Skip to main content

Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann–Liouville fractional integrals, and Atangana–Baleanu integral operators

Abstract

In this manuscript, some fixed point results for generalized contractive type mappings under mild conditions in the setting of double controlled metric spaces (in short, \(\eta _{\gimel }^{\nu }\)-metric spaces) are obtained. Moreover, some related consequences dealing with a common fixed point concept and nontrivial examples to support our results are presented. Ultimately, we use the theoretical results to discuss the existence and uniqueness of solutions of 2D Volterra integral equations, Riemann–Liouville integrals and Atangana–Baleanu integral operators are given.

Introduction

Fixed point theorems have numerous applications in mathematics and are applied in diverse fields as biology [1], chemistry [2], economics [3, 4], engineering [5], game theory [6], and physics [7, 8]. In the last years, boundary value problems of nonlinear fractional differential equations with a variety of boundary conditions have been studied by various researchers, see [920]. Fractional differential equations appear naturally in diverse fields of science and engineering. They constitute an important field of research. It should be noted that most papers dealing with the existence of solutions of nonlinear initial value problems of fractional differential equations mainly use the techniques of nonlinear analysis such as fixed point techniques, stability, the Leray–Schauder result, etc. Relatively, fractional calculus and fractional differential/integral equations are very fresh topics for the researchers. For instance, in [21] the authors resolved some fractional differential equations with multiple delays in relation to chaos neuron models by using fixed point results of Lou [22] and E. de Pascale and L. de Pascale [23]. Amann [24] used a fixed point technique when studying some nonlinear eigenvalue problems in ordered Banach spaces. Liu et al. [25] gave applications of mixed monotone operators with superlinear nonlinearity via fixed point theory. On the other hand, by using fixed point theorems, the existence and uniqueness of solutions to differential/integral equations involving fractional operators were studied by a huge number of researchers. For further related results, see for example [2630].

Definition 1.1

([31])

The usual form of the RL-fractional integral operator of order τ is

$$ I^{\tau }\Game (\alpha )=\frac{1}{\Gamma (\tau )} \int _{0}^{ \alpha }(\alpha -\hbar )^{\tau -1} \Game (\hbar )\,d\hbar , $$

where \(\tau >0\), and the function is defined on \(L^{1}(\mathbb{R} ^{+})\).

Definition 1.2

([31])

Let \(\Game :(0,\infty )\rightarrow \mathbb{R} \) be a continuous function, the RL-fractional derivative of order τ is defined as

$$ D^{\tau }\Game (\alpha )=\frac{1}{\Gamma (\eta -\tau )} \biggl( \frac{d}{d\alpha } \biggr) ^{n} \int _{0}^{\alpha }(\alpha -\hbar )^{ \eta -\tau -1} \Game (\hbar )\,d\hbar , $$

where \(n=[\tau ]+1\).

In this manuscript, we investigate some fixed point results via a class of contractive type mappings involving mild conditions in the setting of \(\eta _{\gimel }^{\nu }\)-metric spaces. Also, some nontrivial examples are introduced. Finally, as applications, theoretical results are involved to discuss the existence and uniqueness of a solution of 2D Volterra integral equations, Riemann–Liouville integrals, and Atangana–Baleanu integral operators.

Main results

We begin this section with the following definition.

Definition 2.1

Suppose that is a nonempty set and \(\gimel ,\nu :\wp \times \wp \rightarrow {}[ 1,\infty )\) are given functions. Let \(\eta _{\gimel }^{\nu }:\wp \times \wp \rightarrow {}[ 0,\infty )\) be a distance function on . We list the following hypotheses for all \(\varsigma ,\upsilon ,\tau \in \wp \):

\((J_{1})\):

\(\eta _{\gimel }^{\nu }(\varsigma ,\upsilon )=0\) iff \(\varsigma =\upsilon \);

\((J_{2})\):

\(\eta _{\gimel }^{\nu }(\varsigma ,\upsilon )=\eta _{\gimel }^{\nu }( \upsilon ,\varsigma )\);

\((J_{3})\):

\(\eta _{\gimel }^{\nu }(\varsigma ,\upsilon )\leq \gimel (\varsigma , \upsilon ) [ \eta _{\gimel }^{\nu }(\varsigma ,\tau )+\eta _{ \gimel }^{\nu }(\tau ,\upsilon ) ] \) (an extended triangle inequality);

\((J_{4})\):

\(\eta _{\gimel }^{\nu }(\varsigma ,\upsilon )\leq \gimel (\varsigma , \tau )\eta _{\gimel }^{\nu }(\varsigma ,\tau )+\gimel (\tau , \upsilon )\eta _{\gimel }^{\nu }(\tau ,\upsilon )\) (a controlled triangle inequality);

\((J_{5})\):

\(\eta _{\gimel }^{\nu }(\varsigma ,\upsilon )\leq \gimel (\varsigma , \tau )\eta _{\gimel }^{\nu }(\varsigma ,\tau )+\nu (\tau ,\upsilon ) \eta _{\gimel }^{\nu }(\tau ,\upsilon )\) (a double controlled triangle inequality).

\(\eta _{\gimel }^{\nu }\) is called:

  • extended b- [32] if \(\eta _{\gimel }^{\nu }\) satisfies \((J_{1})-(J_{3})\);

  • controlled metric type [33] if \(\eta _{\gimel }^{\nu }\) satisfies \((J_{1})\), \((J_{2})\), and \((J_{4})\);

  • double controlled metric type [34] if \(\eta _{\gimel }^{\nu }\) satisfies \((J_{1})\), \((J_{2})\), and \((J_{5})\).

The pair \((\wp ,\eta _{\gimel }^{\nu })\) is called an extended b-metric/ a controlled metric type/ a double controlled metric type space if \(\eta _{\gimel }^{\nu }\) is extended b-metric/ a controlled metric type/ a double controlled metric type on , respectively.

Example 2.2

Let \(\wp =\{1,2,3\}\). Define \(\gimel ,\nu :\wp \times \wp \rightarrow {}[ 1,\infty )\) by

$$\begin{aligned}& \gimel (1,2) = \gimel (2,1)=1,\qquad \gimel (2,3)=\gimel (3,2)= \frac{8}{7},\quad \text{and}\quad \gimel (1,3)=\gimel (3,1)=\frac{3}{2}, \\& \nu (1,2) = \nu (2,1)=\frac{7}{6},\qquad \nu (2,3)=\nu (3,2)= \frac{9}{2},\quad \text{and}\quad \nu (1,3)=\nu (3,1)=2. \end{aligned}$$

Let \(\eta _{\gimel }^{\nu }:\wp \times \wp \rightarrow {}[ 0,\infty )\) be given as

$$\begin{aligned}& \eta _{\gimel }^{\nu }(1,3) = \eta _{\gimel }^{\nu }(3,1)=1,\qquad \eta _{\gimel }^{\nu }(1,2)=\eta _{\gimel }^{\nu }(2,1)=2, \\& \eta _{\gimel }^{\nu }(2,3) = \eta _{\gimel }^{\nu }(3,2)=3.6,\qquad \eta _{\gimel }^{\nu }(1,1)=\eta _{\gimel }^{\nu }(2,2)= \eta _{\gimel }^{\nu }(3,3)=0. \end{aligned}$$

Note that

$$\begin{aligned}& \eta _{\gimel }^{\nu }(2,3) \geq \gimel (2,3) \bigl[ \eta _{\gimel }^{ \nu }(2,1)+\eta _{\gimel }^{\nu }(1,3) \bigr] , \\& \eta _{\gimel }^{\nu }(2,3) \geq \gimel (2,1)\eta _{\gimel }^{\nu }(2,1)+ \gimel (1,3)\eta _{\gimel }^{\nu }(1,3), \end{aligned}$$

and

$$\begin{aligned}& \eta _{\gimel }^{\nu }(2,3) \leq \gimel (2,1)\eta _{\gimel }^{\nu }(2,1)+ \nu (1,3)\eta _{\gimel }^{\nu }(1,3), \\& \eta _{\gimel }^{\nu }(1,2) \leq \gimel (1,3)\eta _{\gimel }^{\nu }(1,3)+ \nu (3,2)\eta _{\gimel }^{\nu }(3,2), \\& \eta _{\gimel }^{\nu }(1,3) \leq \gimel (1,2)\eta _{\gimel }^{\nu }(1,2)+ \nu (2,3)\eta _{\gimel }^{\nu }(2,3). \end{aligned}$$

Thus, \(\eta _{\gimel }^{\nu }\) is neither extended b-metric nor controlled metric type for the function , but it is double controlled metric type.

Definition 2.3

Let \((\wp ,\eta _{\gimel }^{\nu })\) be a double controlled metric type space (for short, \(\eta _{\gimel }^{\nu }\)-metric space). A sequence \(\{\varsigma _{n}\}\in \wp \) is called:

  • convergent if there is \(\varsigma \in \wp \) such that \(\lim_{n\rightarrow \infty }\eta _{\gimel }^{\nu }(\varsigma _{n}, \varsigma )=0\), and this notation leads to \(\lim_{n\rightarrow \infty }\varsigma _{n}=\varsigma \);

  • Cauchy iff \(\eta _{\gimel }^{\nu }(\varsigma _{n},\varsigma _{m})\rightarrow 0\) as \(n,m\rightarrow \infty \).

An \(\eta _{\gimel }^{\nu }\)-metric space is complete if every Cauchy sequence in is convergent.

Remark 2.4

If \(\gimel (\varsigma ,\tau )=\nu (\tau ,\upsilon )=b\geq 1\) for all \(\varsigma ,\upsilon ,\tau \in \wp \), then an \(\eta _{\gimel }^{\nu }\)-metric space reduces to a b-metric space [35, 36].

Theorem 2.5

Let \((\wp ,\eta _{\gimel }^{\nu })\) be a complete \(\eta _{\gimel }^{\nu }\)-metric space and the mappings \(\Game ,\mho :\wp \rightarrow \wp \) satisfy

$$\begin{aligned} a^{b}\eta _{\gimel }^{\nu } ( \Game \varsigma ,\mho \upsilon ) \leq& \sigma \eta _{\gimel }^{\nu }(\varsigma ,\upsilon )+ \rho \frac{\eta _{\gimel }^{\nu }(\upsilon ,\mho \upsilon ) [ 1+\eta _{\gimel }^{\nu }(\upsilon ,\mho \upsilon ) ] }{1+\eta _{\gimel }^{\nu }(\Game \varsigma ,\mho \upsilon )} \\ &{}+ \mu \frac{\eta _{\gimel }^{\nu }(\upsilon ,\mho \upsilon ) [ 1+\eta _{\gimel }^{\nu }(\varsigma ,\Game \varsigma ) ] }{1+\eta _{\gimel }^{\nu }(\varsigma ,\upsilon )} \end{aligned}$$
(2.1)

for all \(\varsigma ,\upsilon \in \wp \), where σ, ρ, and μ are nonnegative real numbers with \(\sigma +\rho +\mu <1\) and \(a,b\geq 1\). Consider \(\varsigma _{n}=\mho ^{n}\varsigma _{\circ }\) for \(\varsigma _{\circ }\in \wp \). Then and have a unique common fixed point (cfp), provided that the following hypotheses hold:

  1. (i)
    $$ \sup_{l\geq 1}\lim_{j\rightarrow \infty } \frac{\gimel (\varsigma _{j+1},\varsigma _{j+2})}{\gimel (\varsigma _{j},\varsigma _{j+1})} \nu (\varsigma _{j+1},\varsigma _{l})< \frac{1}{\Theta },\quad \textit{where }\Theta = \frac{\sigma }{a^{b}-\rho -\mu }; $$
    (2.2)
  2. (ii)

    \(\lim_{n\rightarrow \infty }\gimel (\varsigma ,\varsigma _{n})\) and \(\lim_{n\rightarrow \infty }\nu (\varsigma ,\varsigma _{n})\) exist and are finite for all \(\varsigma \in \wp \).

