Skip to main content

Theory and Modern Applications

Differential equations of even-order with p-Laplacian like operators: qualitative properties of the solutions

Abstract

In this paper, we study the oscillation of solutions for an even-order differential equation with middle term, driven by a p-Laplace differential operator of the form

$$ \textstyle\begin{cases} ( r ( x ) \Phi _{p}[z^{ ( \kappa -1 ) } ( x ) ] ) ^{\prime }+a ( x ) \Phi _{p}[f ( z^{ ( \kappa -1 ) } ( x ) ) ]+ \sum_{i=1}^{j}q_{i} ( x ) \Phi _{p}[h ( z ( \delta _{i} ( x ) ) ) ]=0, \\ \quad j\geq 1, r ( x ) >0, r^{\prime } ( x ) +a ( x ) \geq 0, x\geq x_{0}>0. \end{cases}$$

The oscillation criteria for these equations have been obtained. Furthermore, an example is given to illustrate the criteria.

1 Introduction

It is worth mentioning in this context that delay differential equations have many real-life applications in all branches of science and engineering; see [1, 2]. On the other hand, the p-Laplace equations have crucial applications in different areas such as in elasticity theory, see, for example, Aronsson–Janfalk [3], and in general nonlinear phenomena, see Vetro [4]. Therefore, the literature reveals results of various studies concerning the oscillatory behavior of equations driven by a p-Laplace differential operator; see, by way of example not exhaustive enumeration, Li–Baculikova–Dzurina–Zhang [5], Liu–Zhang–Yu [6], Zhang–Agarwal–Li [7]. Additionally, the oscillatory properties of differential equations are studied intensively by many scientists; see, for example, [8–22].

The aim of this work is to investigate the oscillatory behavior of the even-order delay differential equation (DDE) with damping of the form

$$ \textstyle\begin{cases} ( r ( x ) \Phi _{p}[z^{ ( \kappa -1 ) } ( x ) ] ) ^{\prime }+a ( x ) \Phi _{p}[f ( z^{ ( \kappa -1 ) } ( x ) ) ]+ \sum_{i=1}^{j}q_{i} ( x ) \Phi _{p}[h ( z ( \delta _{i} ( x ) ) ) ]=0, \\ \quad j\geq 1, r ( x ) >0, r^{\prime } ( x ) +a ( x ) \geq 0, x\geq x_{0}>0, \end{cases} $$
(1)

under the following conditions:

  1. (G1)

    \(\Phi _{p}[s]=|s|^{p-2}s\);

  2. (G2)

    \(r, a, q_{i}\in C ( [x_{0},\infty ),[0,\infty ) ) \), \(q_{i} ( x ) >0\), \(i=1,2,\dots ,j\) are such that

    $$ \int _{x_{0}}^{\infty } \biggl[ \frac{1}{r ( s ) }\exp \biggl( - \int _{x_{0}}^{s} \frac{a ( u ) }{r ( u ) }\,du \biggr) \biggr] ^{1/ ( p-1 ) }\,ds< \infty ; $$
    (2)
  3. (G3)

    \(\delta _{i}\in C ( [ x_{0},\infty ) , ( 0, \infty ) ) \), \(\delta _{i} ( x ) \leq x\) and \(\lim_{x\rightarrow \infty }\delta _{i} ( x ) =\infty \), \(i=1,2, \dots ,j\);

  4. (G4)

    \(f, h\in C ( \mathbb{R} ,\mathbb{R} ) \), \(f ( x ) \geq m \vert x \vert ^{p-2}x>0\), \(h ( x ) \geq \ell \vert x \vert ^{p-2}x>0\) for \(x\neq 0\), \(m\geq 1\) and \(\ell >0\),

where the first term of equation (1) means the p-Laplace-type operator with \(1< p<\infty \).

To achieve our target, we implemented several relevant facts and auxiliary results from the existing literature [7, 23–26]. Notice that Liu–Zhang–Yu [6] provided some theoretical information on the oscillation of half-linear functional differential equations with damping, i.e.,

$$ \textstyle\begin{cases} ( r ( x ) \Phi ( z^{ ( n-1 ) } ( x ) ) ) ^{\prime }+a ( x ) \Phi ( z^{ ( n-1 ) } ( x ) ) +q ( x ) \Phi ( z ( g ( x ) ) ) =0, \\ \quad \Phi = \vert s \vert ^{p-2}s, x\geq x_{0}>0, \end{cases}$$

where n is even. The authors used the comparison method with second order equations. In Bazighifan–Poom [23] and Bazighifan–Abdeljawad [24], the comparison method with the first and second order equations is used to establish oscillation criteria for

$$ \textstyle\begin{cases} ( r ( x ) \vert z^{ ( n-1 ) } ( x ) \vert ^{p-2}z^{ ( n-1 ) } ( x ) ) ^{\prime }+\sum_{i=1}^{j}q_{i} ( x ) g ( z ( \delta _{i} ( x ) ) ) =0, \\ \quad j\geq 1, x\geq x_{0}>0, \end{cases}$$

where n is even and p is a real number greater than 1, in the case where \(\delta _{i} ( x ) \geq \upsilon \), \(\alpha \leq \beta \) (with \(r\in C^{1} ( (0,\infty ),\mathbb{R} ) \), \(q_{i}\in C ( [0,\infty ), \mathbb{R} ) \), \(i=1,2,\dots ,j\)).

