Skip to main content

Theory and Modern Applications

Analysis of fractional multi-dimensional Navier–Stokes equation

Abstract

In this paper, a hybrid method called variational iteration transform method has been implemented to solve fractional-order Navier–Stokes equation. Caputo operator describes fractional-order derivatives. The solutions of three examples are presented to show the validity of the current method without using Adomian and He’s polynomials. The results of the proposed method are shown and analyzed with the help of figures. It is shown that the proposed method is found to be efficient, reliable, and easy to implement for various related problems of science and engineering.

1 Introduction

Navier–Stokes equations (NSEs) depicting the physical interests of engineering and scientific research are viewed as beneficial. These equations are predominantly used to manage climate estimating, sea flows, water stream in a line, and wind current around a wing. Also, the basic plan of airplanes and vehicles, the investigation of the bloodstream, the goal of intensity stations, and the examination of contamination are firmly identified with NSEs. Moreover, the study of magnetohydrodynamics depends on the coupling of Maxwell’s and NSEs. Since their presentation, distinctive physical models have been exploited in the literature to manage arranged material circumstances. In this work, we consider a fractional-order NS equation for an incompressible fluid flow of kinematic viscosity \(\upsilon =\frac{\phi }{\rho }\) and density ρ. It is indicated as

$$ \textstyle\begin{cases} D^{\beta }_{\eta }V+(V.\nabla )V=\rho \nabla ^{2}V-\frac{1}{\rho }\nabla g, \\ \nabla .V=0, \\ V=0,\quad \text{on } \Omega \times (0,T). \end{cases} $$

Here, \(V=(\mathcal{U},\mathcal{V},\mathcal{W})\), q, and η represent fluid vector, pressure, and time, respectively. \(({\chi },{\varphi },{\mathcal{Z}})\) represents the spatial components in Ω. ϕ is the dynamic viscosity. ρ is the density and the ratio of ϕ.

The above equations can also be defined as

$$\begin{aligned}& D_{\eta }^{{\Upsilon }}{(\Phi )}+{{{\Phi }}} \frac{\partial {{{\Phi }}}}{\partial {{\chi }}}+{{{\Psi }}} \frac{\partial {{{\Phi }}}}{\partial {\varphi }}+{{{\Theta }}} \frac{\partial {{{\Phi }}}}{\partial {{\mathcal{Z}}}}={ \rho } \biggl[{ \frac{\partial ^{2}{{{\Phi }}}}{\partial {{\chi }^{2}}}}+{ \frac{\partial ^{2}{{{\Phi }}}}{\partial {{\varphi }^{2}}}}+{ \frac{\partial ^{2}{{{\Phi }}}}{\partial {{\mathcal{Z}}^{2}}}} \biggr]- \frac{1}{\rho }\frac{\partial g}{\partial {\chi }}, \\& D_{\eta }^{{{\Upsilon }}}{({\Psi })}+{{{\Phi }}} \frac{\partial {{{\Psi }}}}{\partial {{\chi }}}+{{{ \Psi }}} \frac{\partial {{{\Psi }}}}{\partial {{\varphi }}}+{{{\Theta }}} \frac{\partial {{{\Psi }}}}{\partial {{\mathcal{Z}}}}={\rho } \biggl[{ \frac{\partial ^{2}{{{\Psi }}}}{\partial {{\chi }^{2}}}}+{ \frac{\partial ^{2}{{{\Psi }}}}{\partial {{\varphi }^{2}}}}+{ \frac{\partial ^{2}{{{\Psi }}}}{\partial {{\mathcal{Z}}^{2}}}} \biggr]- \frac{1}{\rho }\frac{\partial g}{\partial {\varphi }}, \\& D_{\eta }^{{{\Upsilon }}}{(\Theta )}+{{{\Phi }}} \frac{\partial {{{\Theta }}}}{\partial {{\chi }}}+{{{ \Psi }}} \frac{\partial {{{\Theta }}}}{\partial {{\varphi }}}+{{{\Theta }}} \frac{\partial {{{\Theta }}}}{\partial {{\mathcal{Z}}}}={\rho } \biggl[{ \frac{\partial ^{2}{{{\Theta }}}}{\partial {{\chi }^{2}}}}+{ \frac{\partial ^{2}{{{\Theta }}}}{\partial {{\varphi }^{2}}}}+{ \frac{\partial ^{2}{{{\Theta }}}}{\partial {{\mathcal{Z}}^{2}}}} \biggr]- \frac{1}{\rho }\frac{\partial g}{\partial {\mathcal{Z}}}. \end{aligned}$$

Mathematically, these equations are a problematic arrangement of nonlinear equations within sight of viscous flows [1].

Physical marvels of the incidental fields can be demonstrated properly using fractional partial differential equations (FPDEs). The hypothesis of partial analytic is outfitted with fabulous instruments to depict the dynamical conduct and memory-related qualities of logical frameworks and cycles from the last three decades. Different researchers have utilized FDEs in the displaying and investigation of logical phenomena in various fields of knowledge [211]. The hypothesis of fractional calculus has been generally used in different fields. It is becoming extremely quick in creating models because of its connection with memory and fractals plentiful in genuine physical frameworks. Fractional calculus demonstrating limits the mistake that emerges from the numbness of noteworthy genuine boundaries. It allows a more extraordinary level of opportunity in the model contrasted with an integral-order framework [12, 13]. FDEs are furnished with magnificent strategies to portray innate and memory attributes that are essentially disregarded by the whole number order framework. Likewise, they are also appropriate in demonstrating genuine frameworks and important in the examination of dynamical frameworks. FDEs are likewise suitable if there should be an occurrence of displaying frameworks with longer-go intuitiveness both in space and time. The soundness area increments in the event of a fractional-order framework when contrasted with its whole number order system. Fractional analytic likewise gives nonlocal operators and mathematical outcomes with high precision [14, 15]. Likewise, fractional-order frameworks, at last, meet the whole number order frameworks.