Proof

Suppose that \(\varsigma _{\circ }\in \wp \) is an arbitrary point such that the sequence \(\{\varsigma _{n}=\mho ^{n}\varsigma _{\circ }\}\) in satisfies the two conditions of theorem and iterates below as follows:

$$ \varsigma _{2n+1}=\Game \varsigma _{2n}\quad \text{and}\quad \varsigma _{2n+2}= \mho \varsigma _{2n+1},\quad n=0,1,\ldots . $$
(2.3)

From inequality (2.1), one writes

$$\begin{aligned} a^{b}\eta _{\gimel }^{\nu } ( \varsigma _{2n+1},\varsigma _{2n+2} ) =&a^{b}\eta _{\gimel }^{\nu } ( \Game \varsigma _{2n}, \mho \varsigma _{2n+1} ) \\ \leq &\sigma \eta _{\gimel }^{\nu }(\varsigma _{2n},\varsigma _{2n+1})+ \rho \frac{\eta _{\gimel }^{\nu }(\varsigma _{2n+1},\mho \varsigma _{2n+1}) [ 1+\eta _{\gimel }^{\nu }(\varsigma _{2n+1},\mho \varsigma _{2n+1}) ] }{1+\eta _{\gimel }^{\nu }(\Game \varsigma _{2n},\mho \varsigma _{2n+1})} \\ &{}+\mu \frac{\eta _{\gimel }^{\nu }(\varsigma _{2n+1},\mho \varsigma _{2n+1}) [ 1+\eta _{\gimel }^{\nu }(\varsigma _{2n},\Game \varsigma _{2n}) ] }{1+\eta _{\gimel }^{\nu }(\varsigma _{2n},\varsigma _{2n+1})} \\ =&\sigma \eta _{\gimel }^{\nu }(\varsigma _{2n}, \varsigma _{2n+1})+ \rho \frac{\eta _{\gimel }^{\nu }(\varsigma _{2n+1},\varsigma _{2n+2}) [ 1+\eta _{\gimel }^{\nu }(\varsigma _{2n+1},\varsigma _{2n+2}) ] }{1+\eta _{\gimel }^{\nu }(\varsigma _{2n+1},\mho \varsigma _{2n+2})} \\ &{}+\mu \frac{\eta _{\gimel }^{\nu }(\varsigma _{2n+1},\varsigma _{2n+2}) [ 1+\eta _{\gimel }^{\nu }(\varsigma _{2n},\varsigma _{2n+1}) ] }{1+\eta _{\gimel }^{\nu }(\varsigma _{2n},\varsigma _{2n+1})} \\ =&\sigma \eta _{\gimel }^{\nu }(\varsigma _{2n}, \varsigma _{2n+1})+( \rho +\mu )\eta _{\gimel }^{\nu }( \varsigma _{2n+1},\varsigma _{2n+2}). \end{aligned}$$

This leads to

$$ \eta _{\gimel }^{\nu } ( \varsigma _{2n+1},\varsigma _{2n+2} ) \leq \biggl( \frac{\sigma }{a^{b}-\rho -\mu } \biggr) \eta _{ \gimel }^{\nu }(\varsigma _{2n},\varsigma _{2n+1}). $$

Iteratively,

$$ \eta _{\gimel }^{\nu } ( \varsigma _{2n+2},\varsigma _{2n+3} ) \leq \biggl( \frac{\sigma }{a^{b}-\rho -\mu } \biggr) \eta _{ \gimel }^{\nu }(\varsigma _{2n+1},\varsigma _{2n+2}). $$

By taking \(\Theta =\frac{\sigma }{a^{b}-\rho -\mu }<1\), one gets

$$\begin{aligned} \eta _{\gimel }^{\nu } ( \varsigma _{n},\varsigma _{n+1} ) \leq &\Theta \eta _{\gimel }^{\nu }( \varsigma _{n-1},\varsigma _{n}) \\ \leq &\Theta ^{2}\eta _{\gimel }^{\nu }(\varsigma _{n-2},\varsigma _{n-1}) \\ &\vdots \\ \leq &\Theta ^{n}\eta _{\gimel }^{\nu }(\varsigma _{0},\varsigma _{1}). \end{aligned}$$

For all \(m,n\in \mathbb{N} \) with \(m>n\), we get

$$\begin{aligned} \eta _{\gimel }^{\nu } ( \varsigma _{n},\varsigma _{m} ) \leq& \gimel (\varsigma _{n},\varsigma _{n+1})\eta _{\gimel }^{\nu }( \varsigma _{n},\varsigma _{n+1})+\nu (\varsigma _{n+1}, \varsigma _{m}) \eta _{\gimel }^{\nu }(\varsigma _{n+1},\varsigma _{m}) \\ \leq &\gimel (\varsigma _{n},\varsigma _{n+1})\eta _{\gimel }^{\nu }( \varsigma _{n},\varsigma _{n+1})+\nu (\varsigma _{n+1},\varsigma _{m}) \left[ \textstyle\begin{array}{l} \gimel (\varsigma _{n+1},\varsigma _{n+2})\eta _{\gimel }^{\nu }( \varsigma _{n+1},\varsigma _{n+2}) \\ \quad {}+\nu (\varsigma _{n+2},\varsigma _{m})\eta _{\gimel }^{\nu }( \varsigma _{n+2},\varsigma _{m})\end{array}\displaystyle \right] \\ =&\gimel (\varsigma _{n},\varsigma _{n+1})\eta _{\gimel }^{\nu }( \varsigma _{n},\varsigma _{n+1})+\nu (\varsigma _{n+1},\varsigma _{m}) \gimel (\varsigma _{n+1},\varsigma _{n+2})\eta _{\gimel }^{\nu }( \varsigma _{n+1},\varsigma _{n+2}) \\ &{}+\nu (\varsigma _{n+1},\varsigma _{m})\nu (\varsigma _{n+2}, \varsigma _{m})\eta _{\gimel }^{\nu }( \varsigma _{n+2},\varsigma _{m}) \\ &\vdots \\ \leq &\gimel (\varsigma _{n},\varsigma _{n+1})\eta _{\gimel }^{\nu }( \varsigma _{n},\varsigma _{n+1})+\sum_{i=n+1}^{m-2} \Biggl( \prod_{j=n+1}^{i}\nu (\varsigma _{j},\varsigma _{m}) \Biggr) \gimel (\varsigma _{i},\varsigma _{i+1})\eta _{\gimel }^{\nu }( \varsigma _{i},\varsigma _{i+1}) \\ &{}+\prod_{k=n+1}^{m-1}\nu (\varsigma _{k},\varsigma _{m}) \eta _{\gimel }^{\nu }( \varsigma _{m-1},\varsigma _{m}) \\ \leq &\gimel (\varsigma _{n},\varsigma _{n+1})\Theta ^{n}\eta _{ \gimel }^{\nu }(\varsigma _{0},\varsigma _{1})+\sum_{i=n+1}^{m-2} \Biggl( \prod_{j=n+1}^{i}\nu (\varsigma _{j},\varsigma _{m}) \Biggr) \gimel (\varsigma _{i},\varsigma _{i+1})\Theta ^{i}\eta _{ \gimel }^{\nu }(\varsigma _{0},\varsigma _{1}) \\ &{}+\prod_{k=n+1}^{m-1}\nu (\varsigma _{k},\varsigma _{m}) \Theta ^{m-1}\eta _{\gimel }^{\nu }(\varsigma _{0},\varsigma _{1}) \\ \leq &\gimel (\varsigma _{n},\varsigma _{n+1})\Theta ^{n}\eta _{ \gimel }^{\nu }(\varsigma _{0},\varsigma _{1})+\sum_{i=n+1}^{m-2} \Biggl( \prod_{j=n+1}^{i}\nu (\varsigma _{j},\varsigma _{m}) \Biggr) \gimel (\varsigma _{i},\varsigma _{i+1})\Theta ^{i}\eta _{ \gimel }^{\nu }(\varsigma _{0},\varsigma _{1}) \\ &{}+\prod_{k=n+1}^{m-1}\nu (\varsigma _{k},\varsigma _{m}) \Theta ^{m-1}\gimel ( \varsigma _{m-1},\varsigma _{m})\eta _{\gimel }^{ \nu }( \varsigma _{0},\varsigma _{1}) \\ \leq &\gimel (\varsigma _{n},\varsigma _{n+1})\Theta ^{n}\eta _{ \gimel }^{\nu }(\varsigma _{0},\varsigma _{1})+\sum_{i=n+1}^{m-1} \Biggl( \prod_{j=n+1}^{i}\nu (\varsigma _{j},\varsigma _{m}) \Biggr) \gimel (\varsigma _{i},\varsigma _{i+1})\Theta ^{i}\eta _{ \gimel }^{\nu }(\varsigma _{0},\varsigma _{1}) \\ \leq &\gimel (\varsigma _{n},\varsigma _{n+1})\Theta ^{n}\eta _{ \gimel }^{\nu }(\varsigma _{0},\varsigma _{1})+\sum_{i=n+1}^{m-1} \Biggl( \prod_{j=0}^{i}\nu (\varsigma _{j},\varsigma _{m}) \Biggr) \gimel (\varsigma _{i},\varsigma _{i+1})\Theta ^{i}\eta _{ \gimel }^{\nu }(\varsigma _{0},\varsigma _{1}). \end{aligned}$$
(2.4)

Set \(\Lambda _{\ell }=\sum_{i=0}^{\ell } ( \prod_{j=0}^{i} \nu (\varsigma _{j},\varsigma _{m}) ) \gimel (\varsigma _{i}, \varsigma _{i+1})\Theta ^{i}\). Hence, inequality (2.4) implies that

$$ \eta _{\gimel }^{\nu } ( \varsigma _{n},\varsigma _{m} ) \leq \eta _{\gimel }^{\nu }(\varsigma _{0},\varsigma _{1}) \bigl[ \Theta ^{n} \gimel (\varsigma _{n},\varsigma _{n+1})+(\Lambda _{m-1}- \Lambda _{n}) \bigr] . $$
(2.5)

It follows by (2.2) and the ratio test that the real number sequence \(\{\Lambda _{n}\}\) exists, and so \(\{\Lambda _{n}\}\) is Cauchy. Note that the ratio test is applied to the term \(\varkappa _{i}= ( \prod_{j=0}^{i}\nu (\varsigma _{j}, \varsigma _{m}) ) \gimel (\varsigma _{i},\varsigma _{i+1})\). Taking \(n,m\rightarrow \infty \) in (2.5), we can write

$$ \lim_{n,m\rightarrow \infty }\eta _{\gimel }^{\nu } ( \varsigma _{n},\varsigma _{m} ) =0. $$
(2.6)

Relation (2.6) implies that the sequence \(\{\varsigma _{n}\}\) is Cauchy. The completeness of \((\wp ,\eta _{\gimel }^{\nu })\) yields that there exists some \(\varrho \in \wp \) such that

$$ \lim_{n\rightarrow \infty }\eta _{\gimel }^{\nu } ( \varsigma _{n}, \varrho ) =0. $$
(2.7)

Applying the triangle inequality, we have

$$ \eta _{\gimel }^{\nu } ( \varrho ,\varsigma _{n+1} ) \leq \gimel (\varrho ,\varsigma _{n})\eta _{\gimel }^{\nu }( \varrho , \varsigma _{n})+\nu (\varsigma _{n},\varsigma _{n+1})\eta _{\gimel }^{ \nu }(\varsigma _{n},\varsigma _{n+1}). $$
(2.8)

By (2.6) and (2.7) in (2.8), we get at the limit

$$ \lim_{n\rightarrow \infty }\eta _{\gimel }^{\nu } ( \varrho , \varsigma _{n+1} ) =0. $$
(2.9)

Now, we shall show that \(\varrho =\Game \varrho \). Using the method of contradiction, i.e., let \(\eta _{\gimel }^{\nu } ( \varrho ,\Game \varrho ) >0\). Then

$$\begin{aligned} \eta _{\gimel }^{\nu } ( \varrho ,\Game \varrho ) \leq & \gimel (\varrho ,\varsigma _{n+2})\eta _{\gimel }^{\nu }( \varrho , \varsigma _{n+2})+\nu (\varsigma _{n+2},\Game \varrho )\eta _{\gimel }^{ \nu }(\varsigma _{n+2},\Game \varrho ) \\ =&\gimel (\varrho ,\varsigma _{n+2})\eta _{\gimel }^{\nu }( \varrho , \varsigma _{n+2})+\nu (\varsigma _{n+2},\Game \varrho )\eta _{\gimel }^{ \nu }(\mho \varsigma _{n+1}, \Game \varrho ) \\ \leq &\gimel (\varrho ,\varsigma _{n+2})\eta _{\gimel }^{\nu }( \varrho ,\varsigma _{n+2})+\nu (\varsigma _{n+2},\Game \varrho )a^{b} \eta _{\gimel }^{\nu }(\Game \varrho , \mho \varsigma _{n+1}) \\ \leq &\gimel (\varrho ,\varsigma _{n+2})\eta _{\gimel }^{\nu }( \varrho ,\varsigma _{n+2})+\nu (\varsigma _{n+2},\Game \varrho ) \left( \textstyle\begin{array}{l} \sigma \eta _{\gimel }^{\nu }(\varrho ,\varsigma _{n+1}) \\ \quad {}+\rho \frac{\eta _{\gimel }^{\nu }(\varsigma _{n+1},\mho \varsigma _{n+1}) [ 1+\eta _{\gimel }^{\nu }(\varsigma _{n+1},\mho \varsigma _{n+1}) ] }{1+\eta _{\gimel }^{\nu }(\Game \varrho ,\mho \varsigma _{n+1})} \\ \quad {}+\mu \frac{\eta _{\gimel }^{\nu }(\varsigma _{n+1},\mho \varsigma _{n+1}) [ 1+\eta _{\gimel }^{\nu }(\varrho ,\Game \varrho ) ] }{1+\eta _{\gimel }^{\nu }(\varrho ,\varsigma _{n+1})}\end{array}\displaystyle \right) \\ =&\gimel (\varrho ,\varsigma _{n+2})\eta _{\gimel }^{\nu }( \varrho , \varsigma _{n+2})+\nu (\varsigma _{n+2},\Game \varrho ) \left( \textstyle\begin{array}{l} \sigma \eta _{\gimel }^{\nu }(\varrho ,\varsigma _{n+1}) \\ \quad {}+\rho \frac{\eta _{\gimel }^{\nu }(\varsigma _{n+1},\varsigma _{n+2}) [ 1+\eta _{\gimel }^{\nu }(\varsigma _{n+1},\varsigma _{n+2}) ] }{1+\eta _{\gimel }^{\nu }(\Game \varrho ,\varsigma _{n+2})} \\ \quad {}+\mu \frac{\eta _{\gimel }^{\nu }(\varsigma _{n+1},\varsigma _{n+2}) [ 1+\eta _{\gimel }^{\nu }(\varrho ,\Game \varrho ) ] }{1+\eta _{\gimel }^{\nu }(\varrho ,\varsigma _{n+1})}\end{array}\displaystyle \right) . \end{aligned}$$