For the special case when \(p=1\), Elabbasy et al. [16] provided some information on the asymptotic behavior of (1). The authors used the comparison method with second order equations to achieve their targets. We must point out that Li et al. [5] had used the Riccati transformation, together with the integral averaging technique, to discuss the oscillation of the following equation:

$$ \textstyle\begin{cases} ( r ( x ) \vert z^{\prime \prime \prime } ( x ) \vert ^{p-2}z^{\prime \prime \prime } ( x ) ) ^{\prime }+q ( x ) \vert z ( \delta _{i} ( x ) ) \vert ^{p-2}z ( \delta ( x ) ) =0, \\ \quad 1< p< \infty , x\geq x_{0}>0. \end{cases}$$

In Park et al. [26], the Riccati technique is used to obtain oscillation criteria of

$$ \textstyle\begin{cases} ( r ( x ) \vert z^{ ( n-1 ) } ( x ) \vert ^{p-2}z^{ ( n-1 ) } ( x ) ) ^{\prime }+q ( x ) g ( z ( \delta ( x ) ) ) =0, \\ \quad 1< p< \infty , x\geq x_{0}>0, \end{cases}$$

where n is even. Zhang et al. in [7] studied the equation

$$ \textstyle\begin{cases} L_{z}^{\prime }+p ( x ) \vert ( z^{ ( \kappa -1 ) } ( x ) ) \vert ^{p-2}z^{ ( \kappa -1 ) } ( x ) +q ( x ) \vert ( z ( \delta ( x ) ) ) \vert ^{p-2}z ( \delta ( x ) ) =0, \\ \quad 1< p< \infty , x\geq x_{0}>0, \end{cases}$$

where

$$ L_{z}=r ( x ) \bigl\vert \bigl( z^{ ( \kappa -1 ) } ( x ) \bigr) \bigr\vert ^{p-2}z^{ ( \kappa -1 ) } ( x ). $$

As a matter of fact, the investigation of the half-linear/p-Laplace equation (1) has become an important area of research due to the fact that such equations arise in a variety of real-world problems such as in the study of non-Newtonian fluid theory, the turbulent flow of a polytrophic gas in a porous medium, etc.; see the following papers for more details [27–33]. In this work, we will partially use the tools and findings of [7, 23–26] to obtain new oscillation conditions for (1). Theoretical results will be illustrated via an example.

2 Oscillation criteria

For further convenience, we denote:

$$\begin{aligned}& \sigma ( x_{0},x ) :=\exp \biggl( \int _{x_{0}}^{x} \frac{a ( u ) }{r ( u ) }\,du \biggr) , \\& \zeta ( x ) := \int _{x}^{\infty } \frac{ds}{ ( r ( s ) \sigma ( x_{0},s ) ) ^{1/ ( p-1 ) }}, \\& \varpi ( x ) := \frac{\delta _{i}^{\prime } ( x ) }{\delta _{i} ( x ) }- \frac{ma ( x ) }{r ( x ) }, \\& \psi ( x ) := \frac{1}{\sigma ^{1/ ( p-1 ) } ( x_{0},x ) }- \frac{\zeta ( x ) a ( x ) r^{ ( 2-p ) / ( p-1 ) } ( x ) }{ ( p-1 ) }, \\& \psi ^{\ast } ( x ) := \frac{a ( x ) }{r ( x ) }+ \frac{ ( p-1 ) ^{p}\delta _{i} ( x ) \psi ^{p} ( x ) \sigma ( x_{0},x ) }{\zeta ( x ) r^{1/ ( p-1 ) } ( x ) }. \end{aligned}$$

Next, we recall some technical tools useful throughout the paper:

Lemma 2.1

([34])

Let \(z\in C^{\kappa } ( [ x_{0},\infty ) , ( 0, \infty ) ) \). If \(\lim_{x\rightarrow \infty }z ( x ) \neq 0\) and

$$ z^{ ( \kappa -1 ) } ( x ) z^{ ( \kappa ) } ( x ) \leq 0, $$

then

$$ z ( x ) \geq \frac{\lambda }{ ( \kappa -1 ) !}x^{ \kappa -1} \bigl\vert z^{ ( \kappa -1 ) } ( x ) \bigr\vert ,\quad \lambda \in ( 0,1 ) . $$

Lemma 2.2

([35])

Let \(C>0\) and D be constants. Then

$$ Dz-Cz^{ ( \alpha +1 ) /\alpha }\leq \frac{\alpha ^{\alpha }}{(\alpha +1)^{\alpha +1}}\frac{D^{\alpha +1}}{C^{\alpha }}, \quad \alpha \geq 1. $$

Lemma 2.3

([34])

Let \(z\in C^{\kappa } ( [ x_{0},\infty ) , ( 0, \infty ) ) \). If \(z^{ ( \kappa -1 ) } ( x ) z^{ ( \kappa ) } ( x ) \leq 0\), then for every \(\theta \in ( 0,1 ) \) and \(\kappa >0\) one has

$$ z ( \theta x ) \geq \kappa x^{\kappa -1}z^{ ( \kappa -1 ) } ( x ). $$

Lemma 2.4

([36])

Let \(z\in C^{n-1}([x_{z},\infty ),\mathbb{R})\) be an (eventually) positive solution of (1). Then, we distinguish the following situations:

$$\begin{aligned} ( I_{1} )&\quad z ( x ) >0,\qquad z^{\prime } ( x ) >0,\qquad z^{ ( \kappa -1 ) } ( x ) >0,\qquad z^{ ( \kappa ) } ( x ) < 0; \\ ( I_{2} )&\quad z ( x ) >0, \qquad z^{ ( \kappa -2 ) } ( x ) >0,\qquad z^{ ( \kappa -1 ) } ( x ) < 0. \end{aligned}$$