The nonlocal characteristic of the fractional operator is the most profitable element in this situation. The hypothesis of fractional analytic creates numerous speculations concerning non-neighborhood qualities, improved level of opportunity, most excessive use of data, and these attributes happen on account of fractional-order frameworks. The mathematical plans given by fractional analytic begin the more profound comprehension of complex frameworks and diminish the computational work concerning the solutions strategy [1624]. Precise expository solutions are not found virtually on account of FDEs. Hence, over the most recent twenty years, numerous iterative plans, for example, homotopy perturbation method, Adomian decomposition method, variational iteration method, homotopy perturbation transform strategy, residual power series strategy, and so forth, have been created to obtain the solutions of a few classes of FDEs [2536].

A Chinese mathematician has created the variational iteration method (VIM) He [37]. VIM is modified with the Laplace transform; the modified method is known as the variational iteration transform method (VITM). After the original work of He, a different adjustment of VIM has been utilized to take care of different nonlinear issues, for example, dissemination and wave equations [3845]. Recently, several mathematicians have applied various strategies for the solutions of fractional NSEs. Interested readers can see [4651] and the references therein.

In this paper, the variational iteration transform technique is implemented to analyze the solution of fractional-order multi-dimensional Navier–Stokes equations. Caputo operator describes the fractional-order derivatives. The solution of certain illustrative problems is provided to prove the feasibility of the proposed methodology. The results of the proposed method are shown and analyzed with the help of figures and tables. The current approach has lower computing costs and higher convergence rates. The proposed method is therefore constructive to solve other fractional-order PDEs.

The outline of this article is as follows. In Sect. 2, the basic definitions of Laplace transform and fractional calculus are discussed. In Sect. 3, the variational iteration transform method is discussed. In Sect. 4, three test examples of fractional-order Navier–Stokes equation are given to elucidate the suggested schemes. In Sect. 5, conclusions of the work are drawn.

2 Basic definitions

Definition 2.1

The fractional-order derivative of \(g({\chi })\) in the Caputo sense is given as

$$ \begin{aligned} &D^{{{\Upsilon }}}g({\chi })= \frac{1}{\Gamma (k-{{\Upsilon }})} \int _{0}^{{\chi }}({\chi }-\tau )^{k-{{ \Upsilon }}-1}g^{(k)}( \tau )\,d\tau , \\ &\quad \text{for } k-1 < {{\Upsilon }} < k, k \in N, {\chi } >0, g \in C^{k}_{-1}. \end{aligned} $$

Definition 2.2

The Laplace transformation of \(g({\chi })\), \(\tau > 0\) is expressed as

$$ F(s)= L \bigl[g(\tau ) \bigr]= \int ^{\infty }_{0}e^{-s\tau }g(\tau )\,d\tau . $$

Definition 2.3

The Laplace transformation \(L[g(\tau )]\) of the Caputo derivative is given as

$$ L \bigl[D^{{{\Upsilon }}}g(\tau ) \bigr]=s^{{\Upsilon }}{F(s)}-\sum _{m=0}^{k-1}s^{{{ \Upsilon }}-1-k}g^{m}(0), \quad k-1 < {{\Upsilon }} < k. $$

Definition 2.4

The Mittag-Leffler function \(E_{{\Upsilon }}(z)\) with \({{\Upsilon }} > 0\) is given by

$$ E_{{\Upsilon }}(z)=\sum_{k=0}^{\infty } \frac{z^{k}}{\Gamma ({{\Upsilon }}{k}+1)}, \quad {{\Upsilon }} > 0, z \in C. $$

3 The procedure of VITM

This section describes the VITM solution of fractional PDEs [52, 53].

$$ \begin{aligned} &D_{\eta }^{{\Upsilon }}{{\Phi }({{\chi }},{\eta })}+ \mathcal{H}_{1}({\Phi },{\Psi })+\mathcal{M}_{1}({ \Phi },{\Psi })-q_{1}({{ \chi }},{\eta })=0, \\ &D_{\eta }^{{\Upsilon }}{{\Psi }({{\chi }},{\eta })}+ \mathcal{H}_{2}({ \Phi },{\Psi })+\mathcal{M}_{2}({\Phi },{ \Psi })-q_{2}({{\chi }},{\eta })=0, \quad m-1< {{\Upsilon }} \leq m, \end{aligned} $$
(1)

with the initial conditions

$$ {\Phi }({{\chi }},0)=g_{1}({{\chi }}),\quad\quad {\Psi }({{\chi }},0)=g_{2}({{ \chi }}), $$
(2)

where is \(D_{\eta }^{{\Upsilon }}= \frac{\partial ^{{\Upsilon }}}{\partial {\eta }^{{\Upsilon }}}\) the Caputo fractional derivative of order ϒ, \(\mathcal{H}_{1}\), \(\mathcal{H}_{2}\) and \(\mathcal{M}_{1}\), \(\mathcal{M}_{2}\) are linear and nonlinear functions, respectively, and \(q_{1}\), \(q_{2}\) are source operators.