Letting \(n\rightarrow \infty \) in the above inequality and with the help of (2.6), (2.7), and (2.9), we conclude that \(\eta _{\gimel }^{\nu } ( \varrho ,\Game \varrho ) =0\). It is a contradiction, that is, \(\varrho =\Game \varrho \). Likewise, we can show that \(\varrho =\mho \varrho \). This means that ϱ is a cfp of and . For uniqueness, suppose that α is another cfp of and such that \(\varrho \neq \alpha \), then by condition (2.1) we obtain that

$$\begin{aligned} a^{b}\eta _{\gimel }^{\nu } ( \varrho ,\alpha ) =&a^{b} \eta _{\gimel }^{\nu } ( \Game \varrho , \mho \alpha ) \\ \leq &\sigma \eta _{\gimel }^{\nu }(\varrho ,\alpha )+\rho \frac{\eta _{\gimel }^{\nu }(\alpha ,\mho \alpha ) [ 1+\eta _{\gimel }^{\nu }(\alpha ,\mho \alpha ) ] }{1+\eta _{\gimel }^{\nu }(\Game \varrho ,\mho \alpha )}+ \mu \frac{\eta _{\gimel }^{\nu }(\alpha ,\mho \alpha ) [ 1+\eta _{\gimel }^{\nu }(\varrho ,\Game \varrho ) ] }{1+\eta _{\gimel }^{\nu }(\varrho ,\alpha )} \\ =&\sigma \eta _{\gimel }^{\nu }(\varrho ,\alpha ). \end{aligned}$$

This implies that \(( a^{b}-\sigma ) \eta _{\gimel }^{\nu } ( \varrho , \alpha ) \leq 0\), a contradiction. So it should be \(\eta _{\gimel }^{\nu } ( \mu ,\alpha ) =0\), i.e., \(\mu =\alpha \). Hence μ is the unique cfp of and . This ends the proof. □

Theorem 2.5 reduces to the following corollary if we consider that the two mappings and are equal.

Corollary 2.6

Let \((\wp ,\eta _{\gimel }^{\nu })\) be a complete \(\eta _{\gimel }^{\nu }\)-metric space and \(\Game :\wp \rightarrow \wp \) be a mapping satisfying

$$ a^{b}\eta _{\gimel }^{\nu } ( \Game \varsigma , \Game \upsilon ) \leq \sigma \eta _{\gimel }^{\nu }(\varsigma , \upsilon )+ \rho \frac{\eta _{\gimel }^{\nu }(\upsilon ,\Game \upsilon ) [ 1+\eta _{\gimel }^{\nu }(\upsilon ,\Game \upsilon ) ] }{1+\eta _{\gimel }^{\nu }(\Game \varsigma ,\Game \upsilon )} + \mu \frac{\eta _{\gimel }^{\nu }(\upsilon ,\Game \upsilon ) [ 1+\eta _{\gimel }^{\nu }(\varsigma ,\Game \varsigma ) ] }{1+\eta _{\gimel }^{\nu }(\varsigma ,\upsilon )} $$

for all \(\varsigma ,\upsilon \in \wp \), where σ, ρ, and μ are nonnegative real numbers with \(\sigma +\rho +\mu <1\) and \(a,b\geq 1\). Consider \(\varsigma _{n}=\Game ^{n}\varsigma _{\circ }\) for \(\varsigma _{\circ }\in \wp \). If assumptions (i) and (ii) of Theorem 2.5are fulfilled, then has a unique fixed point.

If we take \(a=b=1\), \(\mu =\rho =0\), and \(\Game =\mho \) in Theorem 2.5, we get the following main result.

Corollary 2.7

Let \((\wp ,\eta _{\gimel }^{\nu })\) be a complete \(\eta _{\gimel }^{\nu }\)-metric space, and let the mapping \(\Game :\wp \rightarrow \wp \) satisfy

$$ \eta _{\gimel }^{\nu } ( \Game \varsigma ,\Game \upsilon ) \leq \sigma \eta _{\gimel }^{\nu }(\varsigma ,\upsilon ) $$

for all \(\varsigma ,\upsilon \in \wp \), where σ is a nonnegative real number with \(\sigma <1\). Choose \(\varsigma _{n}=\mho ^{n}\varsigma _{\circ } \) for \(\varsigma _{\circ }\in \wp \), then has a unique fixed point, provided that the following assumptions are satisfied:

  • \(\sup_{l\geq 1}\lim_{j\rightarrow \infty } \frac{\gimel (\varsigma _{j+1},\varsigma _{j+2})}{\gimel (\varsigma _{j},\varsigma _{j+1})} \nu (\varsigma _{j+1},\varsigma _{l})<\frac{1}{\sigma }\);

  • \(\lim_{n\rightarrow \infty }\gimel (\varsigma ,\varsigma _{n})\) and \(\lim_{n\rightarrow \infty }\nu (\varsigma ,\varsigma _{n})\) exist and are finite for all \(\varsigma \in \wp \).

Another direction to obtain a cfp of and is by considering a strong contractive condition in the following theorem.

Theorem 2.8

Let \((\wp ,\eta _{\gimel }^{\nu })\) be a complete \(\eta _{\gimel }^{\nu }\)-metric space, and let the mappings \(\Game ,\mho :\wp \rightarrow \wp \) satisfy

$$ \eta _{\gimel }^{\nu } ( \Game \varsigma ,\mho \upsilon ) \leq \bigl( \Pi (\varsigma )-\Pi (\Game \varsigma ) \bigr) \beth ( \varsigma ,\upsilon ) , $$

where

$$ \beth ( \varsigma ,\upsilon ) =\max \left \{ \textstyle\begin{array}{l} \eta _{\gimel }^{\nu }(\varsigma ,\upsilon ),\eta _{\gimel }^{\nu }( \varsigma ,\Game \varsigma ),\eta _{\gimel }^{\nu }(\upsilon ,\mho \upsilon ), \\ \frac{\eta _{\gimel }^{\nu }(\varsigma ,\Game \varsigma )+\eta _{\gimel }^{\nu }(\upsilon ,\mho \upsilon )}{2}, \frac{\sqrt{\eta _{\gimel }^{\nu }(\upsilon ,\Game \varsigma ).\eta _{\gimel }^{\nu }(\varsigma ,\mho \upsilon )}}{2}\end{array}\displaystyle \right \} , $$

and \(\Pi :\wp \rightarrow \mathbb{R} \) is bounded from below \((\inf \{\Pi (\wp )\}>-\infty )\). Assume that \(\varsigma _{n}=\mho ^{n}\varsigma _{\circ }\) for \(\varsigma _{\circ }\in \wp \), and

$$ \sup_{l\geq 1}\lim_{j\rightarrow \infty } \frac{\gimel (\varsigma _{j+1},\varsigma _{j+2})}{\gimel (\varsigma _{j},\varsigma _{j+1})} \nu (\varsigma _{j+1},\varsigma _{l})< \frac{1}{\aleph },\quad 0< \aleph < 1. $$

In addition, suppose that \(\lim_{n\rightarrow \infty }\gimel (\varsigma ,\varsigma _{n})\) and \(\lim_{n\rightarrow \infty }\nu (\varsigma ,\varsigma _{n})\) exist and are finite for all \(\varsigma \in \wp \). Then and have a unique cfp.

Proof

As at the beginning of the proof of Theorem 2.5, we consider the same sequences defined by (2.3). Consider

$$ \eta _{\gimel }^{\nu } ( \varsigma _{2n+1},\varsigma _{2n+2} ) =\eta _{\gimel }^{\nu } ( \Game \varsigma _{2n},\mho \varsigma _{2n+1} ) \leq \bigl( \Pi (\varsigma _{2n})-\Pi ( \Game \varsigma _{2n}) \bigr) \beth ( \varsigma _{2n}, \varsigma _{2n+1} ) , $$
(2.10)

where

$$\begin{aligned} \beth ( \varsigma _{2n},\varsigma _{2n+1} ) =&\max \left \{ \textstyle\begin{array}{l} \eta _{\gimel }^{\nu }(\varsigma _{2n},\varsigma _{2n+1}),\eta _{ \gimel }^{\nu }(\varsigma _{2n},\Game \varsigma _{2n}),\eta _{\gimel }^{ \nu }(\varsigma _{2n+1},\mho \varsigma _{2n+1}), \\ \frac{\eta _{\gimel }^{\nu }(\varsigma _{2n},\Game \varsigma _{2n})+\eta _{\gimel }^{\nu }(\varsigma _{2n+1},\mho \varsigma _{2n+1})}{2}, \frac{\sqrt{\eta _{\gimel }^{\nu }(\varsigma _{2n},\Game \varsigma _{2n+1}).\eta _{\gimel }^{\nu }(\varsigma _{2n+1},\mho \varsigma _{2n})}}{2}\end{array}\displaystyle \right \} \\ =&\max \left \{ \textstyle\begin{array}{l} \eta _{\gimel }^{\nu }(\varsigma _{2n},\varsigma _{2n+1}),\eta _{ \gimel }^{\nu }(\varsigma _{2n},\varsigma _{2n+1}),\eta _{\gimel }^{ \nu }(\varsigma _{2n+1},\varsigma _{2n+2}), \\ \frac{\eta _{\gimel }^{\nu }(\varsigma _{2n},\varsigma _{2n+1})+\eta _{\gimel }^{\nu }(\varsigma _{2n+1},\varsigma _{2n+2})}{2}, \frac{\sqrt{\eta _{\gimel }^{\nu }(\varsigma _{2n+1},\varsigma _{2n+1}).\eta _{\gimel }^{\nu }(\varsigma _{2n},\varsigma _{2n+2})}}{2}\end{array}\displaystyle \right \} \\ =&\max \bigl\{ \eta _{\gimel }^{\nu }(\varsigma _{2n},\varsigma _{2n+1}), \eta _{\gimel }^{\nu }( \varsigma _{2n+1},\varsigma _{2n+2}) \bigr\} . \end{aligned}$$

Now, if \(\eta _{\gimel }^{\nu }(\varsigma _{2n+1},\varsigma _{2n+2})\geq \eta _{\gimel }^{\nu }(\varsigma _{2n+1},\varsigma _{2n+2})\), then by (2.10) we get

$$\begin{aligned} \eta _{\gimel }^{\nu } ( \varsigma _{2n+1},\varsigma _{2n+2} ) =&\eta _{\gimel }^{\nu } ( \Game \varsigma _{2n},\mho \varsigma _{2n+1} ) \\ \leq & \bigl( \Pi (\varsigma _{2n})-\Pi (\Game \varsigma _{2n}) \bigr) \eta _{\gimel }^{\nu }(\varsigma _{2n+1},\varsigma _{2n+2}) \\ =& \bigl( \Pi (\varsigma _{2n})-\Pi (\varsigma _{2n+1}) \bigr) \eta _{\gimel }^{\nu }(\varsigma _{2n+1}, \varsigma _{2n+2}), \end{aligned}$$

a contradiction. So, \(\beth ( \varsigma _{2n},\varsigma _{2n+1} ) =\eta _{ \gimel }^{\nu }(\varsigma _{2n},\varsigma _{2n+1})\). Again, by (2.10), one can write

$$ \eta _{\gimel }^{\nu } ( \varsigma _{2n+1},\varsigma _{2n+2} ) =\eta _{\gimel }^{\nu } ( \Game \varsigma _{2n},\mho \varsigma _{2n+1} ) \leq \bigl( \Pi (\varsigma _{2n})-\Pi ( \varsigma _{2n+1}) \bigr) \eta _{\gimel }^{\nu }(\varsigma _{2n}, \varsigma _{2n+1}). $$

Similarly,

$$ \eta _{\gimel }^{\nu } ( \varsigma _{2n+2},\varsigma _{2n+3} ) =\eta _{\gimel }^{\nu } ( \Game \varsigma _{2n+1},\mho \varsigma _{2n+2} ) \leq \bigl( \Pi (\varsigma _{2n+1})-\Pi ( \varsigma _{2n+2}) \bigr) \beth ( \varsigma _{2n+1},\varsigma _{2n+2} ) , $$
(2.11)

where

$$\begin{aligned} \beth ( \varsigma _{2n+1},\varsigma _{2n+2} ) =&\max \left \{ \textstyle\begin{array}{l} \eta _{\gimel }^{\nu }(\varsigma _{2n+1},\varsigma _{2n+2}),\eta _{ \gimel }^{\nu }(\varsigma _{2n+1},\Game \varsigma _{2n+1}),\eta _{ \gimel }^{\nu }(\varsigma _{2n+2},\mho \varsigma _{2n+2}), \\ \frac{\eta _{\gimel }^{\nu }(\varsigma _{2n+1},\Game \varsigma _{2n+1})+\eta _{\gimel }^{\nu }(\varsigma _{2n+2},\mho \varsigma _{2n+2})}{2}, \frac{\sqrt{\eta _{\gimel }^{\nu }(\varsigma _{2n+1},\Game \varsigma _{2n+2}).\eta _{\gimel }^{\nu }(\varsigma _{2n+2},\mho \varsigma _{2n+1})}}{2}\end{array}\displaystyle \right \} \\ =&\max \left \{ \textstyle\begin{array}{l} \eta _{\gimel }^{\nu }(\varsigma _{2n+1},\varsigma _{2n+2}),\eta _{ \gimel }^{\nu }(\varsigma _{2n+1},\varsigma _{2n+2}),\eta _{\gimel }^{ \nu }(\varsigma _{2n+2},\varsigma _{2n+3}), \\ \frac{\eta _{\gimel }^{\nu }(\varsigma _{2n+1},\varsigma _{2n+2})+\eta _{\gimel }^{\nu }(\varsigma _{2n+2},\varsigma _{2n+3})}{2}, \frac{\sqrt{\eta _{\gimel }^{\nu }(\varsigma _{2n+2},\varsigma _{2n+2}).\eta _{\gimel }^{\nu }(\varsigma _{2n+1},\varsigma _{2n+3})}}{2}\end{array}\displaystyle \right \} \\ =&\max \bigl\{ \eta _{\gimel }^{\nu }(\varsigma _{2n+1},\varsigma _{2n+2}), \eta _{\gimel }^{\nu }( \varsigma _{2n+2},\varsigma _{2n+3}) \bigr\} . \end{aligned}$$