Lemma 2.5

Let \(( I_{1} ) \) hold and \(z ( x ) >0\). If

$$ \varsigma ( x ) :=\delta _{i} ( x ) \frac{r ( x ) ( z^{ ( \kappa -1 ) } ) ^{p-1} ( x ) }{z^{p-1} ( x/2 ) },\quad \varsigma ( x ) >0, $$
(3)

where \(\delta _{i}\in C^{1} ( [ x_{0},\infty ) ) \), then there exists a constant \(\kappa >0\) such that

$$ \varsigma ^{\prime } ( x ) \leq -\ell \delta _{i} ( x ) \sum _{i=1}^{j}q_{i} ( x ) + \varpi _{+} ( x ) \varsigma ( x ) - \frac{ ( p-1 ) \kappa x^{\kappa -2}}{2 ( r ( x ) \delta _{i} ( x ) ) ^{1/ ( p-1 ) }}\varsigma ^{\frac{p}{ ( p-1 ) }} ( x ) . $$
(4)

Proof

Let \(( I_{1} ) \) hold and \(z ( x ) >0\). Using Lemma 2.3, we obtain

$$ z^{\prime } ( x/2 ) \geq \kappa x^{\kappa -2}z^{ ( \kappa -1 ) } ( x ) . $$
(5)

From (3), we get

$$\begin{aligned} \varsigma ^{\prime } ( x ) =&\delta _{i}^{\prime } ( x ) \frac{r ( x ) ( z^{ ( \kappa -1 ) } ) ^{p-1} ( x ) }{z^{p-1} ( x/2 ) }+\delta _{i} ( x ) \frac{ ( r ( z^{ ( \kappa -1 ) } ) ^{p-1} ) ^{\prime } ( x ) }{z^{p-1} ( x/2 ) } \\ &{}- ( p-1 ) \delta _{i} ( x ) \frac{z^{\prime } ( x/2 ) r ( x ) ( z^{ ( \kappa -1 ) } ) ^{p-1} ( x ) }{2z^{p} ( x/2 ) }. \end{aligned}$$

From (3) and (5), we find

$$\begin{aligned} \varsigma ^{\prime } ( x ) \leq &\frac{\delta _{i}^{\prime } ( x ) }{\delta _{i} ( x ) } \varsigma ( x ) + \delta _{i} ( x ) \frac{ ( r ( z^{ ( \kappa -1 ) } ) ^{p-1} ) ^{\prime } ( x ) }{z^{p-1} ( x/2 ) } \\ &{}- ( p-1 ) \kappa x^{\kappa -2}\delta _{i} ( x ) \frac{r ( x ) ( z^{ ( \kappa -1 ) } ) ^{p} ( x ) }{2z^{p} ( x/2 ) }. \end{aligned}$$
(6)

From (1), we get

$$\begin{aligned} \bigl( r ( x ) \Phi _{p} \bigl[z^{ ( \kappa -1 ) } ( x ) \bigr] \bigr) ^{\prime } =&-a ( x ) \Phi _{p} \bigl[f \bigl( z^{ ( \kappa -1 ) } ( x ) \bigr) \bigr]- \sum_{i=1}^{j}q_{i} ( x ) \Phi _{p} \bigl[h \bigl( z \bigl( \delta _{i} ( x ) \bigr) \bigr) \bigr] \\ =&-ma ( x ) \bigl\vert z^{ ( \kappa -1 ) } ( x ) \bigr\vert ^{p-2}z^{ ( \kappa -1 ) } ( x ) \\ &{}-\ell \sum_{i=1}^{j}q_{i} ( x ) \bigl\vert z^{ ( \kappa -1 ) } \bigl( \delta _{i} ( x ) \bigr) \bigr\vert ^{p-2}z^{ ( \kappa -1 ) } \bigl( \delta _{i} ( x ) \bigr) \\ =&-ma ( x ) \bigl( z^{ ( \kappa -1 ) } ( x ) \bigr) ^{p-1}-\ell \sum _{i=1}^{j}q_{i} ( x ) \bigl( z^{ ( \kappa -1 ) } \bigl( \delta _{i} ( x ) \bigr) \bigr) ^{p-1}. \end{aligned}$$
(7)

From (6) and (7), we find

$$\begin{aligned} \varsigma ^{\prime } ( x ) \leq &\frac{\delta _{i+}^{\prime } ( x ) }{\delta _{i} ( x ) } \varsigma ( x ) -ma ( x ) \frac{\varsigma ( x ) }{r ( x ) } \\ &{}-\ell \delta _{i} ( x ) \sum_{i=1}^{j}q_{i} ( x ) \frac{z^{p-1} ( \delta _{i} ( x ) ) }{z^{p-1} ( x/2 ) }- ( p-1 ) \kappa x^{\kappa -2} \frac{\varsigma ^{\frac{p}{ ( p-1 ) }} ( x ) }{2 ( \delta _{i} ( x ) r ( x ) ) ^{1/ ( p-1 ) }} \\ \leq &-\ell \delta _{i} ( x ) \sum_{i=1}^{j}q_{i} ( x ) + \biggl( \frac{\delta _{i+}^{\prime } ( x ) }{\delta _{i} ( x ) }-m\frac{a ( x ) }{r ( x ) } \biggr) \varsigma ( x ) \\ &{}- ( p-1 ) \kappa x^{\kappa -2} \frac{\varsigma ^{\frac{p}{ ( p-1 ) }} ( x ) }{2 ( \delta _{i} ( x ) r ( x ) ) ^{1/ ( p-1 ) }}. \end{aligned}$$

Hence, we find

$$ \varsigma ^{\prime } ( x ) \leq -\ell \delta _{i} ( x ) \sum _{i=1}^{j}q_{i} ( x ) + \varpi _{+} ( x ) \varsigma ( x ) - ( p-1 ) \kappa x^{ \kappa -2} \frac{\varsigma ^{\frac{p}{ ( p-1 ) }} ( x ) }{2 ( \delta _{i} ( x ) r ( x ) ) ^{1/ ( p-1 ) }}. $$

