3. 3.

    Banaś, J.: Some properties of Urysohn–Stieltjes integral operators. Int. J. Math. Math. Sci. 21(1), 79–88 (1998)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Banaś, J., Lecko, M., El-Sayed, W.G.: Existence theorems for some quadratic integral equations. J. Math. Anal. Appl. 222(1), 276–285 (1998)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Banaś, J., Rodriguez, J.R., Sadarangani, K.: On a class of Urysohn–Stieltjes quadratic integral equations and their applications. J. Comput. Appl. Math. 113, 35–50 (2000)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Banaś, J., Zajac, T.: A new approach to the theory of functional integral equations of fractional order. J. Math. Anal. Appl. 375(2), 375–387 (2011)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Busbridge, W.: On solutions of Chandrasekhar’s integral equation. Trans. Am. Math. Soc. 105(1), 112–117 (1962)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Caballero, J., Mingarella, A.B., Sadarangani, K.: Existence of solutions of an integral equation of Chandrasekhar type in the theory of radiative transfer. Electron. J. Differ. Equ. 2006, 57 (2006)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Cahlon, B.: Existence theorems for an integral equation of the Chandrasekhar H-equation with perturbation. J. Math. Anal. Appl. 83(1), 159–171 (1981)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Cellina, A., Solimini, S.: Continuous extension of selection. Bull. Pol. Acad. Sci., Math. 35(9), 12–18 (1978)

    MathSciNet  Google Scholar 

  11. 11.

    El-Sayed, A.M.A., Al-Fadel, M.M.A.: Existence of solution for a coupled system of Urysohn–Stieltjes functional integral equations. Tbil. Math. J. 11(1), 117–125 (2018)

    MathSciNet  Article  Google Scholar 

  12. 12.

    El-Sayed, A.M.A., Al-Fadel, M.M.A.: On the weak solutions of the Urysohn–Stieltjes functional integral equations. Int. J. Appl. Math. 31(2), 263–277 (2018)

    MathSciNet  Google Scholar 

  13. 13.

    El-Sayed, A.M.A., Al-Fadel, M.M.A.: Solvability of Urysohn–Stieltjes integral equation in reflexive Banach space. Electron. J. Math. Anal. Appl. 6(2), 44–50 (2018)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    El-Sayed, A.M.A., Al-Fadel, M.M.A.: Weak solutions of a coupled system of Urysohn–Stieltjes functional (delayed) integral equations. Complexity 2018(2), Article ID 8714694 (2018)

    MATH  Google Scholar 

  15. 15.

    El-Sayed, A.M.A., Al-Fadel, M.M.A.: On a coupled system of Urysohn–Stieltjes integral equations in reflexive Banach space. Differ. Equ. Control Process. 1(2) (2018)

  16. 16.

    El-Sayed, A.M.A., Al-Issa, S.M.: On the existence of solutions of a set-valued functional integral equation of Volterra–Stieltjes type and some applications. Adv. Differ. Equ. 2020(1), 59 (2020)

    MathSciNet  Article  Google Scholar 

  17. 17.

    El-Sayed, A.M.A., Al-Issa, S.M.: On a set-valued functional integral equation of Volterra–Stieltjes type. J. Math. Comput. Sci. 21(4), 273–285 (2020)

    Article  Google Scholar 

  18. 18.

    El-Sayed, A.M.A., Ibrahim, W.G., Mowla, A.A.H.: Weak solutions of fractional order differential equations via Volterra–Stieltjes integral operator. J. Math. Appl. 40, 85–96 (2017)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    El-Sayed, A.M.A., Omar, Y.M.Y.: On the solvability of a delay Volterra–Stieltjes integral equation. Int. J. Differ. Equ. Appl. 18(1), 49–62 (2019)

    Google Scholar 

  20. 20.

    El-Sayed, A.M.A., Omar, Y.M.Y.: On the solutions of a delay functional integral equation of Volterra–Stieltjes type. Int. J. Appl. Comput. Math. 6(8), 1–15 (2020)

    MathSciNet  Google Scholar 

  21. 21.

    El-Sayed, A.M.A., Omar, Y.M.Y.: P-chandrasekhar integral equation. Adv. Math. Sci. J. 9(12), 10305–10311 (2020)

    Article  Google Scholar 

  22. 22.

    El-Sayed, A.M.A., Omar, Y.M.Y.: Chandrasekhar quadratic and cubic integral equations via Volterra–Stieltjes quadratic integral equation. Demonstr. Math. 9(12) (2021, to appear)

  23. 23.

    Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory, vol. 28. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  24. 24.

    Hashem, H., Alhejelan, A.: Solvability of Chandrasekhar’s quadratic integral equations in Banach algebra. Appl. Math. 8, 846–856 (2017)

    Article  Google Scholar 

  25. 25.

    Kolmogorov, A.N., Fomin, S.V.: Introductory Real Analysis. Dover, New York (1975)

    Google Scholar 

Download references

Acknowledgements

The authors thank the editors and the reviewers for their useful comments.

Funding

There is no any source of funding.

Author information

Affiliations

Authors

Contributions

All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shorouk Al-Issa.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Sayed, A., Al-Issa, S. & Omar, Y. On Chandrasekhar functional integral inclusion and Chandrasekhar quadratic integral equation via a nonlinear Urysohn–Stieltjes functional integral inclusion. Adv Differ Equ 2021, 137 (2021). https://doi.org/10.1186/s13662-021-03298-9

Download citation

MSC

  • 26A33
  • 74H10
  • 45G10

Keywords

  • Nonlinear functional integral equation
  • Urysohn–Stieltjes operator
  • Continuous solution
  • Chandrasekhar functional integral inclusion
  • Chandrasekhar quadratic integral equation
\