From (2.11), we have

$$ \eta _{\gimel }^{\nu } ( \varsigma _{2n+2},\varsigma _{2n+3} ) =\eta _{\gimel }^{\nu } ( \Game \varsigma _{2n+1},\mho \varsigma _{2n+2} ) \leq \bigl( \Pi (\varsigma _{2n+1})-\Pi ( \varsigma _{2n+2}) \bigr) \eta _{\gimel }^{\nu } ( \varsigma _{2n+2}, \varsigma _{2n+3} ) , $$

a contradiction. Hence, \(\beth ( \varsigma _{2n+1},\varsigma _{2n+2} ) =\eta _{ \gimel }^{\nu }(\varsigma _{2n+1},\varsigma _{2n+2})\), then by (2.11) we get

$$ \eta _{\gimel }^{\nu } ( \varsigma _{2n+2},\varsigma _{2n+3} ) =\eta _{\gimel }^{\nu } ( \Game \varsigma _{2n+1},\mho \varsigma _{2n+2} ) \leq \bigl( \Pi (\varsigma _{2n+1})-\Pi ( \varsigma _{2n+2}) \bigr) \eta _{\gimel }^{\nu } ( \varsigma _{2n+1}, \varsigma _{2n+2} ) . $$

Continuing this approach, for each \(n\in \mathbb{N} \), we conclude that

$$ \eta _{\gimel }^{\nu } ( \varsigma _{n},\varsigma _{n+1} ) \leq \bigl( \Pi (\varsigma _{n-1})-\Pi (\varsigma _{n}) \bigr) \eta _{\gimel }^{\nu } ( \varsigma _{n-1},\varsigma _{n} ). $$

That is,

$$ \frac{\eta _{\gimel }^{\nu } ( \varsigma _{n},\varsigma _{n+1} ) }{\eta _{\gimel }^{\nu } ( \varsigma _{n-1},\varsigma _{n} ) } \leq \bigl( \Pi (\varsigma _{n-1})-\Pi ( \varsigma _{n}) \bigr) . $$

Thus, the sequence \(\{\varsigma _{n}\}\) is necessarily decreasing and positive. So, it converges to an element \(\Im \geq 0\). Mathematically, we get, for each \(n\in \mathbb{N} \),

$$\begin{aligned} \sum_{\pi =1}^{n} \frac{\eta _{\gimel }^{\nu } ( \varsigma _{\pi },\varsigma _{\pi +1} ) }{\eta _{\gimel }^{\nu } ( \varsigma _{\pi -1},\varsigma _{\pi } ) } \leq &\sum_{\pi =1}^{n} \bigl( \Pi ( \varsigma _{\pi -1})-\Pi ( \varsigma _{\pi }) \bigr) \\ =& \bigl( \Pi (\varsigma _{0})-\Pi (\varsigma _{1}) \bigr) + \bigl( \Pi (\varsigma _{1})-\Pi (\varsigma _{2}) \bigr) +\cdots + \bigl( \Pi (\varsigma _{n-1})-\Pi (\varsigma _{n}) \bigr) \\ =&\Pi (\varsigma _{0})-\Pi (\varsigma _{n})\rightarrow \Pi ( \varsigma _{0})-\Im \quad \text{as }n\rightarrow \infty , \end{aligned}$$

which yields that \(\sum_{\pi =1}^{n} \frac{\eta _{\gimel }^{\nu } ( \varsigma _{\pi },\varsigma _{\pi +1} ) }{\eta _{\gimel }^{\nu } ( \varsigma _{\pi -1},\varsigma _{\pi } ) }< \infty \). Accordingly, we conclude that

$$ \lim_{n\rightarrow \infty } \frac{\eta _{\gimel }^{\nu } ( \varsigma _{\pi },\varsigma _{\pi +1} ) }{\eta _{\gimel }^{\nu } ( \varsigma _{\pi -1},\varsigma _{\pi } ) }=0. $$
(2.12)

It follows by (2.12) that there is \(0<\aleph <1\) so that

$$ \frac{\eta _{\gimel }^{\nu } ( \varsigma _{\pi },\varsigma _{\pi +1} ) }{\eta _{\gimel }^{\nu } ( \varsigma _{\pi -1},\varsigma _{\pi } ) } \leq \aleph \quad \text{for all }\pi \geq \pi _{0}. $$

Equivalently,

$$ \eta _{\gimel }^{\nu } ( \varsigma _{\pi },\varsigma _{\pi +1} ) \leq \aleph \eta _{\gimel }^{\nu } ( \varsigma _{\pi -1}, \varsigma _{\pi } ) \quad \text{for all }\pi \geq \pi _{0}. $$

By continuing with the same scenario used in proving Theorem 2.5, we conclude that the sequence \(\{\varsigma _{n}\}\) converges to some \(\vartheta \in \wp \), i.e.,

$$ \lim_{n\rightarrow \infty }\eta _{\gimel }^{\nu } ( \varsigma _{n}, \vartheta ) =0. $$
(2.13)

It is clear that

$$\begin{aligned} \eta _{\gimel }^{\nu } ( \varsigma _{2n+1},\varsigma _{2n+2} ) \leq &\gimel (\varsigma _{2n+1},\vartheta )\eta _{\gimel }^{ \nu }(\varsigma _{2n+1},\vartheta )+\nu ( \vartheta ,\varsigma _{2n+2}) \eta _{\gimel }^{\nu }( \vartheta ,\varsigma _{2n+2}) \\ \rightarrow &0\quad \text{as }n\rightarrow \infty . \end{aligned}$$
(2.14)

Now, we show that \(\vartheta =\Game \vartheta \). Suppose to the contrary, i.e., \(\eta _{\gimel }^{\nu } ( \Game \vartheta ,\vartheta ) >0\). Consider

$$\begin{aligned} \eta _{\gimel }^{\nu } ( \vartheta ,\Game \vartheta ) \leq & \gimel (\vartheta ,\varsigma _{2n+2})\eta _{\gimel }^{\nu }( \vartheta ,\varsigma _{2n+2})+\nu (\varsigma _{2n+2},\Game \vartheta ) \eta _{\gimel }^{\nu }(\varsigma _{2n+2}, \Game \vartheta ) \\ =&\gimel (\vartheta ,\varsigma _{2n+2})\eta _{\gimel }^{\nu }( \vartheta ,\varsigma _{2n+2})+\nu (\varsigma _{2n+2},\Game \vartheta ) \eta _{\gimel }^{\nu }(\Game \vartheta ,\mho \varsigma _{2n+1}) \\ \leq &\gimel (\vartheta ,\varsigma _{2n+2})\eta _{\gimel }^{\nu }( \vartheta ,\varsigma _{2n+2})+\nu (\varsigma _{2n+2},\Game \vartheta ) \bigl( \Pi (\vartheta )-\Pi (\Game \vartheta ) \bigr) \beth ( \vartheta ,\varsigma _{2n+1} ) , \end{aligned}$$
(2.15)

where

$$\begin{aligned} \beth ( \vartheta ,\varsigma _{2n+1} ) =&\max \left \{ \textstyle\begin{array}{l} \eta _{\gimel }^{\nu }(\vartheta ,\varsigma _{2n+1}),\eta _{\gimel }^{ \nu }(\vartheta ,\Game \vartheta ),\eta _{\gimel }^{\nu }(\varsigma _{2n+1}, \mho \varsigma _{2n+1}), \\ \frac{\eta _{\gimel }^{\nu }(\vartheta ,\Game \vartheta )+\eta _{\gimel }^{\nu }(\varsigma _{2n+1},\mho \varsigma _{2n+1})}{2}, \frac{\sqrt{\eta _{\gimel }^{\nu }(\varsigma _{2n+1},\Game \vartheta ).\eta _{\gimel }^{\nu }(\vartheta ,\mho \varsigma _{2n+1})}}{2}\end{array}\displaystyle \right \} \\ =&\max \left \{ \textstyle\begin{array}{l} \eta _{\gimel }^{\nu }(\vartheta ,\varsigma _{2n+1}),\eta _{\gimel }^{ \nu }(\vartheta ,\Game \vartheta ),\eta _{\gimel }^{\nu }(\varsigma _{2n+1}, \varsigma _{2n+2}), \\ \frac{\eta _{\gimel }^{\nu }(\vartheta ,\Game \vartheta )+\eta _{\gimel }^{\nu }(\varsigma _{2n+1},\varsigma _{2n+2})}{2}, \frac{\sqrt{\eta _{\gimel }^{\nu }(\varsigma _{2n+1},\Game \vartheta ).\eta _{\gimel }^{\nu }(\vartheta ,\varsigma _{2n+2})}}{2}\end{array}\displaystyle \right \} . \end{aligned}$$
(2.16)

Letting \(n\rightarrow \infty \) in (2.16) and applying (2.13) and (2.14), we have

$$ \lim_{n\rightarrow \infty }\beth ( \vartheta ,\varsigma _{2n+1} ) = \eta _{\gimel }^{\nu }(\vartheta ,\Game \vartheta ). $$
(2.17)

Taking \(n\rightarrow \infty \) in (2.15) and by (2.17), we get

$$ \eta _{\gimel }^{\nu } ( \vartheta ,\Game \vartheta ) \leq \nu ( \vartheta ,\Game \vartheta ) \bigl( \Pi (\vartheta )-\Pi ( \Game \vartheta ) \bigr) \eta _{\gimel }^{\nu }(\vartheta ,\Game \vartheta ), $$

a contradiction. Hence, \(\eta _{\gimel }^{\nu } ( \vartheta ,\Game \vartheta ) =0\), i.e., \(\vartheta =\Game \vartheta \). Similarly, we can show that \(\vartheta =\mho \vartheta \). To prove the uniqueness of the cfp of and , let \(\omega \neq \vartheta \) be another cfp of and , i.e., \(\eta _{\gimel }^{\nu } ( \vartheta ,\omega ) >0\). Consider

$$\begin{aligned} \eta _{\gimel }^{\nu } ( \vartheta ,\omega ) =&\eta _{ \gimel }^{\nu } ( \Game \vartheta ,\mho \omega ) \\ \leq & \bigl( \Pi (\vartheta )-\Pi (\Game \vartheta ) \bigr) \beth ( \vartheta ,\omega ) \\ =& \bigl( \Pi (\vartheta )-\Pi (\Game \vartheta ) \bigr) \max \left \{ \textstyle\begin{array}{l} \eta _{\gimel }^{\nu }(\vartheta ,\omega ),\eta _{\gimel }^{\nu }( \vartheta ,\Game \vartheta ),\eta _{\gimel }^{\nu }(\omega ,\mho \omega ), \\ \frac{\eta _{\gimel }^{\nu }(\vartheta ,\Game \vartheta )+\eta _{\gimel }^{\nu }(\omega ,\mho \omega )}{2}, \frac{\sqrt{\eta _{\gimel }^{\nu }(\omega ,\Game \vartheta ).\eta _{\gimel }^{\nu }(\vartheta ,\mho \omega )}}{2}\end{array}\displaystyle \right \} \\ =& \bigl( \Pi (\vartheta )-\Pi (\Game \vartheta ) \bigr) \max \left \{ \textstyle\begin{array}{l} \eta _{\gimel }^{\nu }(\vartheta ,\omega ),\eta _{\gimel }^{\nu }( \vartheta ,\vartheta ),\eta _{\gimel }^{\nu }(\omega ,\omega ), \\ \frac{\eta _{\gimel }^{\nu }(\vartheta ,\vartheta )+\eta _{\gimel }^{\nu }(\omega ,\omega )}{2}, \frac{\sqrt{\eta _{\gimel }^{\nu }(\omega ,\vartheta ).\eta _{\gimel }^{\nu }(\vartheta ,\omega )}}{2}\end{array}\displaystyle \right \} \\ =& \bigl( \Pi (\vartheta )-\Pi (\Game \vartheta ) \bigr) \max \biggl\{ \eta _{\gimel }^{\nu }(\vartheta ,\omega ),0,0,0, \frac{\eta _{\gimel }^{\nu }(\vartheta ,\omega )}{2} \biggr\} \\ =& \bigl( \Pi (\vartheta )-\Pi (\Game \vartheta ) \bigr) \eta _{ \gimel }^{\nu }(\vartheta ,\omega ). \end{aligned}$$

There exists a contradiction in the relation \(\eta _{\gimel }^{\nu } ( \vartheta ,\omega ) \leq ( \Pi (\vartheta )-\Pi (\Game \vartheta ) ) \eta _{\gimel }^{\nu }( \vartheta ,\omega )\), thus \(\eta _{\gimel }^{\nu }(\vartheta , \omega )=0\), i.e., \(\vartheta =\omega \). Therefore, ϑ is the unique cfp of the mappings and . □