The Laplace transformation is applied to Eq. (1),

$$ \begin{aligned} &{L} \bigl[D_{\eta }^{{\Upsilon }}{{\Phi }({{ \chi }},{\eta })} \bigr]+{L} \bigl[ \mathcal{H}_{1}({\Phi },{\Psi })+ \mathcal{M}_{1}({\Phi },{\Psi })-q_{1}({{ \chi }},{\eta }) \bigr]=0, \\ &{L} \bigl[D_{\eta }^{{\Upsilon }}{{\Psi }({{\chi }},{\eta })} \bigr]+{L} \bigl[\mathcal{H}_{2}({ \Phi },{\Psi })+\mathcal{M}_{2}({\Phi },{\Psi })-q_{2}({{\chi }},{\eta }) \bigr]=0. \end{aligned} $$
(3)

Applying the differentiation property, we have

$$ \begin{aligned} &{L} \bigl[{{\Phi }({{\chi }},{\eta })} \bigr]-\sum _{k=0}^{m-1}s^{{{ \Upsilon }}-k-1} \frac{\partial ^{k}{\Phi }({{\chi }},{\eta })}{\partial ^{k}{\eta }}\bigg| _{{ \eta }=0}=-{L} \bigl[\mathcal{H}_{1}({\Phi },{\Psi })+\mathcal{M}_{1}({ \Phi },{\Psi })-q_{1}({{\chi }},{\eta }) \bigr], \\ &{L} \bigl[{{\Psi }({{\chi }},{\eta })} \bigr]-\sum _{k=0}^{m-1}s^{{{\Upsilon }}-k-1} \frac{\partial ^{k}{\Psi }({{\chi }},{\eta })}{\partial ^{k}{\eta }}\bigg| _{{ \eta }=0}=-{L} \bigl[\mathcal{H}_{2}({\Phi },{\Psi })+ \mathcal{M}_{2}({ \Phi },{\Psi })-q_{2}({{\chi }},{\eta }) \bigr]. \end{aligned} $$
(4)

Using the iterative technique, we get

$$ \begin{gathered} \begin{aligned} {L} \bigl[{{\Phi }_{m+1}({{ \chi }},{\eta })} \bigr]={}&{L} \bigl[{{\Phi }_{m}({{ \chi }},{\eta })} \bigr] \\ &{}+\lambda (s) \Biggl[{s^{{{\Upsilon }}}} {{\Phi }_{m}({{ \chi }},{ \eta })}-\sum_{k=0}^{m-1}s^{{{\Upsilon }}-k-1} \frac{\partial ^{k}{\Phi }({{\chi }},{\eta })}{\partial ^{k}{\eta }}\bigg| _{{ \eta }=0}-{L} \bigl[q_{1}({{\chi }},{\eta }) \bigr] \\ &{}-{L} \bigl\{ \mathcal{H}_{1}({\Phi },{\Psi })+\mathcal{M}_{1}({ \Phi },{ \Psi }) \bigr\} \Biggr], \end{aligned} \\ \begin{aligned} {L} \bigl[{{\Psi }_{m+1}({{\chi }},{\eta })} \bigr]={}&{L} \bigl[{{\Psi }_{m}({{\chi }},{\eta })} \bigr] \\ &{}+ \lambda (s) \Biggl[{s^{{{\Upsilon }}}} {{\Psi }_{m}({{\chi }},{\eta })}- \sum _{k=0}^{m-1}s^{{{\Upsilon }}-k-1} \frac{\partial ^{k}{\Psi }({{\chi }},{\eta })}{\partial ^{k}{\eta }}\bigg| _{{ \eta }=0}-{L} \bigl[q_{2}({{\chi }},{\eta }) \bigr] \\ &{}-{L} \bigl\{ \mathcal{H}_{2}({\Phi },{\Psi })+\mathcal{M}_{2}({ \Phi },{ \Psi }) \bigr\} \Biggr]. \end{aligned} \end{gathered} $$
(5)

A Lagrange multiplier as

$$ \lambda (s)=-\frac{1}{s^{{\Upsilon }}}, $$
(6)

the inverse Laplace transformation \({L^{-1}}\), the iteration method Eq. (5) can be given as follows:

$$\begin{aligned}& \begin{aligned}[b] {{\Phi }_{m+1}({{\chi }},{\eta })}={}&{{\Phi }_{m}({{\chi }},{ \eta })}-{L^{-1}} \Biggl[ \frac{1}{s^{{\Upsilon }}} \Biggl[\sum _{k=0}^{m-1}s^{{{ \Upsilon }}-k-1} \frac{\partial ^{k}{\Phi }({{\chi }},{\eta })}{\partial ^{k}{\eta }}\bigg| _{{ \eta }=0} \\ &{}-{L} \bigl[q_{1}({{\chi }},{\eta }) \bigr]-{L} \bigl\{ \mathcal{H}_{1}({ \Phi },{\Psi })+\mathcal{M}_{1}({\Phi },{ \Psi }) \bigr\} \Biggr] \Biggr], \end{aligned} \\& \begin{aligned} {{\Psi }_{m+1}({{\chi }},{\eta })}={}&{{\Psi }_{m}({{\chi }},{ \eta })}-{L^{-1}} \Biggl[ \frac{1}{s^{{\Upsilon }}} \Biggl[\sum_{k=0}^{m-1}s^{{{\Upsilon }}-k-1} \frac{\partial ^{k}{\Psi }({{\chi }},{\eta })}{\partial ^{k}{\eta }}\bigg| _{{ \eta }=0} \\ &{}-{L} \bigl[q_{2}({{\chi }},{\eta }) \bigr]-{L} \bigl\{ \mathcal{H}_{2}({ \Phi },{\Psi })+\mathcal{M}_{2}({\Phi },{ \Psi }) \bigr\} \Biggr] \Biggr]. \end{aligned} \end{aligned}$$
(7)

The initial iteration can be found as follows:

$$ \begin{aligned} &{{\Phi }_{0}({{\chi }},{\eta })}={L^{-1}} \Biggl[ \frac{1}{s^{{\Upsilon }}} \Biggl\{ \sum _{k=0}^{m-1}s^{{{\Upsilon }}-k-1} \frac{\partial ^{k}{\Phi }({{\chi }},{\eta })}{\partial ^{k}{\eta }}\bigg| _{{ \eta }=0} \Biggr\} \Biggr], \\ &{{\Psi }_{0}({{\chi }},{\eta })}={L^{-1}} \Biggl[ \frac{1}{s^{{\Upsilon }}} \Biggl\{ \sum_{k=0}^{m-1}s^{{{\Upsilon }}-k-1} \frac{\partial ^{k}{\Psi }({{\chi }},{\eta })}{\partial ^{k}{\eta }}\bigg| _{{ \eta }=0} \Biggr\} \Biggr]. \end{aligned} $$
(8)

The conveniences of this technique were shown in [52, 53].

4 Numerical examples

Example 1

Consider the time fractional-order \((1+1)\) dimensional Navier–Stokes equation

$$ \begin{aligned} &D_{\eta }^{{{\Upsilon }}}{({\Phi })}+{{{\Phi }}} \frac{\partial {{{\Phi }}}}{\partial {{{\chi }}}}+{{{\Psi }}} \frac{\partial {{{\Phi }}}}{\partial {{{\varphi }}}}={\rho } \biggl[{ \frac{\partial ^{2}{{{\Phi }}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Phi }}}}{\partial {{{\varphi }}^{2}}}} \biggr]+{q}, \\ &D_{\eta }^{{{\Upsilon }}}{({\Psi })}+{{{\Phi }}} \frac{\partial {{{\Psi }}}}{\partial {{{\chi }}}}+{{{ \Psi }}} \frac{\partial {{{\Psi }}}}{\partial {{{\varphi }}}}={\rho } \biggl[{ \frac{\partial ^{2}{{{\Psi }}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Psi }}}}{\partial {{{\varphi }}^{2}}}} \biggr]-{q}, \end{aligned} $$
(9)

with the initial conditions

$$ \textstyle\begin{cases} {{\Phi }({{\chi }},{{\varphi }},0)}=-\sin ({{{\chi }}+{{\varphi }}}), \\ {{\Psi }({{\chi }},{{\varphi }},0)}=\sin ({{{\chi }}+{{\varphi }}}). \end{cases} $$
(10)

Using the iterative method according to equation (7) in equation (9), we get

$$ \begin{gathered} \begin{aligned} {\Phi }_{m+1}({{\chi }},{{ \varphi }},{\eta })={}&{\Phi }_{m}({{ \chi }},{{\varphi }},{\eta })-{L^{-1}} \biggl[\frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{\Upsilon }}}} \frac{\partial {\Phi }_{m}}{\partial {\eta }} \\ &{}+{{{\Phi }_{m}}} \frac{\partial {{{\Phi }_{m}}}}{\partial {{{\chi }}}}+{{{\Psi }_{m}}} \frac{\partial {{{\Phi }_{m}}}}{\partial {{{\varphi }}}}-{\rho } \biggl({ \frac{\partial ^{2}{{{\Phi }_{m}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Phi }_{m}}}}{\partial {{{\varphi }}^{2}}}} \biggr)-{q} \biggr\} \biggr], \end{aligned} \\ \begin{aligned} {\Psi }_{m+1}({{\chi }},{{\varphi }},{\eta })={}&{\Psi }_{m}({{ \chi }},{{ \varphi }},{\eta })-{L^{-1}} \biggl[ \frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{ \Upsilon }}}}\frac{\partial {\Psi }_{m}}{\partial {\eta }} \\ &{}+{{{\Phi }_{m}}} \frac{\partial {{{\Psi }_{m}}}}{\partial {{{\chi }}}}+{{{\Psi }_{m}}} \frac{\partial {{{\Psi }_{m}}}}{\partial {{{\varphi }}}}-{\rho } \biggl({ \frac{\partial ^{2}{{{\Psi }_{m}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Psi }_{m}}}}{\partial {{{\varphi }}^{2}}}} \biggr)+{q} \biggr\} \biggr], \end{aligned} \end{gathered} $$
(11)

where

$$ {\Phi }_{0}({{\chi }},{{\varphi }},{\eta })=-\sin ({{{\chi }}+{{ \varphi }}}),\quad\quad {\Psi }_{0}({{\chi }},{{ \varphi }},{ \eta })=\sin ({{{\chi }}+{{ \varphi }}}). $$
(12)