The proof is complete. □

Lemma 2.6

Let \(( I_{2} ) \) hold and \(z ( x ) >0\). If

$$ \vartheta ( x ) :=- \frac{r ( x ) ( -z^{ ( \kappa -1 ) } ) ^{p-1} ( x ) }{ ( z^{ ( \kappa -2 ) } ) ^{p-1} ( x ) },\quad \vartheta ( x ) < 0, $$
(8)

then there exists a constant \(\mu \in ( 0,1 ) \) such that

$$ \vartheta ^{\prime } ( x ) \leq \frac{ma ( x ) }{r ( x ) \zeta ^{p-1} ( x ) \sigma ( x_{0},x ) }- \ell \sum _{i=1}^{j}q_{i} ( x ) \biggl( \frac{\mu }{ ( \kappa -2 ) !}\delta _{i}^{\kappa -2} ( x ) \biggr) ^{p-1}- ( p-1 ) \frac{\vartheta ^{\frac{p}{^{ ( p-1 ) }}} ( x ) }{r^{\frac{1}{^{ ( p-1 ) }}} ( x ) }. $$
(9)

Proof

Assume that \(( I_{2} ) \) holds and \(z ( x ) >0\). Since

$$\begin{aligned}& \bigl( -r ( x ) \bigl( -z^{ ( \kappa -1 ) } ( x ) \bigr) ^{p-1} \sigma ( x_{0},x ) \bigr) ^{\prime } \\& \quad = \bigl( -r ( x ) \bigl( -z^{ ( \kappa -1 ) } ( x ) \bigr) ^{p-1} \bigr) ^{\prime }\sigma ( x_{0},x ) \\& \qquad {} + \bigl( -r ( x ) \bigl( -z^{ ( \kappa -1 ) } ( x ) \bigr) ^{p-1} \bigr) \sigma ( x_{0},x ) \frac{a ( x ) }{r ( x ) } \\& \quad = ( -1 ) ^{p} \Biggl( -a ( x ) f \bigl( z^{ ( \kappa -1 ) } ( x ) \bigr) -\sum_{i=1}^{j}q_{i} ( x ) g \bigl( z \bigl( \delta _{i} ( x ) \bigr) \bigr) \Biggr) \sigma ( x_{0},x ) \\& \qquad {} -a ( x ) \bigl( -z^{ ( \kappa -1 ) } ( x ) \bigr) ^{p-1}\sigma ( x_{0},x ) \\& \quad \leq ( -1 ) ^{p} \Biggl( -ma ( x ) \bigl( z^{ ( \kappa -1 ) } ( x ) \bigr) ^{p-1}-\ell \sum_{i=1}^{j}q_{i} ( x ) z^{p-1} \bigl( \delta _{i} ( x ) \bigr) \Biggr) \sigma ( x_{0},x ) \\& \qquad {} -a ( x ) \bigl( -z^{ ( \kappa -1 ) } ( x ) \bigr) ^{p-1}\sigma ( x_{0},x ) \\& \quad = \Biggl( -a ( x ) \bigl( -z^{ ( \kappa -1 ) } ( x ) \bigr) ^{p-1} ( 1-m ) +\ell \sum_{i=1}^{j}q_{i} ( x ) \bigl( -z^{p-1} \bigl( \delta _{i} ( x ) \bigr) \bigr) \Biggr) \sigma ( x_{0},x ) \\& \quad = ( -1 ) ^{p-1} \Biggl( -a ( x ) \bigl( z^{ ( \kappa -1 ) } ( x ) \bigr) ^{p-1} ( 1-m ) +\ell \sum_{i=1}^{j}q_{i} ( x ) \bigl( z^{p-1} \bigl( \delta _{i} ( x ) \bigr) \bigr) \Biggr) \sigma ( x_{0},x ) \\& \quad \leq -\ell \sum_{i=1}^{j}q_{i} ( x ) z^{p-1} \bigl( \delta _{i} ( x ) \bigr) \sigma ( x_{0},x ) < 0, \end{aligned}$$

we deduce that \(-r ( x ) ( -z^{ ( \kappa -1 ) } ( x ) ) ^{p-1}\sigma ( x_{0},x )\) is decreasing. Thus, for \(s\geq x\geq x_{1}\), one has

$$ \bigl( r ( s ) \sigma ( x_{0},s ) \bigr) ^{1/ ( p-1 ) }z^{ ( \kappa -1 ) } ( s ) \leq \bigl( r ( x ) \sigma ( x_{0},x ) \bigr) ^{1/ ( p-1 ) }z^{ ( \kappa -1 ) } ( x ) . $$
(10)

Dividing both sides of (10) by \(( r ( s ) \sigma ( x_{0},s ) ) ^{1/ ( p-1 ) }\) and integrating the resulting inequality from x to u, we get

$$ z^{ ( \kappa -2 ) } ( u ) \leq z^{ ( \kappa -2 ) } ( x ) + \bigl( r ( x ) \sigma ( x_{0},x ) \bigr) ^{1/ ( p-1 ) }z^{ ( \kappa -1 ) } ( x ) \int _{x}^{u} \frac{ds}{ ( r ( s ) \sigma ( x_{0},s ) ) ^{1/\alpha }}. $$

Letting \(u\rightarrow \infty \), we arrive at

$$ 0\leq z^{ ( \kappa -2 ) } ( x ) + \bigl( r ( x ) \sigma ( x_{0},x ) \bigr) ^{1/ ( p-1 ) }z^{ ( \kappa -1 ) } ( x ) \zeta ( x ) , $$

which yields

$$ - \frac{z^{ ( \kappa -1 ) } ( x ) }{z^{ ( \kappa -2 ) } ( x ) } \zeta ( x ) \bigl( r ( x ) \sigma ( x_{0},x ) \bigr) ^{1/ ( p-1 ) }\leq 1. $$