Example 2.9

Assume that all requirements of Example 2.2 hold, then \((\wp ,\eta _{\gimel }^{\nu })\) is a complete \(\eta _{\gimel }^{\nu }\)-metric space. Let the mappings \(\Game ,\mho :\wp \rightarrow \wp \) be defined by \(\Game 1=\Game 3=1\), \(\Game 2=3\) and \(\mho 1=\mho 2=1\), \(\mho 3=2\), respectively. Now, we shall verify the contractive condition (2.1) of Theorem 2.5. For \(a=1\), \(b=2\), \(\sigma =\frac{1}{2}\), \(\rho =\frac{1}{4}\), and \(\mu =\frac{1}{5}\) (it is obvious that \(\sigma +\rho +\mu =\frac{19}{20}<1\)), for simplicity, we put

$$ \Omega (\varsigma ,\upsilon )=\sigma \eta _{\gimel }^{\nu }( \varsigma ,\upsilon )+\rho \frac{\eta _{\gimel }^{\nu }(\upsilon ,\mho \upsilon ) [ 1+\eta _{\gimel }^{\nu }(\upsilon ,\mho \upsilon ) ] }{1+\eta _{\gimel }^{\nu } (\Game \varsigma ,\mho \upsilon )}+ \mu \frac{\eta _{\gimel }^{\nu }(\upsilon ,\mho \upsilon ) [ 1+\eta _{\gimel }^{\nu }(\varsigma ,\Game \varsigma ) ] }{1+\eta _{\gimel }^{\nu }(\varsigma ,\upsilon )}. $$

We consider the following cases:

  • If \(\varsigma =\upsilon =1\) or \(( \varsigma =1,\upsilon =2 )\), or \(( \varsigma =3,\upsilon =2 )\), or (\(\varsigma =3 \), \(\upsilon =1\)). This case is achieved directly because of

    $$ \eta _{\gimel }^{\nu } ( \Game 1,\mho 1 ) =\eta _{\gimel }^{ \nu } ( \Game 1,\mho 2 ) =\eta _{\gimel }^{\nu } ( \Game 3,\mho 2 ) =\eta _{\gimel }^{\nu } ( \Game 3,\mho 1 ) = \eta _{\gimel }^{\nu } ( 1,1 ) =0. $$
  • If \(\varsigma =\upsilon =2\), then

    $$ a^{b}\eta _{\gimel }^{\nu } ( \Game \varsigma ,\mho \upsilon ) =\eta _{\gimel }^{\nu } ( \Game 2,\mho 2 ) =\eta _{ \gimel }^{\nu } ( 3,1 ) =1 $$

    and

    $$ \Omega (\varsigma ,\upsilon )=\Omega (2,2)=0\sigma +3\rho +10\mu =3 \biggl( \frac{1}{4} \biggr)+10 \biggl(\frac{1}{5} \biggr)=2.75. $$

    It is easily seen that \(a^{b}\eta _{\gimel }^{\nu } ( \Game \varsigma ,\mho \upsilon ) \leq \Omega (\varsigma ,\upsilon )\).

  • If \(\varsigma =\upsilon =3\), then

    $$ a^{b}\eta _{\gimel }^{\nu } ( \Game \varsigma ,\mho \upsilon ) =\eta _{\gimel }^{\nu } ( \Game 3,\mho 3 ) =\eta _{ \gimel }^{\nu } ( 1,2 ) =2 $$

    and

    $$ \Omega (\varsigma ,\upsilon )=\Omega (3,3)=0\sigma +5.25\rho +7.2\mu =5.25 \biggl(\frac{1}{4} \biggr)+7.2 \biggl(\frac{1}{5} \biggr)=2.7525. $$

    So, we have \(a^{b}\eta _{\gimel }^{\nu } ( \Game \varsigma ,\mho \upsilon ) \leq \Omega (\varsigma ,\upsilon )\).

  • If \(\varsigma =1\), \(\upsilon =3\), then

    $$ a^{b}\eta _{\gimel }^{\nu } ( \Game \varsigma ,\mho \upsilon ) =\eta _{\gimel }^{\nu } ( \Game 1,\mho 3 ) =\eta _{ \gimel }^{\nu } ( 1,2 ) =2 $$

    and

    $$ \Omega (\varsigma ,\upsilon )=\Omega (1,3)=\sigma +\frac{20}{3}\rho +2 \mu =\frac{1}{2}+\frac{20}{3} \biggl( \frac{1}{4} \biggr)+2 \biggl(\frac{1}{5} \biggr)=2.566666667, $$

    hence, we observe that \(a^{b}\eta _{\gimel }^{\nu } ( \Game \varsigma ,\mho \upsilon ) \leq \Omega (\varsigma ,\upsilon )\).

  • If \(\varsigma =2\), \(\upsilon =1\), then

    $$ a^{b}\eta _{\gimel }^{\nu } ( \Game \varsigma ,\mho \upsilon ) =\eta _{\gimel }^{\nu } ( \Game 2,\mho 1 ) =\eta _{ \gimel }^{\nu } ( 3,1 ) =1 $$

    and

    $$ \Omega (\varsigma ,\upsilon )=\Omega (2,1)=2\sigma +0\rho +0\mu =2 \biggl( \frac{1}{2} \biggr)=1. $$

    Thus, \(a^{b}\eta _{\gimel }^{\nu } ( \Game \varsigma ,\mho \upsilon ) \leq \Omega (\varsigma ,\upsilon )\).

  • If \(\varsigma =2\) and \(\upsilon =3\), then

    $$ a^{b}\eta _{\gimel }^{\nu } ( \Game \varsigma ,\mho \upsilon ) =\eta _{\gimel }^{\nu } ( \Game 2,\mho 3 ) =\eta _{ \gimel }^{\nu } ( 3,2 ) =3.6 $$

    and

    $$ \Omega (\varsigma ,\upsilon )=\Omega (2,3)=4(\sigma +\rho +\mu )=3.8. $$

    It is clear that \(a^{b}\eta _{\gimel }^{\nu } ( \Game \varsigma ,\mho \upsilon ) \leq \Omega (\varsigma ,\upsilon )\).

From the above cases, the hypotheses managed by Theorem 2.5 are fulfilled, and 1 is the unique cfp of and .

Example 2.10

Suppose that the data of Example 2.2 are verified, then \((\wp ,\eta _{\gimel }^{\nu })\) is a complete \(\eta _{\gimel }^{\nu }\)-metric space. Suppose that the mappings \(\Game ,\mho :\wp \rightarrow \wp \) are defined by \(\Game 1=\Game 2=2\), \(\Game 3=\mho 1=1\) and \(\mho 2=\mho 3=2\). Define \(\Pi :\wp \rightarrow {}[ 0,\infty )\) as \(\Pi (1)=4\), \(\Pi (2)=3 \), and \(\Pi (3)=5\). Thus, for all \(\varsigma ,\upsilon \in \wp \) such that \(\varsigma \neq 2\), we discuss the following cases:

▲:

If (\(\varsigma =1\), \(\upsilon =3\)) or (\(\varsigma =1\), \(\upsilon =2\)), or (\(\varsigma =3\), \(\upsilon =1\)), we have \(\eta _{\gimel }^{\nu } ( \Game 1,\mho 3 ) =\eta _{\gimel }^{ \nu } ( \Game 1,\mho 2 ) =\eta _{\gimel }^{\nu } ( 2,2 ) =0\) and \(\eta _{\gimel }^{\nu } ( \Game 3,\mho 1 ) =\eta _{\gimel }^{ \nu } ( 1,1 ) =0\), respectively. So this case is trivial.

▲:

If \(\varsigma =\upsilon =1\), we have \(\eta _{\gimel }^{\nu } ( \Game 1,\mho 1 ) =\eta _{\gimel }^{ \nu } ( 2,1 ) =2\).

Consider

$$\begin{aligned} \bigl( \Pi (1)-\Pi (\Game 1) \bigr) \beth ( 1,1 ) =&(4-3) \beth ( 1,1 ) \\ =&\max \left \{ \textstyle\begin{array}{l} \eta _{\gimel }^{\nu }(1,1),\eta _{\gimel }^{\nu }(1,\Game 1),\eta _{ \gimel }^{\nu }(1,\mho 1), \\ \frac{\eta _{\gimel }^{\nu }(1,\Game 1)+\eta _{\gimel }^{\nu }(1,\mho 1)}{2},\frac{\sqrt{\eta _{\gimel }^{\nu }(1,\Game 1).\eta _{\gimel }^{\nu }(1,\mho 1)}}{2}\end{array}\displaystyle \right \} \\ =&\max \left \{ \textstyle\begin{array}{l} \eta _{\gimel }^{\nu }(1,1),\eta _{\gimel }^{\nu }(1,2),\eta _{ \gimel }^{\nu }(1,1), \\ \frac{\eta _{\gimel }^{\nu }(1,2)+\eta _{\gimel }^{\nu }(1,1)}{2}, \frac{\sqrt{\eta _{\gimel }^{\nu }(1,2).\eta _{\gimel }^{\nu }(1,1)}}{2}\end{array}\displaystyle \right \} \\ =&\max \{ 0,2,0,1,0 \} =2. \end{aligned}$$

This leads to \(\eta _{\gimel }^{\nu } ( \Game 1,\mho 1 ) \leq ( \Pi (1)-\Pi (\Game 1) ) \beth ( 1,3 ) \).

▲:

If \(\varsigma =\upsilon =3\), we have \(\eta _{\gimel }^{\nu } ( \Game 3,\mho 3 ) =\eta _{\gimel }^{ \nu } ( 1,2 ) =2\).

Consider

$$\begin{aligned} \bigl( \Pi (3)-\Pi (\Game 3) \bigr) \beth ( 3,3 ) =&(5-4) \beth ( 3,3 ) \\ =&\max \left \{ \textstyle\begin{array}{l} \eta _{\gimel }^{\nu }(3,3),\eta _{\gimel }^{\nu }(3,\Game 3),\eta _{ \gimel }^{\nu }(3,\mho 3), \\ \frac{\eta _{\gimel }^{\nu }(3,\Game 3)+\eta _{\gimel }^{\nu }(3,\mho 3)}{2},\frac{\sqrt{\eta _{\gimel }^{\nu }(3,\Game 3).\eta _{\gimel }^{\nu }(3,\mho 3)}}{2}\end{array}\displaystyle \right \} \\ =&\max \left \{ \textstyle\begin{array}{l} \eta _{\gimel }^{\nu }(3,3),\eta _{\gimel }^{\nu }(3,1),\eta _{ \gimel }^{\nu }(3,2), \\ \frac{\eta _{\gimel }^{\nu }(3,1)+\eta _{\gimel }^{\nu }(3,2)}{2}, \frac{\sqrt{\eta _{\gimel }^{\nu }(3,1).\eta _{\gimel }^{\nu }(3,2)}}{2}\end{array}\displaystyle \right \} \\ =&\max \biggl\{ 0,1,3.6,2.3,\frac{3\sqrt{10}}{10} \biggr\} =3.6. \end{aligned}$$

It yields that \(\eta _{\gimel }^{\nu } ( \Game 3,\mho 3 ) \leq ( \Pi (3)-\Pi (\Game 3) ) \beth ( 3,3 ) \).

▲:

If \(\varsigma =3\), \(\upsilon =2\), we have \(\eta _{\gimel }^{\nu } ( \Game 3,\mho 2 ) =\eta _{\gimel }^{ \nu } ( 1,2 ) =2\).

Consider

$$\begin{aligned} \bigl( \Pi (3)-\Pi (\Game 3) \bigr) \beth ( 3,2 ) =&(5-4) \beth ( 3,2 ) \\ =&\max \left \{ \textstyle\begin{array}{l} \eta _{\gimel }^{\nu }(3,2),\eta _{\gimel }^{\nu }(3,\Game 3),\eta _{ \gimel }^{\nu }(2,\mho 2), \\ \frac{\eta _{\gimel }^{\nu }(3,\Game 3)+\eta _{\gimel }^{\nu }(2,\mho 2)}{2},\frac{\sqrt{\eta _{\gimel }^{\nu }(2,\Game 3).\eta _{\gimel }^{\nu }(3,\mho 2)}}{2}\end{array}\displaystyle \right \} \\ =&\max \left \{ \textstyle\begin{array}{l} \eta _{\gimel }^{\nu }(3,2),\eta _{\gimel }^{\nu }(3,1),\eta _{ \gimel }^{\nu }(2,2), \\ \frac{\eta _{\gimel }^{\nu }(3,1)+\eta _{\gimel }^{\nu }(2,2)}{2}, \frac{\sqrt{\eta _{\gimel }^{\nu }(2,1).\eta _{\gimel }^{\nu }(3,2)}}{2}\end{array}\displaystyle \right \} \\ =&\max \biggl\{ 3.6,1,0,0.5,\frac{3\sqrt{5}}{5} \biggr\} =3.6. \end{aligned}$$

This implies that \(\eta _{\gimel }^{\nu } ( \Game 3,\mho 3 ) \leq ( \Pi (3)-\Pi (\Game 3) ) \beth ( 3,2 ) \).

According to the above cases, we observe that all assumptions of Theorem 2.8 are fulfilled and 2 is the unique cfp of and .