For \(m=0,1,2,\ldots \) ,

$$\begin{aligned}& \begin{aligned} {\Phi }_{1}({{\chi }},{{\varphi }},{\eta })={}&{\Phi }_{0}({{ \chi }},{{\varphi }},{\eta }) \\ &{}-{L^{-1}} \biggl[ \frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{\Upsilon }}}}\frac{\partial {\Phi }_{0}}{\partial {\eta }}+{{{ \Phi }_{0}}}\frac{\partial {{{\Phi }_{0}}}}{\partial {{{\chi }}}}+{{{\Psi }_{0}}} \frac{\partial {{{\Phi }_{0}}}}{\partial {{{\varphi }}}}-{\rho } \biggl({ \frac{\partial ^{2}{{{\Phi }_{0}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Phi }_{0}}}}{\partial {{{\varphi }}^{2}}}} \biggr)-{q} \biggr\} \biggr], \end{aligned} \\& \begin{aligned} {\Psi }_{1}({{\chi }},{{\varphi }},{\eta })={}&{\Psi }_{0}({{ \chi }},{{ \varphi }},{\eta }) \\ &{}-{L^{-1}} \biggl[\frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{ \Upsilon }}}}\frac{\partial {\Psi }_{0}}{\partial {\eta }}+{{{\Phi }_{0}}} \frac{\partial {{{\Psi }_{0}}}}{\partial {{{\chi }}}}+{{{\Psi }_{0}}} \frac{\partial {{{\Psi }_{0}}}}{\partial {{{\varphi }}}}-{\rho } \biggl({ \frac{\partial ^{2}{{{\Psi }_{0}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Psi }_{0}}}}{\partial {{{\varphi }}^{2}}}} \biggr)+{q} \biggr\} \biggr], \end{aligned} \\& {\Phi }_{1}({{\chi }},{{\varphi }},{\eta })=-\sin ({{{\chi }}+{{ \varphi }}})+ \sin ({{{\chi }}+{{\varphi }}}) \frac{2\rho {\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}+ \frac{q{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}, \\& {\Psi }_{1}({{\chi }},{{\varphi }},{\eta })=\sin ({{{\chi }}+{{ \varphi }}})- \sin ({{{\chi }}+{{\varphi }}}) \frac{2\rho {\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}- \frac{q{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}, \\& \begin{aligned} {\Phi }_{2}({{\chi }},{{\varphi }},{\eta })={}&{\Phi }_{1}({{ \chi }},{{\varphi }},{\eta }) \\ &{}-{L^{-1}} \biggl[\frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{\Upsilon }}}}\frac{\partial {\Phi }_{1}}{\partial {\eta }}+{{{ \Phi }_{1}}} \frac{\partial {{{\Phi }_{1}}}}{\partial {{{\chi }}}}+{{{\Psi }_{1}}} \frac{\partial {{{\Phi }_{1}}}}{\partial {{{\varphi }}}}-{\rho } \biggl({ \frac{\partial ^{2}{{{\Phi }_{1}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Phi }_{1}}}}{\partial {{{\varphi }}^{2}}}} \biggr)-{q} \biggr\} \biggr], \end{aligned} \\& \begin{aligned} {\Psi }_{2}({{\chi }},{{\varphi }},{\eta })={}&{\Psi }_{1}({{ \chi }},{{\varphi }},{\eta }) \\ &{}-{L^{-1}} \biggl[\frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{\Upsilon }}}}\frac{\partial {\Psi }_{1}}{\partial {\eta }}+{{{ \Phi }_{1}}} \frac{\partial {{{\Psi }_{1}}}}{\partial {{{\chi }}}}+{{{\Psi }_{1}}} \frac{\partial {{{\Psi }_{1}}}}{\partial {{{\varphi }}}}-{\rho } \biggl({ \frac{\partial ^{2}{{{\Psi }_{1}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Psi }_{1}}}}{\partial {{{\varphi }}^{2}}}} \biggr)+{q} \biggr\} \biggr], \end{aligned} \\& {\Phi }_{2}({{\chi }},{{\varphi }},{\eta })=-\sin ({{{\chi }}+{{ \varphi }}})+\sin ({{{\chi }}+{{\varphi }}}) \frac{2\rho {\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}+ \frac{q{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}-\sin ({{{\chi }}+{{ \varphi }}}) \frac{(2\rho )^{2}{\eta }^{2{{\Upsilon }}}}{\Gamma (2{{\Upsilon }}+1)}, \\& {\Psi }_{2}({{\chi }},{{\varphi }},{\eta })=\sin ({{{\chi }}+{{\varphi }}})- \sin ({{{\chi }}+{{\varphi }}}) \frac{2\rho {\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}- \frac{q{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}+\sin ({{{\chi }}+{{ \varphi }}}) \frac{(2\rho )^{2}{\eta }^{2{{\Upsilon }}}}{\Gamma (2{{\Upsilon }}+1)}, \\& \begin{aligned} {\Phi }_{3}({{\chi }},{{\varphi }},{\eta })={}&{\Phi }_{2}({{ \chi }},{{\varphi }},{\eta }) \\ &{}-{L^{-1}} \biggl[\frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{\Upsilon }}}}\frac{\partial {\Phi }_{2}}{\partial {\eta }}+{{{ \Phi }_{2}}} \frac{\partial {{{\Phi }_{2}}}}{\partial {{{\chi }}}}+{{{\Psi }_{2}}} \frac{\partial {{{\Phi }_{2}}}}{\partial {{{\varphi }}}}-{\rho } \biggl({ \frac{\partial ^{2}{{{\Phi }_{2}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Phi }_{2}}}}{\partial {{{\varphi }}^{2}}}} \biggr)-{q} \biggr\} \biggr], \end{aligned} \\& \begin{aligned} {\Psi }_{3}({{\chi }},{{\varphi }},{\eta })={}&{\Psi }_{2}({{ \chi }},{{ \varphi }},{\eta }) \\ &{}-{L^{-1}} \biggl[\frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{ \Upsilon }}}}\frac{\partial {\Psi }_{2}}{\partial {\eta }}+{{{\Phi }_{2}}} \frac{\partial {{{\Psi }_{2}}}}{\partial {{{\chi }}}}+{{{\Psi }_{2}}} \frac{\partial {{{\Psi }_{2}}}}{\partial {{{\varphi }}}}-{\rho } \biggl({ \frac{\partial ^{2}{{{\Psi }_{2}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Psi }_{2}}}}{\partial {{{\varphi }}^{2}}}} \biggr)+{q} \biggr\} \biggr], \end{aligned} \\& \begin{aligned} {\Phi }_{3}({{\chi }},{{\varphi }},{\eta })&=-\sin ({{{\chi }}+{{ \varphi }}})+\sin ({{{\chi }}+{{\varphi }}}) \frac{2\rho {\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}+ \frac{q{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)} \\ &\quad{} -\sin ({{{\chi }}+{{\varphi }}}) \frac{(2\rho )^{2}{\eta }^{2{{\Upsilon }}}}{\Gamma (2{{\Upsilon }}+1)}+ \sin ({{{\chi }}+{{\varphi }}}) \frac{(2\rho )^{3}{\eta }^{3{{\Upsilon }}}}{\Gamma (3{{\Upsilon }}+1)}, \end{aligned} \\& \begin{aligned} {\Psi }_{3}({{\chi }},{{\varphi }},{\eta })={}&\sin ({{{\chi }}+{{\varphi }}})- \sin ({{{\chi }}+{{\varphi }}}) \frac{2\rho {\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}- \frac{q{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)} \\ &{}+\sin ({{{\chi }}+{{\varphi }}}) \frac{(2\rho )^{2}{\eta }^{2{{\Upsilon }}}}{\Gamma (2{{\Upsilon }}+1)}- \sin ({{{\chi }}+{{ \varphi }}}) \frac{(2\rho )^{3}{\eta }^{3{{\Upsilon }}}}{\Gamma (3{{\Upsilon }}+1)}, \end{aligned} \\& \begin{gathered} {\Phi }({{\chi }},{{\varphi }},{\eta })=\sum _{m=0}^{\infty }{ \Phi }_{m}({{\chi }},{{\varphi }})=-\sin ({{{\chi }}+{{\varphi }}})\sum _{m=0}^{ \infty } \frac{(-2\rho )^{m}{\eta }^{m{{\Upsilon }}}}{\Gamma (m{{\Upsilon }}+1)}+ \frac{q{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}, \\ {\Psi }({{\chi }},{{\varphi }},{\eta })=\sum_{m=0}^{\infty }{ \Phi }_{m}({{ \chi }},{{\varphi }})=\sin ({{{\chi }}+{{\varphi }}}) \sum_{m=0}^{\infty } \frac{(-2\rho )^{m}{\eta }^{m{{\Upsilon }}}}{\Gamma (m{{\Upsilon }}+1)}- \frac{q{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}. \end{gathered} \end{aligned}$$
(13)