Hence,

$$ \frac{r ( x ) ( z^{ ( \kappa -1 ) } ( x ) ) ^{p-1}}{ ( z^{ ( \kappa -2 ) } ( x ) ) ^{p-1}}\geq \frac{-1}{\zeta ^{p-1} ( x ) \sigma ( x_{0},x ) }. $$

From (8), we have

$$ \vartheta ( x ) \geq \frac{-1}{\zeta ^{p-1} ( x ) \sigma ( x_{0},x ) } $$
(11)

and

$$ \vartheta ^{\prime } ( x ) = \frac{ ( -r ( x ) ( -z^{ ( \kappa -1 ) } ( x ) ) ^{p-1} ) ^{\prime }}{ ( z^{ ( \kappa -2 ) } ( x ) ) ^{p-1}}- ( p-1 ) \frac{-r ( x ) ( -z^{ ( \kappa -1 ) } ( x ) ) ^{p}}{ ( z^{ ( \kappa -2 ) } ( x ) ) ^{p}}. $$

From (1) and (8), we obtain

$$\begin{aligned} \vartheta ^{\prime } ( x ) \leq &-m \frac{a ( x ) }{r ( x ) }\vartheta ( x ) -\ell \sum_{i=1}^{j}q_{i} ( x ) \frac{z^{p-1} ( \delta _{i} ( x ) ) }{ ( z^{ ( \kappa -2 ) } ( x ) ) ^{p-1}}- ( p-1 ) \frac{\vartheta ^{\frac{p}{^{ ( p-1 ) }}} ( x ) }{r^{\frac{1}{^{ ( p-1 ) }}} ( x ) } \\ =&-m\frac{a ( x ) }{r ( x ) }\vartheta ( x ) -\ell \sum _{i=1}^{j}q_{i} ( x ) \frac{z^{p-1} ( \delta _{i} ( x ) ) }{ ( z^{ ( \kappa -2 ) } ( \delta _{i} ( x ) ) ) ^{p-1}} \frac{ ( z^{ ( \kappa -2 ) } ( \delta _{i} ( x ) ) ) ^{p-1}}{ ( z^{ ( \kappa -2 ) } ( x ) ) ^{p-1}}- ( p-1 ) \frac{\vartheta ^{\frac{p}{^{ ( p-1 ) }}} ( x ) }{r^{\frac{1}{^{ ( p-1 ) }}} ( x ) }. \end{aligned}$$
(12)

Using Lemma 2.1, we find

$$ z ( x ) \geq \frac{\mu }{ ( \kappa -2 ) !}x^{ \kappa -2}z^{ ( \kappa -2 ) } ( x ) . $$
(13)

Thus, from (11) and (13), we get

$$ \vartheta ^{\prime } ( x ) \leq \frac{ma ( x ) }{r ( x ) \zeta ^{p-1} ( x ) \sigma ( x_{0},x ) }- \ell \sum _{i=1}^{j}q_{i} ( x ) \biggl( \frac{\mu }{ ( \kappa -2 ) !}\delta _{i}^{\kappa -2} ( x ) \biggr) ^{p-1}- ( p-1 ) \frac{\vartheta ^{\frac{p}{^{ ( p-1 ) }}} ( x ) }{r^{\frac{1}{^{ ( p-1 ) }}} ( x ) }. $$

The proof is complete. □

Theorem 2.1

Let functions \(\delta _{i},\zeta \in C^{1} ( [ x_{0},\infty ) , ( 0,\infty ) ) \) and \(\kappa >0\), \(\mu \in ( 0,1 )\) be such that

$$ \lim_{x\rightarrow \infty }\sup \int _{x_{0}}^{x} \Biggl( \ell \delta _{i} ( s ) \sum_{i=1}^{j}q_{i} ( s ) - \biggl( \frac{2}{\kappa s^{\kappa -2}} \biggr) ^{p-1} \frac{r ( s ) \delta _{i} ( s ) ( \varpi _{+} ( s ) ) ^{p}}{p^{p}} \Biggr) \,ds=\infty $$
(14)

and

$$ \lim_{x\rightarrow \infty }\sup \int _{x_{0}}^{x} \Biggl( \ell \sum _{i=1}^{j}q_{i} ( s ) \biggl( \frac{\mu \delta _{i}^{\kappa -2} ( s ) }{ ( \kappa -2 ) !} \zeta ( s ) \biggr) ^{p-1}\sigma ( x_{0},s ) - \psi ^{\ast } ( s ) \Biggr) \,ds=\infty . $$
(15)

Then all solutions of (1) are oscillatory.

Proof

Let z be a nonoscillatory solution of equation (1) and \(z ( x ) >0\). Applying Lemma 2.2 to (4) and setting

$$ D=\varpi _{+} ( x ) , \qquad C= ( p-1 ) \kappa x^{ \kappa -2}/ \bigl( 2 \bigl( r ( x ) \delta _{i} ( x ) \bigr) ^{1/ ( p-1 ) } \bigr),\quad \text{and}\quad z=\varsigma , $$

we have

$$ \varsigma ^{\prime } ( x ) \leq -\ell \delta _{i} ( x ) \sum _{i=1}^{j}q_{i} ( x ) + \biggl( \frac{2}{\kappa x^{\kappa -2}} \biggr) ^{p-1} \frac{r ( x ) \delta _{i} ( x ) ( \varpi _{+} ( x ) ) ^{p}}{p^{p}}. $$
(16)

Integrating from \(x_{1}\) to x, we find

$$ \int _{x_{1}}^{x} \Biggl( \ell \delta _{i} ( s ) \sum_{i=1}^{j}q_{i} ( s ) - \biggl( \frac{2}{\kappa s^{\kappa -2}} \biggr) ^{p-1} \frac{r ( s ) \delta _{i} ( s ) ( \varpi _{+} ( s ) ) ^{p}}{p^{p}} \Biggr) \,ds\leq \varsigma ( x_{1} ) , $$

which contradicts (14).