Solving the 2D Volterra integral equations

There are many advantages to studying equations of the form (3.1). The authors [37] showed that problem (3.1) arises from the transformation of certain Volterra integral equations of the first kind, with applications, for example, in analysis of Cauchy problems for certain partial differential equations (e.g., the telegraph equation) and in radiation transfer problems. Moreover, the Darboux problem can also be reduced to equation (3.1), as shown in [38].

In this section, we highlight the role of this technique in finding a solution of the two-dimensional (2D) Volterra integral equations, which takes the form

$$\begin{aligned} \Lambda (\lambda ,\hbar ) =&\xi ( \lambda ,\hbar ) + \int _{0}^{\lambda } \int _{0}^{\hbar }\Xi _{1} \bigl( \varsigma ,\upsilon ,\Lambda (\varsigma ,\upsilon ) \bigr)\,d\varsigma \,d\upsilon \\ &{}+\gimel \int _{0}^{\lambda }\Xi _{2} \bigl(\hbar , \upsilon , \Lambda (\lambda ,\upsilon ) \bigr)\,d\upsilon +\nu \int _{0}^{\hbar } \Xi _{3} \bigl( \lambda ,\varsigma ,\Lambda (\hbar ,\varsigma ) \bigr)\,d\varsigma \end{aligned}$$
(3.1)

for all \(\lambda ,\hbar ,\varsigma ,\upsilon \in {}[ 0,1]\), where \(\Lambda \in \wp =C ( [0,1]\times {}[ 0,1] ) \) and \(\xi :[0,1]\times {}[ 0,1]\rightarrow \mathbb{R} ^{2}\); \(\Xi _{i}(i=1,2,3):[0,1]\times {}[ 0,1]\times \mathbb{R} ^{2}\rightarrow \mathbb{R} ^{2}\). Define the distance \(\eta _{\gimel }^{\nu }:\wp \times \wp \rightarrow {}[ 0,\infty )\) on the set of all continuous functions \(\wp =C ( [0,1]^{2},\mathbb{R} ^{+} ) \) from \([0,1]^{2}\) onto \(\mathbb{R} ^{+}\) as follows:

$$ \eta _{\gimel }^{\nu } \bigl(\Lambda (\lambda ,\hbar ),\varpi ( \lambda , \hbar ) \bigr)= \bigl\vert \kappa (\lambda ,\hbar )-\varpi (\lambda , \hbar ) \bigr\vert ^{2} $$

for all \(\kappa ,\varpi \in \wp \). Let the functions \(\gimel ,\nu :\wp \times \wp \rightarrow {}[ 1,\infty )\) be defined by

$$\begin{aligned}& \gimel \bigl(\Lambda (\lambda ,\hbar ),\varpi (\lambda ,\hbar ) \bigr) = \frac{ \vert \Lambda (\lambda ,\hbar ) \vert + \vert \varpi (\lambda ,\hbar ) \vert }{2}+2, \\& \nu \bigl( \Lambda (\lambda ,\hbar ),\varpi (\lambda ,\hbar ) \bigr) = \frac{ \vert \Lambda (\lambda ,\hbar ) \vert + \vert \varpi (\lambda ,\hbar ) \vert }{1+ \vert \Lambda (\lambda ,\hbar ) \vert + \vert \varpi (\lambda ,\hbar ) \vert }+2. \end{aligned}$$

Then \(( \wp ,\eta _{\gimel }^{\nu } ) \) is clearly an \(\eta _{\gimel }^{\nu }\)-metric space.

We shall consider problem (3.1) via the following assumptions:

  1. (i)

    \(\Xi _{i}\ (i=1,2,3):[0,1]\times {}[ 0,1]\times \mathbb{R} ^{2}\rightarrow \mathbb{R} ^{2}\) are continuous functions satisfying

    $$\begin{aligned} \bigl\vert \Xi _{1}(\varsigma ,\upsilon ,\hbar _{1} ( \varsigma ,\upsilon ) -\Xi _{1}(\varsigma ,\upsilon ,\hbar _{2} ( \varsigma ,\upsilon ) \bigr\vert \leq &\yen _{1} \sqrt{ \bigl\vert \hbar _{1} ( \varsigma ,\upsilon ) - \hbar _{2} ( \varsigma ,\upsilon ) \bigr\vert }, \\ \bigl\vert \Xi _{2}(\varsigma ,\upsilon ,\hbar _{1} ( \varsigma ,\upsilon ) -\Xi _{2}(\varsigma ,\upsilon ,\hbar _{2} ( \varsigma ,\upsilon ) \bigr\vert \leq &\yen _{2} \sqrt{ \bigl\vert \hbar _{1} ( \varsigma , \upsilon ) - \hbar _{2} ( \varsigma ,\upsilon ) \bigr\vert }, \\ \bigl\vert \Xi _{3}(\varsigma ,\upsilon ,\hbar _{1} ( \varsigma ,\upsilon ) -\Xi _{3}(\varsigma ,\upsilon ,\hbar _{2} ( \varsigma ,\upsilon ) \bigr\vert \leq &\yen _{3} \sqrt{ \bigl\vert \hbar _{1} ( \varsigma , \upsilon ) - \hbar _{2} ( \varsigma ,\upsilon ) \bigr\vert }, \end{aligned}$$

    for constants \(\yen _{1},\yen _{2},\yen _{3}\geq 0\) and \(\hbar _{1},\hbar _{2}\in \mathbb{R} ^{2}\);

  2. (ii)

    \(\yen _{1}+ \vert \gimel \vert \yen _{2}+ \vert \nu \vert \yen _{3}\leq \sigma \), where \(0<\sigma <1\).

The important theorem of this part is showed below.

Theorem 3.1

Assume that the above conditions (i)(ii) hold, then problem (3.1) has a unique solution.

Proof

Define the integral operator \(\Game :\wp \rightarrow \wp \) by

$$\begin{aligned} \Game \Lambda (\lambda ,\hbar ) =&\xi ( \lambda ,\hbar ) + \int _{0}^{\lambda } \int _{0}^{\hbar }\Xi _{1} \bigl( \varsigma ,\upsilon ,\Lambda (\varsigma ,\upsilon ) \bigr)\,d\varsigma \,d\upsilon \\ &{}+\gimel \int _{0}^{\lambda }\Xi _{2} \bigl(\hbar , \upsilon , \Lambda (\lambda ,\upsilon ) \bigr)\,d\upsilon +\nu \int _{0}^{\hbar } \Xi _{3} \bigl( \lambda ,\varsigma ,\Lambda (\hbar ,\varsigma ) \bigr)\,d\varsigma . \end{aligned}$$
(3.2)

It is obvious that from (3.2) a unique fixed point of the mapping is the unique solution of problem (3.1). By (3.2), we have

$$\begin{aligned}& \eta _{\gimel }^{\nu } \bigl(\Game \bigl( \Lambda (\lambda , \hbar ) \bigr) ,\Game \bigl( \varpi (\lambda ,\hbar ) \bigr) \bigr) \\& \quad = \bigl\vert \Game \bigl( \Lambda (\lambda ,\hbar ) \bigr) -\Game \bigl( \varpi ( \lambda , \hbar ) \bigr) \bigr\vert ^{2} \\& \quad = \biggl\vert \xi ( \lambda ,\hbar ) + \int _{0}^{ \lambda } \int _{0}^{\hbar }\Xi _{1} \bigl( \varsigma ,\upsilon , \Lambda (\varsigma ,\upsilon ) \bigr)\,d\varsigma \,d\upsilon + \gimel \int _{0}^{\lambda }\Xi _{2} \bigl(\hbar , \upsilon ,\Lambda (\lambda , \upsilon ) \bigr)\,d\upsilon \\& \qquad {} +\nu \int _{0}^{\hbar }\Xi _{3} \bigl( \lambda \hbar ,\varsigma , \Lambda (\hbar ,\varsigma ) \bigr)\,d\varsigma -\xi ( \lambda , \hbar ) - \int _{0}^{\lambda } \int _{0}^{\hbar }\Xi _{1} \bigl( \varsigma ,\upsilon ,\varpi (\varsigma ,\upsilon ) \bigr)\,d\varsigma \,d\upsilon \\& \qquad {} - \gimel \int _{0}^{\lambda }\Xi _{2} \bigl(\hbar , \upsilon ,\varpi (\lambda ,\upsilon ) \bigr)\,d\upsilon -\nu \int _{0}^{ \hbar }\Xi _{3} \bigl( \lambda ,\varsigma ,\varpi (\hbar ,\varsigma ) \bigr)\,d \varsigma \biggr\vert ^{2} \\& \quad = \biggl\vert \int _{0}^{\lambda } \int _{0}^{\hbar } \bigl( \Xi _{1} \bigl( \varsigma ,\upsilon ,\Lambda (\varsigma ,\upsilon ) \bigr)- \Xi _{1} \bigl(\varsigma ,\upsilon ,\varpi (\varsigma ,\upsilon ) \bigr) \bigr) \,d \varsigma \,d\upsilon \\& \qquad {} +\gimel \int _{0}^{\lambda } \bigl( \Xi _{2} \bigl(\hbar , \upsilon ,\Lambda (\lambda ,\upsilon ) \bigr)-\Xi _{2} \bigl(\hbar ,\upsilon , \varpi (\lambda ,\upsilon ) \bigr) \bigr) \,d\upsilon \\& \qquad {} +\nu \int _{0}^{\hbar } \bigl( \Xi _{3} \bigl(\lambda , \varsigma ,\Lambda (\hbar ,\varsigma ) \bigr)-\Xi _{3} \bigl(\lambda ,\varsigma , \varpi (\hbar ,\varsigma ) \bigr) \bigr) \,d\varsigma \biggr\vert ^{2} \\& \quad \leq \biggl( \int _{0}^{\lambda } \int _{0}^{\hbar } \bigl\vert \Xi _{1} \bigl(\varsigma ,\upsilon ,\Lambda (\varsigma , \upsilon ) \bigr)-\Xi _{1} \bigl(\varsigma ,\upsilon ,\varpi (\varsigma , \upsilon ) \bigr) \bigr\vert \,d\varsigma \,d\upsilon \\& \qquad {} + \vert \gimel \vert \int _{0}^{\lambda } \bigl\vert \Xi _{2} \bigl(\hbar ,\upsilon ,\Lambda (\lambda ,\upsilon ) \bigr)-\Xi _{2} \bigl( \hbar ,\upsilon ,\varpi (\lambda ,\upsilon ) \bigr) \bigr\vert \,d\upsilon \\& \qquad {} + \vert \nu \vert \int _{0}^{\hbar } \bigl\vert \Xi _{3} \bigl(\lambda ,\varsigma ,\Lambda (\hbar ,\varsigma ) \bigr)- \Xi _{3} \bigl(\lambda ,\varsigma ,\varpi (\hbar ,\varsigma ) \bigr) \bigr\vert \,d \varsigma \biggr) ^{2}. \end{aligned}$$

Applying the double conditions of our theorem, we get

$$\begin{aligned}& \eta _{\gimel }^{\nu } \bigl(\Game \bigl( \Lambda (\lambda , \hbar ) \bigr) ,\Game \bigl( \varpi (\lambda ,\hbar ) \bigr) \bigr) \\& \quad \leq \biggl( \int _{0}^{\lambda } \int _{0}^{\hbar } \yen _{1}\sqrt{ \bigl\vert \Lambda (\varsigma ,\upsilon )-\varpi (\varsigma , \upsilon ) \bigr\vert }\,d\varsigma \,d\upsilon + \vert \gimel \vert \int _{0}^{\lambda }\yen _{2}\sqrt{ \bigl\vert \Lambda (\lambda ,\upsilon )-\varpi (\lambda ,\upsilon ) \bigr\vert }\,d\upsilon \\& \qquad {} + \vert \nu \vert \int _{0}^{\hbar } \yen \sqrt{_{3} \bigl\vert \Lambda (\hbar ,\varsigma )-\varpi (\hbar ,\varsigma ) \bigr\vert }\,d\varsigma \biggr) ^{2} \\& \quad \leq \bigl( \yen _{1}\sqrt{ \bigl\vert \Lambda (\varsigma , \upsilon )-\varpi (\varsigma ,\upsilon ) \bigr\vert }+ \vert \gimel \vert \yen _{2}\sqrt{ \bigl\vert \Lambda (\lambda , \upsilon )-\varpi ( \lambda ,\upsilon ) \bigr\vert } \\& \qquad {}+ \vert \nu \vert \yen _{3} \sqrt{ \bigl\vert \Lambda (\hbar ,\varsigma )-\varpi (\hbar , \varsigma ) \bigr\vert } \bigr) ^{2} \\& \quad \leq \bigl( \yen _{1}\sqrt{ \bigl\vert \Lambda (\lambda ,\hbar )- \varpi (\lambda ,\hbar ) \bigr\vert }+ \vert \gimel \vert \yen _{2}\sqrt{ \bigl\vert \Lambda (\lambda ,\hbar )-\varpi (\lambda ,\hbar ) \bigr\vert }\\& \qquad {}+ \vert \nu \vert \yen _{3}\sqrt{ \bigl\vert \Lambda ( \lambda ,\hbar )-\varpi (\lambda , \hbar ) \bigr\vert } \bigr) ^{2} \\& \quad = \bigl( \bigl( \yen _{1}+ \vert \gimel \vert \yen _{2}+ \vert \nu \vert \yen _{3} \bigr) \sqrt{ \bigl\vert \Lambda (\lambda ,\hbar )-\varpi (\lambda ,\hbar ) \bigr\vert } \bigr) ^{2} \\& \quad \leq \sigma ^{2}\eta _{\gimel }^{\nu } \bigl( \Lambda (\lambda ,\hbar ), \varpi (\lambda ,\hbar ) \bigr) \\& \quad \leq \sigma \eta _{\gimel }^{\nu } \bigl(\Lambda (\lambda , \hbar ), \varpi (\lambda ,\hbar ) \bigr). \end{aligned}$$

Hence the requirements of Corollary 2.7 are fulfilled, therefore we observe that has a unique fixed point, and so problem (3.1) has a unique solution. □

A unique solution of Riemann–Liouville fractional integrals

A bunch of scientists have tackled Riemann–Liouville integral equations and recently identified a new technique, so-called ‘fixed point approach’. This novel approach has promised the existence of a solution of Riemann–Liouville integral equations. For more details, see [39, 40].