The exact solution of equation (9) at \({{\Upsilon }}=1\) and \(q=0\),

$$ \begin{aligned} &{\Phi }({{\chi }},{{\varphi }},{\eta })=-e^{-2\rho {\eta }} \sin ({{{\chi }}+{{\varphi }}}), \\ &{\Psi }({{\chi }},{{\varphi }},{\eta })=e^{-2\rho {\eta }}\sin ({{{\chi }}+{{ \varphi }}}). \end{aligned} $$
(14)

Figures 1 and 4 show the behavior of solutions of the exact and analytical results using the initial conditions given in equation (10). In Fig. 1 the exact and analytical solutions of Φ at \({\Upsilon }=1\) show close contact with each other. In Figs. 2 and 3 for different values of \({\Upsilon }=0.8,0.6\), and 0.4 for Φ. In Fig. 4, we show the exact and analytical solution of Ψ at \({\Upsilon }=1\). In Figs. 5 and 6 for different values of \({\Upsilon }=0.8,0.6\), and 0.4 for Ψ. The fractional results are investigated to be convergent to an integer-order result of each problem.

Figure 1
figure 1

The graph of exact (a) and approximate (b) solution of \({\Phi }({{\chi }},{{\varphi }},{\eta })\) at \({{\Upsilon }}=1\) of Example 1

Figure 2
figure 2

The graph of different approximate solution of \({\Phi }({{\chi }},{{\varphi }},{\eta })\) at ϒ = (c) 0.8 and (d) 0.6 of Example 1

Figure 3
figure 3

The graph of approximate solution (e) of \({\Phi }({{\chi }},{{\varphi }},{\eta })\) at \({{\Upsilon }}=0.4\) of Example 1

Figure 4
figure 4

The graph of exact (a) and approximate (b) solution of \({\Psi }({{\chi }},{{\varphi }},{\eta })\) at \({{\Upsilon }}=1\) of Example 1

Figure 5
figure 5

The graph of different approximate solution of \({\Psi }({{\chi }},{{\varphi }},{\eta })\) at ϒ = (c) 0.8 and (d) 0.6 of Example 1

Figure 6
figure 6

The graph of approximate solution (e) of \({\Psi }({{\chi }},{{\varphi }},{\eta })\) at \({{\Upsilon }}=0.4\) of Example 1

Example 2

Consider the time fractional-order \((1+1)\) dimensional Navier–Stokes equation

$$ \begin{aligned} &D_{\eta }^{{{\Upsilon }}}{({\Phi })}+{{{\Phi }}} \frac{\partial {{{\Phi }}}}{\partial {{{\chi }}}}+{{{\Psi }}} \frac{\partial {{{\Phi }}}}{\partial {{{\varphi }}}}={\rho } \biggl[{ \frac{\partial ^{2}{{{\Phi }}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Phi }}}}{\partial {{{\varphi }}^{2}}}} \biggr]+{q}, \\ &D_{\eta }^{{{\Upsilon }}}{({\Psi })}+{{{\Phi }}} \frac{\partial {{{\Psi }}}}{\partial {{{\chi }}}}+{{{ \Psi }}} \frac{\partial {{{\Psi }}}}{\partial {{{\varphi }}}}={\rho } \biggl[{ \frac{\partial ^{2}{{{\Psi }}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Psi }}}}{\partial {{{\varphi }}^{2}}}} \biggr]-{q}, \end{aligned} $$
(15)

with the initial conditions

$$ \textstyle\begin{cases} {{\Phi }({{\chi }},{{\varphi }},0)}=-e^{{{\chi }}+{{\varphi }}}, \\ {{\Psi }({{\chi }},{{\varphi }},0)}=e^{{{\chi }}+{{\varphi }}}. \end{cases} $$
(16)

Using the iterative method according to equation (7) in equation (15), we get

$$ \begin{gathered} \begin{aligned} {\Phi }_{m+1}({{\chi }},{{ \varphi }},{\eta })={}&{\Phi }_{m}({{ \chi }},{{\varphi }},{\eta })-{L^{-1}} \biggl[\frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{\Upsilon }}}} \frac{\partial {\Phi }_{m}}{\partial {\eta }} \\ &{}+{{{\Phi }_{m}}} \frac{\partial {{{\Phi }_{m}}}}{\partial {{{\chi }}}}+{{{\Psi }_{m}}} \frac{\partial {{{\Phi }_{m}}}}{\partial {{{\varphi }}}}-{\rho } \biggl({ \frac{\partial ^{2}{{{\Phi }_{m}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Phi }_{m}}}}{\partial {{{\varphi }}^{2}}}} \biggr)-{q} \biggr\} \biggr], \end{aligned} \\ \begin{aligned} {\Psi }_{m+1}({{\chi }},{{\varphi }},{\eta })={}&{\Psi }_{m}({{\chi }},{{ \varphi }},{\eta })-{L^{-1}} \biggl[ \frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{ \Upsilon }}}}\frac{\partial {\Psi }_{m}}{\partial {\eta }} \\ &{}+{{{\Phi }_{m}}} \frac{\partial {{{\Psi }_{m}}}}{\partial {{{\chi }}}}+{{{\Psi }_{m}}} \frac{\partial {{{\Psi }_{m}}}}{\partial {{{\varphi }}}}-{\rho } \biggl({ \frac{\partial ^{2}{{{\Psi }_{m}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Psi }_{m}}}}{\partial {{{\varphi }}^{2}}}} \biggr)+{q} \biggr\} \biggr], \end{aligned} \end{gathered} $$
(17)

where

$$ {\Phi }_{0}({{\chi }},{{\varphi }},{\eta })=-e^{{{\chi }}+{{ \varphi }}},\quad\quad {\Psi }_{0}({{\chi }},{{\varphi }},{ \eta })=e^{{{\chi }}+{{ \varphi }}}. $$
(18)