Now, multiplying (9) by \(\zeta ^{p-1} ( x ) \sigma ( x_{0},x )\) and integrating the resulting inequality from \(x_{1}\) to x, we get

$$\begin{aligned}& \zeta ^{p-1} ( x ) \sigma ( x_{0},x ) \vartheta ( x ) -\zeta ^{p-1} ( x_{1} ) \sigma ( x_{0},x_{1} ) \vartheta ( x_{1} ) - \int _{x_{1}}^{x}\frac{a ( s ) }{r ( s ) }\,ds \\& \qquad {} + ( p-1 ) \int _{x_{1}}^{x}r^{ \frac{-1}{^{ ( p-1 ) }}} ( s ) \zeta ^{p-2} ( s ) \sigma ( x_{0},s ) \psi ( s ) \vartheta ( s ) \,ds \\& \qquad {} + \int _{x_{1}}^{x}\ell \sum _{i=1}^{j}q_{i} ( s ) \biggl( \frac{\mu }{ ( \kappa -2 ) !}\delta _{i}^{\kappa -2} ( s ) \biggr) ^{p-1}\zeta ^{p-1} ( s ) \sigma ( x_{0},s ) \,ds \\& \qquad {} + ( p-1 ) \int _{x_{1}}^{x} \frac{\vartheta ^{\frac{p}{^{ ( p-1 ) }}} ( s ) }{r^{\frac{1}{^{ ( p-1 ) }}} ( s ) }\zeta ^{p-1} ( s ) \sigma ( x_{0},s ) \,ds \\& \quad \leq 0. \end{aligned}$$

In view of Lemma 2.2, we put

$$ C=\zeta ^{p-1} ( s ) \sigma ( x_{0},s ) /r^{ \frac{1}{^{ ( p-1 ) }}} ( s ) ,\qquad D= \int _{x_{1}}^{x}r^{ \frac{-1}{^{ ( p-1 ) }}} ( s ) \zeta ^{p-2} ( s ) \sigma ( x_{0},s ) \psi ( s ) ,\qquad z= \vartheta ( x ) . $$

Thus, we get

$$\begin{aligned}& \zeta ^{p-1} ( x ) \sigma ( x_{0},x ) \vartheta ( x ) -\zeta ^{p-1} ( x_{1} ) \sigma ( x_{0},x_{1} ) \vartheta ( x_{1} ) - \int _{x_{1}}^{x}\frac{a ( s ) }{r ( s ) }\,ds \\& \qquad {} + \int _{x_{1}}^{x}\ell \sum _{i=1}^{j}q_{i} ( s ) \biggl( \frac{\mu }{ ( \kappa -2 ) !}\delta _{i}^{\kappa -2} ( s ) \biggr) ^{p-1}\zeta ^{p-1} ( s ) \sigma ( x_{0},s ) \,ds \\& \qquad {} + \int _{x_{1}}^{x} \frac{ ( p-1 ) ^{p}\delta _{i} ( s ) \psi ^{p} ( s ) \sigma ( x_{0},s ) }{\zeta ( s ) r^{\frac{1}{^{ ( p-1 ) }}} ( x ) }\,ds \\& \quad \leq 0. \end{aligned}$$

Hence, by (11), we obtain

$$ \int _{x_{1}}^{x} \Biggl( \ell \sum _{i=1}^{j}q_{i} ( s ) \biggl( \frac{\mu \delta _{i}^{\kappa -2} ( s ) }{ ( \kappa -2 ) !} \zeta ( s ) \biggr) ^{p-1}\sigma ( x_{0},s ) - \psi ^{\ast } ( s ) \Biggr) \,ds\leq \zeta ^{p-1} ( x ) \sigma ( x_{0},x ) \vartheta ( x_{1} ) +1, $$

which contradicts (15). The proof is complete. □

Remark 2.1

For interested researchers, there is a good problem of finding new results in the following cases:

\(( \mathbf{S}_{1} ) \):

\(z ( x ) >0\), \(z^{\prime } ( x ) >0\), \(z^{ ( \kappa -2 ) } ( x ) >0\), \(z^{ ( \kappa -1 ) } ( x ) \leq 0\), \(( r ( x ) ( z^{ ( m-1 ) } ( x ) ) ^{p-1} ) ^{\prime }\leq 0 \),

\(( \mathbf{S}_{2} ) \):

\(z ( x ) >0\), \(z^{(r)}(x)<0\), \(z^{(r+1)}(x)>0\) for all odd integer \(r\in \{1,3,\dots ,\kappa -3\}\), \(z^{ ( \kappa -1 ) } ( x ) <0\), \(( r ( x ) ( w^{ ( \kappa -1 ) } ( x ) ) ^{p-1} ) ^{\prime } \leq 0\).