Along the same lines, here we study the existence and uniqueness of a solution of Riemann–Liouville (RL) fractional integral in the form of

$$ {}_{\hslash }^{\mathrm{RL}}I_{\kappa }^{\tau }\varsigma ( \kappa )= \frac{1}{\Gamma (\tau )} \int _{\hslash }^{\kappa }(\kappa - \ell )^{\tau -1} \varsigma (\ell )\,d\ell ;\quad \Gamma (\tau )>0, $$
(4.1)

where \(\tau \in \mathbb{R} \), \(\varsigma (\kappa )\in \wp =C ( [0,1],\mathbb{R} )\) (\(C ( [0,1],\mathbb{R} ) \) is the set of all continuous functions from \([0,1]\) onto \(\mathbb{R} \)) and \(\kappa ,\ell \in {}[ 0,1]\) which is the fractional integral. Define the distance \(\eta _{\gimel }^{\nu }:\wp \times \wp \rightarrow {}[ 0,\infty )\) by

$$ \eta _{\gimel }^{\nu }(\varsigma ,\upsilon )= \bigl\vert \varsigma ( \kappa )-\upsilon (\kappa ) \bigr\vert ^{2} $$

for all \(\varsigma (\kappa ),\upsilon (\kappa )\in \wp \) and \(\kappa \in {}[ 0,1]\). Also define \(\gimel ,\nu :\wp \times \wp \rightarrow {}[ 1,\infty )\) by

$$\begin{aligned}& \gimel \bigl(\varsigma (\kappa ),\upsilon (\kappa ) \bigr) = \frac{ \vert \varsigma (\kappa ) \vert + \vert \upsilon (\kappa ) \vert }{2}+2, \\& \nu \bigl( \varsigma (\kappa ),\upsilon (\kappa ) \bigr) = \frac{ \vert \varsigma (\kappa ) \vert + \vert \upsilon (\kappa ) \vert }{1+ \vert \varsigma (\kappa ) \vert + \vert \upsilon (\kappa ) \vert }+2. \end{aligned}$$

Then \(( \wp ,\eta _{\gimel }^{\nu } ) \) is an \(\eta _{\gimel }^{\nu }\)-metric space.

Now, we shall show that integral (4.1) has a unique solution under the following condition:

$$ \frac{1}{\Gamma ^{2}(\tau +1)} \frac{(\kappa -\ell )^{\tau -1}(\kappa -\hslash )^{2\tau }}{ \vert (\kappa -\ell )^{\tau -1} \vert }< \sigma ,\quad \text{where } \sigma \in (0,1)\text{ and }\kappa \neq \ell . $$

Define also the operator \(\Game :\wp \rightarrow \wp \) by

$$ \Game \varsigma (\kappa )=\frac{1}{\Gamma (\tau )} \int _{ \hslash }^{\kappa }(\kappa -\ell )^{\tau -1} \varsigma (\ell )\,d\ell . $$
(4.2)

Thus, the existence of a unique solution of problem (4.1) is equivalent to finding a unique fixed point of the integral operator (4.2).

Assume that

$$\begin{aligned} \eta _{\gimel }^{\nu }(\Game \varsigma ,\Game \upsilon ) =& \bigl\vert \Game \varsigma (\kappa )-\Game \upsilon (\kappa ) \bigr\vert ^{2} \\ =& \biggl\vert \frac{1}{\Gamma (\tau )} \int _{\hslash }^{ \kappa }(\kappa -\ell )^{\tau -1} \varsigma (\ell )\,d\ell - \frac{1}{\Gamma (\tau )}\int _{\hslash }^{\kappa }(\kappa -\ell )^{\tau -1} \upsilon ( \ell )\,d\ell \biggr\vert ^{2} \\ \leq & \biggl( \biggl\vert \frac{1}{\Gamma (\tau )} \int _{ \hslash }^{\kappa }(\kappa -\ell )^{\tau -1}d \ell \biggr\vert \biggr) ^{2} \bigl\vert \varsigma (\ell )- \upsilon (\ell ) \bigr\vert ^{2} \\ \leq &\frac{1}{\Gamma ^{2}(\tau )} \biggl( \int _{\hslash }^{ \kappa } \bigl\vert (\kappa -\ell )^{\tau -1} \bigr\vert \,d\ell \biggr) ^{2} \bigl\vert \varsigma (\ell )-\upsilon (\ell ) \bigr\vert ^{2} \\ =&\frac{1}{\Gamma ^{2}(\tau )} \frac{(\kappa -\ell )^{\tau -1}}{ \vert (\kappa -\ell )^{\tau -1} \vert } \biggl( \int _{\hslash }^{\kappa }(\kappa -\ell )^{\tau -1}d \ell \biggr) ^{2} \bigl\vert \varsigma (\ell )-\upsilon (\ell ) \bigr\vert ^{2} \\ =&\frac{-1}{\Gamma ^{2}(\tau )} \frac{(\kappa -\ell )^{\tau -1}}{ \vert (\kappa -\ell )^{\tau -1} \vert } \biggl( \biggl[ \frac{(\kappa -\ell )^{\tau }}{\tau } \biggr] _{ \hslash }^{\kappa } \biggr) ^{2} \bigl\vert \varsigma (\ell )- \upsilon (\ell ) \bigr\vert ^{2} \\ =&\frac{1}{\Gamma ^{2}(\tau )} \frac{(\kappa -\ell )^{\tau -1}}{ \vert (\kappa -\ell )^{\tau -1} \vert } \biggl( \frac{(\kappa -\hslash )^{\tau }}{\tau } \biggr) ^{2} \bigl\vert \varsigma (\ell )-\upsilon (\ell ) \bigr\vert ^{2} \\ =&\frac{1}{\Gamma ^{2}(\tau +1)} \frac{(\kappa -\ell )^{\tau -1}(\kappa -\hslash )^{2\tau }}{ \vert (\kappa -\ell )^{\tau -1} \vert } \bigl\vert \varsigma (\ell )-\upsilon (\ell ) \bigr\vert ^{2} \\ \leq &\sigma \eta _{\gimel }^{\nu }(\varsigma ,\upsilon ). \end{aligned}$$

Thus, all the assumptions of Corollary 2.7 are verified, so has a unique fixed point, i.e., the Riemann–Liouville fractional integral equation has a unique solution.

Existence of a unique solution of Atangana–Baleanu fractional operator

In 2016, Atangana and Baleanu [41] developed more general definitions of a fractional derivative and an integral operator targeting nonlocal and nonsingular kernel. This operator takes the form (5.1). This study examines the connections between nanofluids, the dynamics of ions over the membrane, material mechanics, and predictor-corrector algorithms [4246]. This new impression offers the opportunity to elaborate on the new findings/new insights and creative approaches for contextualizing the new topics in various aspects.

Let \(\wp =C ( [0,1],\mathbb{R} ) \) be a set of all continuous functions from \([0,1]\) onto \(\mathbb{R} \). Define the distance \(\eta _{\gimel }^{\nu }:\wp \times \wp \rightarrow {}[ 0,\infty )\) by

$$ \eta _{\gimel }^{\nu }(\varsigma ,\upsilon )= \bigl\vert \varsigma ( \kappa )-\upsilon (\kappa ) \bigr\vert ^{2} $$

for all \(\varsigma (\kappa ),\upsilon (\kappa )\in \wp \) and \(\kappa \in {}[ 0,1]\). Also, define \(\gimel ,\nu :\wp \times \wp \rightarrow {}[ 1,\infty )\) by

$$\begin{aligned}& \gimel \bigl(\varsigma (\kappa ),\upsilon (\kappa ) \bigr) = \frac{ \vert \varsigma (\kappa ) \vert + \vert \upsilon (\kappa ) \vert }{2}+2, \\& \nu \bigl( \varsigma (\kappa ),\upsilon (\kappa ) \bigr) = \frac{ \vert \varsigma (\kappa ) \vert + \vert \upsilon (\kappa ) \vert }{1+ \vert \varsigma (\kappa ) \vert + \vert \upsilon (\kappa ) \vert }+2. \end{aligned}$$

Then \(( \wp ,\eta _{\gimel }^{\nu } ) \) is an \(\eta _{\gimel }^{\nu }\)-metric space.

Atangana–Baleanu fractional integral type (AB) of order of a function \(\varsigma (\kappa )\) is exemplified as follows:

$$ _{\hslash }^{\mathrm{AB}}I_{\kappa }^{\Re }\varsigma ( \kappa )= \frac{1-\Re }{\beta (\Re )}\varsigma (\kappa )+ \frac{\Re }{\beta (\Re )\Gamma (\Re )}\int _{\hslash }^{\kappa }\varsigma (\ell ) (\kappa -\ell )^{ \Re -1}\,d\ell , $$
(5.1)

where \(\Re \in (0,1]\), \(\varsigma (\kappa )\in \wp \) and \(\kappa ,\ell \in {}[ 0,1]\), which is the fractional integral. Note that the normalization functions \(\beta (0)\) and \(\beta (1)\) both are equal to 1.

Now, we will prove that the fractional integral (5.1) has a unique solution if the following assumption holds:

$$ \frac{1-\Re }{\beta (\Re )}+ \frac{\hslash ^{\Re }}{\beta (\Re )\Gamma (\Re )}< \sigma ,\quad \text{where } \sigma \in (0,1). $$

Define an operator \(\Game _{\mathrm{AB}}:\wp \rightarrow \wp \) by

$$ \Game _{\mathrm{AB}}\varsigma (\kappa )=\frac{1-\Re }{\beta (\Re )}\varsigma ( \kappa )+\frac{\Re }{\beta (\Re )\Gamma (\Re )} \int _{ \hslash }^{\kappa }\varsigma (\ell ) (\kappa -\ell )^{\Re -1}\,d\ell . $$
(5.2)

Thus, the solution of integral (5.1) is equivalent to finding a unique fixed point of the integral operator (5.2). Consider

$$\begin{aligned} \eta _{\gimel }^{\nu }(\Game \varsigma ,\Game \upsilon ) =& \bigl\vert \Game \varsigma (\kappa )-\Game \upsilon (\kappa ) \bigr\vert ^{2} \\ =& \biggl\vert \biggl( \frac{1-\Re }{\beta (\Re )}\varsigma (\kappa )+ \frac{\Re }{\beta (\Re )\Gamma (\Re )} \int _{\hslash }^{\kappa } \varsigma (\ell ) (\kappa -\ell )^{\Re -1}\,d\ell \biggr) \\ &{} - \biggl( \frac{1-\Re }{\beta (\Re )}\upsilon (\kappa )+ \frac{\Re }{\beta (\Re )\Gamma (\Re )} \int _{\hslash }^{\kappa }\upsilon ( \ell ) (\kappa -\ell )^{\Re -1}\,d\ell \biggr) \biggr\vert ^{2} \\ =& \biggl\vert \biggl( \frac{1-\Re }{\beta (\Re )} \bigl[ \varsigma ( \kappa )- \upsilon (\kappa ) \bigr] + \frac{\Re }{\beta (\Re )\Gamma (\Re )}\int _{\hslash }^{\kappa }(\kappa -\ell )^{\Re -1}d \ell \bigl[ \varsigma (\ell )-\upsilon (\ell ) \bigr] \biggr) \biggr\vert ^{2} \\ \leq & \biggl\vert \biggl( \frac{1-\Re }{\beta (\Re )} \bigl\vert \varsigma ( \kappa )-\upsilon (\kappa ) \bigr\vert + \frac{\Re }{\beta (\Re )\Gamma (\Re )} \int _{\hslash }^{ \kappa }(\kappa -\ell )^{\Re -1}d \ell \bigl\vert \varsigma (\ell )- \upsilon (\ell ) \bigr\vert \biggr) \biggr\vert ^{2} \\ =& \biggl\vert \biggl( \frac{1-\Re }{\beta (\Re )} \bigl\vert \varsigma (\kappa )-\upsilon (\kappa ) \bigr\vert - \frac{\Re }{\beta (\Re )\Gamma (\Re )} \biggl[ \frac{(\kappa -\ell )^{\Re }}{\Re } \biggr] _{\hslash }^{\kappa } \bigl\vert \varsigma (\ell )-\upsilon (\ell ) \bigr\vert \biggr) \biggr\vert ^{2} \\ =& \biggl\vert \biggl( \frac{1-\Re }{\beta (\Re )} \bigl\vert \varsigma (\kappa )-\upsilon (\kappa ) \bigr\vert + \frac{\Re }{\beta (\Re )\Gamma (\Re )} \frac{(\kappa -\hslash )^{\Re }}{\Re } \bigl\vert \varsigma (\ell )- \upsilon (\ell ) \bigr\vert \biggr) \biggr\vert ^{2} \\ \leq & \biggl\vert \biggl( \frac{1-\Re }{\beta (\Re )}+ \frac{\Re }{\beta (\Re )\Gamma (\Re )} \frac{(\kappa -\hslash )^{\Re }}{\Re } \biggr) \bigl\vert \varsigma ( \kappa )-\upsilon (\kappa ) \bigr\vert \biggr\vert ^{2} \\ =& \biggl( \frac{1-\Re }{\beta (\Re )}+ \frac{\Re }{\beta (\Re )\Gamma (\Re )}\frac{(\kappa -\hslash )^{\Re }}{\Re } \biggr) ^{2} \bigl\vert \varsigma (\kappa )- \upsilon (\kappa ) \bigr\vert ^{2} \\ \leq &\sigma ^{2} \bigl\vert \varsigma (\kappa )-\upsilon ( \kappa ) \bigr\vert ^{2} \\ \leq &\sigma \eta _{\gimel }^{\nu }(\varsigma ,\upsilon ). \end{aligned}$$

Thus, the assertions managed by Corollary 2.7 are gratified, which implies that the fractional integral of Atangana–Baleanu type of order has a unique solution.