Example 2.1

For \(x\geq 1\), consider the equation

$$ \bigl( x^{2} \bigl( z^{\prime } ( x ) \bigr) \bigr) ^{ \prime }+\frac{x}{2}z^{\prime } ( x ) +q_{0}z \biggl( \frac{x}{2} \biggr) =0, \quad x\geq 1, $$
(17)

where \(q_{0}>0\) is a constant. Let \(p=2\), \(\kappa =2\), \(x_{0}=1\), \(r ( x ) =x^{2}\), \(a ( x ) =x/2\), \(q ( x ) =q_{0}\), \(\delta _{i} ( x ) =x/2\). We now set \(\delta _{i} ( x ) =m=\ell =1\), then

$$\begin{aligned}& \sigma ( x_{0},x ) :=\exp \biggl( \int _{x_{0}}^{x} \frac{a ( u ) }{r ( u ) }\,du \biggr) =x^{1/2}, \\& \zeta ( x ) := \int _{x}^{\infty } \frac{ds}{ ( r ( s ) \sigma ( x_{0},s ) ) ^{\frac{1}{^{ ( p-1 ) }}}}= \frac{2}{3x^{3/2}}, \\& \varpi ( x ) := \frac{\delta _{i}^{\prime } ( x ) }{\delta _{i} ( x ) }- \frac{ma ( x ) }{r ( x ) }=\frac{-1}{2x}, \\& \psi ( x ) := \frac{1}{\sigma ^{\frac{1}{^{ ( p-1 ) }}} ( x_{0},x ) }- \frac{\zeta ( x ) a ( x ) r^{ ( 2-p ) / ( p-1 ) } ( x ) }{ ( p-1 ) }= \frac{2}{3x^{1/2}}, \\& \psi ^{\ast } ( x ) := \frac{a ( x ) }{r ( x ) }+ \frac{ ( p-1 ) ^{p}\delta _{i} ( x ) \psi ^{p} ( x ) \sigma ( x_{0},x ) }{\zeta ( x ) r^{\frac{1}{^{ ( p-1 ) }}} ( x ) }=\frac{7}{6x}, \end{aligned}$$

thus, we get

$$ \lim_{x\rightarrow \infty }\sup \int _{x_{0}}^{x} \Biggl( \ell \delta _{i} ( s ) \sum_{i=1}^{j}q_{i} ( s ) - \biggl( \frac{2}{\kappa s^{\kappa -2}} \biggr) ^{p-1} \frac{r ( s ) \delta _{i} ( s ) ( \varpi _{+} ( s ) ) ^{p}}{p^{p}} \Biggr) \,ds=\infty $$

and, for some \(\mu \in ( 0,1 ) \),

$$\begin{aligned}& \lim_{x\rightarrow \infty }\sup \int _{x_{0}}^{x} \Biggl( \ell \sum _{i=1}^{j}q_{i} ( s ) \biggl( \frac{\mu \delta _{i}^{\kappa -2} ( s ) }{ ( \kappa -2 ) !} \zeta ( s ) \biggr) ^{p-1}\sigma ( x_{0},s ) - \psi ^{\ast } ( s ) \Biggr) \,ds \\& \quad = \lim_{x\rightarrow \infty }\sup \int _{x_{0}}^{x} \biggl( \frac{q_{0}\mu }{s}- \frac{7}{6s} \biggr) \,ds. \end{aligned}$$

Thus, by Theorem 2.1, every solution of (17) is oscillatory if \(q_{0}>\frac{7}{6\mu }\).

3 Conclusion

In this article, we studied the oscillatory properties of even-order differential equations. New oscillation criteria were established. We used Riccati technique to prove that every solution of (1) is oscillatory. Further, we shall study equation (1) under the condition \(\delta _{i} ( t ) \geq t\) in the future work.

Availability of data and materials

Not applicable.

References

  1. Hale, J.K.: Theory of Functional Differential Equations. Springer, New York (1977)

    Book  Google Scholar 

  2. Rihan, F.A., Al-Mdallal, Q.M., AlSakaji, H.J., Hashish, A.: A fractional-order epidemic model with time-delay and nonlinear incidence rate. Chaos Solitons Fractals 126, 97–105 (2019)

    Article  MathSciNet  Google Scholar 

  3. Aronsson, G., Janfalk, U.: On Hele–Shaw flow of power-law fluids. Eur. J. Appl. Math. 3, 343–366 (1992)

    Article  MathSciNet  Google Scholar 

  4. Vetro, C.: Pairs of nontrivial smooth solutions for nonlinear Neumann problems. Appl. Math. Lett. 103, 106171 (2020)

    Article  MathSciNet  Google Scholar 

  5. Li, T., Baculikova, B., Dzurina, J., Zhang, C.: Oscillation of fourth order neutral differential equations with p-Laplacian like operators. Bound. Value Probl. 2014, 56 (2014)

    Article  MathSciNet  Google Scholar 

  6. Liu, S., Zhang, Q., Yu, Y.: Oscillation of even-order half-linear functional differential equations with damping. Comput. Math. Appl. 61, 2191–2196 (2011)

    Article  MathSciNet  Google Scholar 

  7. Zhang, C., Agarwal, R., Li, T.: Oscillation and asymptotic behavior of higher-order delay differential equations with p-Laplacian like operators. J. Math. Anal. Appl. 409, 1093–1106 (2014)

    Article  MathSciNet  Google Scholar 

  8. Agarwal, R., Shieh, S.L., Yeh, C.C.: Oscillation criteria for second order retarde ddifferential equations. Math. Comput. Model. 26, 1–11 (1997)

    Article  Google Scholar 

  9. Baculikova, B., Dzurina, J., Graef, J.R.: On the oscillation of higher-order delay differential equations. Math. Slovaca 187, 387–400 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Bazighifan, O., Ramos, H.: On the asymptotic and oscillatory behavior of the solutions of a class of higher-order differential equations with middle term. Appl. Math. Lett. 107, 106431 (2020)

    Article  MathSciNet  Google Scholar 

  11. Bazighifan, O., Elabbasy, E.M., Moaaz, O.: Oscillation of higher-order differential equations with distributed delay. J. Inequal. Appl. 2019, 55 (2019)

    Article  MathSciNet  Google Scholar 

  12. Chatzarakis, G.E., Elabbasy, E.M., Bazighifan, O.: An oscillation criterion in 4th-order neutral differential equations with a continuously distributed delay. Adv. Differ. Equ. 2019, 336 (2019)

    Article  MathSciNet  Google Scholar 

  13. Bazighifan, O.: Kamenev and Philos-types oscillation criteria for fourth-order neutral differential equations. Adv. Differ. Equ. 2020, 201 (2020)

    Article  MathSciNet  Google Scholar 

  14. Cesarano, C., Bazighifan, O.: Oscillation of fourth-order functional differential equations with distributed delay. Axioms 8, 61 (2019)

    Article  Google Scholar 

  15. Cesarano, C., Bazighifan, O.: Qualitative behavior of solutions of second order differential equations. Symmetry 11, 777 (2019)

    Article  Google Scholar 

  16. Elabbasy, E.M., Thandpani, E., Moaaz, O., Bazighifan, O.: Oscillation of solutions to fourth-order delay differential equations with middle term. Open J. Math. Sci. 3, 191–197 (2019)

    Article  Google Scholar 

  17. Elabbasy, E.M., Cesarano, C., Bazighifan, O., Moaaz, O.: Asymptotic and oscillatory behavior of solutions of a class of higher-order differential equations. Symmetry 11, 1434 (2019)

    Article  Google Scholar 

  18. Grace, S., Agarwal, R., Graef, J.: Oscillation theorems for fourth order functional differential equations. J. Appl. Math. Comput. 30, 75–88 (2009)

    Article  MathSciNet  Google Scholar 

  19. Gyori, I., Ladas, G.: Oscillation Theory of Delay Differential Equations with Applications. Clarendon, Oxford (1991)

    MATH  Google Scholar 

  20. Moaaz, O., Kumam, P., Bazighifan, O.: On the oscillatory behavior of a class of fourth-order nonlinear differential equation. Symmetry 12, 524 (2020)

    Article  Google Scholar 

  21. Moaaz, O., Furuichi, S., Muhib, A.: New comparison theorems for the Nth order neutral differential equations with delay inequalities. Mathematics 8, 454 (2020)

    Article  Google Scholar 

  22. Philos, C.: On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delay. Arch. Math. (Basel) 36, 168–178 (1981)

    Article  MathSciNet  Google Scholar 

  23. Bazighifan, O., Kumam, O.: Oscillation theorems for advanced differential equations with p-Laplacian like operators. Mathematics 8, 821 (2020)

    Article  Google Scholar 

  24. Bazighifan, O., Abdeljawad, T.: Improved approach for studying oscillatory properties of fourth-order advanced differential equations with p-Laplacian like operator. Mathematics 8, 656 (2020)

    Article  Google Scholar 

  25. Bazighifan, O.: On the oscillation of certain fourth-order differential equations with p-Laplacian like operator. Appl. Math. Comput. 386, 125475 (2020)

    MathSciNet  Google Scholar 

  26. Park, C., Moaaz, O., Bazighifan, O.: Oscillation results for higher order differential equations. Axioms 9, 14 (2020)

    Article  Google Scholar 

  27. Bohner, M., Hassan, T.S., Li, T.: Fite–Hille–Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments. Indag. Math. 29, 548–560 (2018)

    Article  MathSciNet  Google Scholar 

  28. Bohner, M., Li, T.: Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient. Appl. Math. Lett. 37, 72–76 (2014)

    Article  MathSciNet  Google Scholar 

  29. Li, T., Pintus, N., Viglialoro, G.: Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys. 70, 1–18 (2019)

    Article  MathSciNet  Google Scholar 

  30. Liu, Q., Bohner, M., Grace, S.R., Li, T.: Asymptotic behavior of even-order damped differential equations with p-Laplacian like operators and deviating arguments. J. Inequal. Appl. 2016, 321 (2016)

    Article  MathSciNet  Google Scholar 

  31. Chatzarakis, G.E., Grace, S.R., Jadlovská, I., Li, T., Tunç, E.: Oscillation criteria for third-order Emden–Fowler differential equations with unbounded neutral coefficients. Complexity 2019, Article ID 5691758 (2019)

    Article  Google Scholar 

  32. Džurina, J., Grace, S.R., Jadlovská, I., Li, T.: Oscillation criteria for second-order Emden–Fowler delay differential equations with a sublinear neutral term. Math. Nachr. 293, 910–922 (2020)

    Article  Google Scholar 

  33. Li, T., Rogovchenko, Y.V.: On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations. Appl. Math. Lett. 105, 106293 (2020)

    Article  MathSciNet  Google Scholar 

  34. Agarwal, R., Grace, S., O’Regan, D.: Oscillation Theory for Difference and Functional Differential Equations. Kluwer Academic, Dordrecht (2000)

    Book  Google Scholar 

  35. Agarwal, R.P., Zhang, C., Li, T.: Some remarks on oscillation of second order neutral differential equations. Appl. Math. Comput. 274, 178–181 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Zhang, C., Li, T., Suna, B., Thandapani, E.: On the oscillation of higher-order half-linear delay differential equations. Appl. Math. Lett. 24, 1618–1621 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Thabet Abdeljawad would like to thank the anonymous reviewers for their helpful remarks. The third author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

Funding

The authors received no direct funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work. They all read and approved the final version of the manuscript.

Corresponding author

Correspondence to Thabet Abdeljawad.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazighifan, O., Abdeljawad, T. & Al-Mdallal, Q.M. Differential equations of even-order with p-Laplacian like operators: qualitative properties of the solutions. Adv Differ Equ 2021, 96 (2021). https://doi.org/10.1186/s13662-021-03254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-021-03254-7

Keywords