Conclusion and discussions

In this manuscript, we considered a double controlled metric space (in short, \(\eta _{\gimel }^{\nu }\)-metric space). Via this space, some novel theoretical results involving fixed point techniques under various suitable assumptions have been established. To confirm our consequences, nontrivial examples have been presented. Finally, short and simple proofs have been obtained to find the existence and uniqueness of solutions of 2D Volterra integral equations, Riemann–Liouville integrals, and Atangana–Baleanu integral operators. In addition, the applications in this manuscript are listed as follows:

  • A fixed point technique to solve the 2D Volterra integral equation (3.1). This problem is considered without kernels because it is caused by a time-fractional telegraph equation. It is exciting to clarify a few points in this direction: In telegraph’s equation characterizing the variation of voltage Λ along with an electrical cable as a function of time and position

    $$ \Lambda _{\kappa \kappa }+(\Phi +\Psi )\Lambda _{\kappa }+\Phi \Psi \Lambda =\complement ^{2}\Lambda _{\zeta \zeta }, $$
    (6.1)

    which consists of a resistor of resistance R, a coil of inductance L, a resistor of conductance ϰ, or a capacitor of capacitance , where \(\complement ^{2}=\frac{1}{LL}\), \(\Phi =\frac{\varkappa }{\complement }\), \(\Psi =\frac{R}{L}\).

    If \(\frac{R}{L}=\frac{\varkappa }{\complement }\) (or \(R\complement =L\varkappa \)) a constant velocity of propagation would result and the attenuation would be minimized, this result was discussed by the physicist Oliver Heaviside in 1893.

    This equation is a special case of the nonlinear Cauchy problem

    $$ \frac{\partial ^{2}\Lambda }{\partial \kappa ^{2}}+ \frac{\partial }{\partial \kappa } \bigl(q(\zeta ,\kappa ,\Lambda ) \bigr)= \frac{\partial ^{2}\Lambda }{\partial \zeta ^{2}}+ \frac{\partial }{\partial \zeta } \bigl(q(\zeta ,\kappa , \Lambda ) \bigr)+\Omega ( \zeta ,\kappa ,\Lambda ), $$

    where \((\zeta ,\kappa )\in \Im =\{(\zeta ,\kappa ):\zeta +\kappa \geq 0, \zeta -\kappa \leq 0\}\). Thus, by the above notes, equation (6.1) can be written as the 2D Volterra integral equation (3.1).

  • A fixed point technique to discuss the existence of a solution of Riemann–Liouville integral equations via Guo–Gupta–Suzuki–Ćirić type results in the setting of an \(\eta _{\gimel }^{\nu }\)-metric space.

  • The existence and uniqueness of solutions for an Atangana–Baleanu fractional operator in the class of \(\eta _{\gimel }^{\nu }\)-metric spaces have been discussed by a fixed point approach.

Availability of data and materials

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. 1.

    Amar, A.B., Jeribi, A., Mnif, M.: Some fixed point theorems and application to biological model. Numer. Funct. Anal. Optim. 29(1–2), 1–23 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Mc Ghee, D.F., Madbouly, N.M., Roach, G.F.: Applications of fixed point theorems to a chemical reactor problem. In: Integral Methods in Science and Engineering, pp. 133–138 (2004)

    Google Scholar 

  3. 3.

    Border, K.C.: Fixed Point Theorems with Applications to Economics and Game Theory. Cambridge University Press, Cambridge (1985), 129 pages

    Google Scholar 

  4. 4.

    Meznik, I.: Banach fixed point theorem and the stability of the market. In: Proceedings of the International Conference the Decidable and the Undecidable in Mathematics Education, Brno, Czech Republic, pp. 177–180 (2003)

    Google Scholar 

  5. 5.

    Chwastek, K.: The applications of fixed-point theorem in optimisation problems. Arch. Electr. Eng. 61(2), 189–198 (2012)

    Article  Google Scholar 

  6. 6.

    Kakutani, S.: A generalization of Brouwer’s fixed point theorem. Duke Math. J. 8(3), 457–459 (1941)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Agarwal, R.P., O’Regan, D., Wong, P.J.Y.: Positive Solutions of Differential, Difference and Integral Equations. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  8. 8.

    Maleknejad, K., Torabi, P., Mollapourasl, R.: Fixed point method for solving nonlinear quadratic Volterra integral equations. Comput. Math. Appl. 62(6), 2555–2566 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Ahmad, B.: Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations. Appl. Math. Lett. 23(4), 390–394 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Aydi, H., Jleli, M., Samet, B.: On positive solutions for a fractional thermostat model with a convex-concave source term via ψ-Caputo fractional derivative. Mediterr. J. Math. 17(1), 16 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Bai, Z.: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal. 72(2), 916–924 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Ameer, E., Aydi, H., Arshad, M., De la Sen, M.: Hybrid Ćirić type graphic \(( \Upsilon ,\Lambda ) \)-contraction mappings with applications to electric circuit and fractional differential equations. Symmetry 12(3), 467 (2020)

    Article  Google Scholar 

  13. 13.

    Agarwal, P., Baltaeva, U., Alikulov, Y.: Solvability of the boundary-value problem for a linear loaded integro-differential equation in an infinite three-dimensional domain. Chaos Solitons Fractals 140, 110108 (2020)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Agarwal, P., Denz, S., Jain, S., Alderremy, A.A., Aly, S.: A new analysis of a partial differential equation arising in biology and population genetics via semi analytical techniques. Phys. A, Stat. Mech. Appl. 542, 122769 (2020)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Khalid, A., Naeem, M.N., Agarwal, P., Ghaffar, A., Ullah, Z., Jain, S.: Numerical approximation for the solution of linear sixth order boundary value problems by cubic B-spline. Adv. Differ. Equ. 2019, 492 (2019)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Yassen, M.F., Attiya, A.A., Agarwal, P.: Subordination and superordination properties for certain family of analytic functions associated with Mittag-Leffler function. Symmetry 12(10), 1724 (2020)

    Article  Google Scholar 

  17. 17.

    Alderremy, A.A., Saad, K.M., Agarwal, P., Aly, S., Jain, S.: Certain new models of the multi space-fractional Gardner equation. Phys. A, Stat. Mech. Appl. 545, 123806 (2020)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Ameer, E., Aydi, H., Arshad, M., Alsamir, H., Noorani, M.S.: Hybrid multivalued type contraction mappings in \(\alpha _{K}\)-complete partial b-metric spaces and applications. Symmetry 11(1), 86 (2019)

    MATH  Article  Google Scholar 

  19. 19.

    Aydi, H., Lakzian, H., Mitrovic, Z.D., Radenovic, S.: Best proximity points of MF-cyclic contractions with property UC. Numer. Funct. Anal. Optim. 41(7), 871–882 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Hammad, H.A., De la Sen, M.: Tripled fixed point techniques for solving system of tripled-fractional differential equations. AIMS Math. 6(3), 2330–2343 (2020)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Kawasaki, T., Toyoda, M.: Fixed point theorem and fractional differential equations with multiple delays related with chaos neuron models. Appl. Math. 6, 2192–2198 (2015)

    Article  Google Scholar 

  22. 22.

    Lou, B.: Fixed points for operators in a space of continuous functions and applications. Proc. Am. Math. Soc. 127, 1159–2264 (1999)

    MathSciNet  Article  Google Scholar 

  23. 23.

    de Pascale, E., de Pascale, L.: Fixed points for some non-obviously contractive operators. Proc. Am. Math. Soc. 130, 3249–3254 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18(4), 621–709 (1976)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Liu, J., Li, F., Lu, L.: Fixed point and applications of mixed monotone operator with super linear non-linearity. Acta Math. Sci. Ser. A 23(1), 19–24 (2003)

    MathSciNet  Google Scholar 

  26. 26.

    Abdeljawad, T., Agarwal, R.P., Karapinar, E., Kumari, P.S.: Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space. Symmetry 11, 686 (2019)

    MATH  Article  Google Scholar 

  27. 27.

    Hammad, H.A., De la Sen, M.: A coupled fixed point technique for solving coupled systems of functional and nonlinear integral equations. Mathematics 7, 634 (2019)

    Article  Google Scholar 

  28. 28.

    Hammad, H.A., De la Sen, M.: A solution of Fredholm integral equation by using the cyclic \(\eta _{s}^{q}\)-rational contractive mappings technique in b-metric-like spaces. Symmetry 11, 1184 (2019)

    Article  Google Scholar 

  29. 29.

    Karapinar, E., Czerwik, S., Aydi, H.: \((\alpha ,\psi )\)-Meir-Keeler contraction mappings in generalized b-metric spaces. J. Funct. Spaces 2018, Article ID 3264620 (2018)

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Zhai, C.B., Hao, M.R.: Fixed point theorems for mixed monotone operators with perturbation and applications to fractional differential equation boundary value problems. Nonlinear Anal. 75, 2542–2551 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    Google Scholar 

  32. 32.

    Kamran, T., Samreen, M., Ul Ain, Q.: A generalization of b-metric space and some fixed point theorems. Mathematics 5, 19 (2017)

    MATH  Article  Google Scholar 

  33. 33.

    Mlaiki, N., Aydi, H., Souayah, N., Abdeljawad, T.: Controlled metric type spaces and the related contraction principle. Mathematics 6(10), 194 (2018)

    MATH  Article  Google Scholar 

  34. 34.

    Abdeljawad, T., Mlaiki, N., Aydi, H., Souayah, N.: Double controlled metric type spaces and some fixed point results. Mathematics 6, 320 (2018)

    MATH  Article  Google Scholar 

  35. 35.

    Bakhtin, I.A.: The contraction mapping principle in almost metric spaces. Funct. Anal. 30, 26–37 (1989)

    MathSciNet  MATH  Google Scholar 

  36. 36.

    Czerwik, S.: Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1, 5–11 (1993)

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Mckee, S., Tang, T., Diogo, T.: An Euler-type method for two-dimensional Volterra integral equations of the first kind. IMA J. Numer. Anal. 20, 423–440 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Dobner, H.J.: Bounds for the solution of hyperbolic problems. Computing 38, 209–218 (1987)

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Xie, W., Xiao, J., Luo, Z.: Existence of solutions for Riemann–Liouville fractional boundary value problem. Abstr. Appl. Anal. 2014, Article ID 540351 (2014)

    MathSciNet  MATH  Google Scholar 

  40. 40.

    Eloe, P.W., Jonnalagadda, J.: Quasilinearization and boundary value problems for Riemann–Liouville fractional differential equations. Electron. J. Differ. Equ. 2019, 58 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)

    Article  Google Scholar 

  42. 42.

    Saqib, M., Khan, I., Shafie, S.: Application of Atangana–Baleanu fractional derivative to MHD channel flow of CMC-based CNT’s nanofluid through a porous medium. Chaos Solitons Fractals 116, 79–85 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  43. 43.

    Bahaa, G.M.: Optimal control problem for variable-order fractional differential systems with time delay involving Atangana–Baleanu derivatives. Chaos Solitons Fractals 122, 129–142 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    Atangana, A., Koca, I.: Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order. Chaos Solitons Fractals 89, 447–454 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Owolabi, K.M., Atangana, A.: On the formulation of Adams–Bashforth scheme with Atangana–Baleanu–Caputo fractional derivative to model chaotic problems. Chaos, Interdiscip. J. Nonlinear Sci. 29(2), 023111 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  46. 46.

    Gomez-Aguilar, J.F., Atangana, A., Morales-Delgado, V.V.F.: Electrical circuits RC, LC, and RL described by Atangana–Baleanu fractional derivatives. Int. J. Circuit Theory Appl. 45(11), 1514–1533 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The second author would like to thank Sefako Makgatho Health Sciences University for funding this paper.

Funding

This research received no external funding.

Author information

Affiliations

Authors

Contributions

All authors contributed equally in writing this article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hassen Aydi.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hammad, H.A., Aydi, H. & Mlaiki, N. Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann–Liouville fractional integrals, and Atangana–Baleanu integral operators. Adv Differ Equ 2021, 97 (2021). https://doi.org/10.1186/s13662-021-03255-6

Download citation

MSC

  • 26A33
  • 34A08
  • 34B24
  • 39A70
  • 47H10
  • 54H25

Keywords

  • Double controlled metric spaces
  • 2D Volterra integral equations
  • Riemann–Liouville fractional integrals
  • Atangana–Baleanu integral operators