For \(m=0,1,2,\ldots \) ,

$$\begin{aligned}& \begin{aligned} {\Phi }_{1}({{\chi }},{{\varphi }},{\eta })={}&{\Phi }_{0}({{ \chi }},{{\varphi }},{\eta }) \\ &{}-{L^{-1}} \biggl[ \frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{\Upsilon }}}}\frac{\partial {\Phi }_{0}}{\partial {\eta }}+{{{ \Phi }_{0}}}\frac{\partial {{{\Phi }_{0}}}}{\partial {{{\chi }}}}+{{{\Psi }_{0}}} \frac{\partial {{{\Phi }_{0}}}}{\partial {{{\varphi }}}}-{\rho } \biggl({ \frac{\partial ^{2}{{{\Phi }_{0}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Phi }_{0}}}}{\partial {{{\varphi }}^{2}}}} \biggr)-{q} \biggr\} \biggr], \end{aligned} \\& \begin{aligned} {\Psi }_{1}({{\chi }},{{\varphi }},{\eta })={}&{\Psi }_{0}({{ \chi }},{{ \varphi }},{\eta }) \\ &{}-{L^{-1}} \biggl[\frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{ \Upsilon }}}}\frac{\partial {\Psi }_{0}}{\partial {\eta }}+{{{\Phi }_{0}}} \frac{\partial {{{\Psi }_{0}}}}{\partial {{{\chi }}}}+{{{\Psi }_{0}}} \frac{\partial {{{\Psi }_{0}}}}{\partial {{{\varphi }}}}-{\rho } \biggl({ \frac{\partial ^{2}{{{\Psi }_{0}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Psi }_{0}}}}{\partial {{{\varphi }}^{2}}}} \biggr)+{q} \biggr\} \biggr], \end{aligned} \\& {\Phi }_{1}({{\chi }},{{\varphi }},{\eta })=-e^{{{\chi }}+{{\varphi }}}+e^{{{ \chi }}+{{\varphi }}} \frac{2\rho {\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}+ \frac{q{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}, \\& {\Psi }_{1}({{\chi }},{{\varphi }},{\eta })=e^{{{\chi }}+{{\varphi }}}-e^{{{ \chi }}+{{\varphi }}} \frac{2\rho {\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}- \frac{q{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}, \\& \begin{aligned} {\Phi }_{2}({{\chi }},{{\varphi }},{\eta })={}&{\Phi }_{1}({{ \chi }},{{\varphi }},{\eta }) \\ &{}-{L^{-1}} \biggl[ \frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{\Upsilon }}}}\frac{\partial {\Phi }_{1}}{\partial {\eta }}+{{{ \Phi }_{1}}}\frac{\partial {{{\Phi }_{1}}}}{\partial {{{\chi }}}}+{{{\Psi }_{1}}} \frac{\partial {{{\Phi }_{1}}}}{\partial {{{\varphi }}}}-{\rho } \biggl({ \frac{\partial ^{2}{{{\Phi }_{1}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Phi }_{1}}}}{\partial {{{\varphi }}^{2}}}} \biggr)-{q} \biggr\} \biggr], \end{aligned} \\& \begin{aligned} {\Psi }_{2}({{\chi }},{{\varphi }},{\eta })={}&{\Psi }_{1}({{ \chi }},{{ \varphi }},{\eta }) \\ &{}-{L^{-1}} \biggl[\frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{ \Upsilon }}}}\frac{\partial {\Psi }_{1}}{\partial {\eta }}+{{{\Phi }_{1}}} \frac{\partial {{{\Psi }_{1}}}}{\partial {{{\chi }}}}+{{{\Psi }_{1}}} \frac{\partial {{{\Psi }_{1}}}}{\partial {{{\varphi }}}}-{\rho } \biggl({ \frac{\partial ^{2}{{{\Psi }_{1}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Psi }_{1}}}}{\partial {{{\varphi }}^{2}}}} \biggr)+{q} \biggr\} \biggr], \end{aligned} \\& {\Phi }_{2}({{\chi }},{{\varphi }},{\eta })=-e^{{{\chi }}+{{ \varphi }}}+e^{{{\chi }}+{{\varphi }}} \frac{2\rho {\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}+ \frac{q{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}-e^{{{\chi }}+{{ \varphi }}} \frac{(2\rho )^{2}{\eta }^{2{{\Upsilon }}}}{\Gamma (2{{\Upsilon }}+1)}, \\& {\Psi }_{2}({{\chi }},{{\varphi }},{\eta })=e^{{{\chi }}+{{\varphi }}}-e^{{{ \chi }}+{{\varphi }}} \frac{2\rho {\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}- \frac{q{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}+e^{{{\chi }}+{{ \varphi }}} \frac{(2\rho )^{2}{\eta }^{2{{\Upsilon }}}}{\Gamma (2{{\Upsilon }}+1)}, \\& \begin{aligned} {\Phi }_{3}({{\chi }},{{\varphi }},{\eta })={}&{\Phi }_{2}({{ \chi }},{{\varphi }},{\eta }) \\ &{}-{L^{-1}} \biggl[\frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{\Upsilon }}}}\frac{\partial {\Phi }_{2}}{\partial {\eta }}+{{{ \Phi }_{2}}} \frac{\partial {{{\Phi }_{2}}}}{\partial {{{\chi }}}}+{{{\Psi }_{2}}} \frac{\partial {{{\Phi }_{2}}}}{\partial {{{\varphi }}}}-{\rho } \biggl({ \frac{\partial ^{2}{{{\Phi }_{2}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Phi }_{2}}}}{\partial {{{\varphi }}^{2}}}} \biggr)-{q} \biggr\} \biggr], \end{aligned} \\& \begin{aligned} {\Psi }_{3}({{\chi }},{{\varphi }},{\eta })={}&{\Psi }_{2}({{ \chi }},{{ \varphi }},{\eta }) \\ &{}-{L^{-1}} \biggl[\frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{ \Upsilon }}}}\frac{\partial {\Psi }_{2}}{\partial {\eta }}+{{{\Phi }_{2}}} \frac{\partial {{{\Psi }_{2}}}}{\partial {{{\chi }}}}+{{{\Psi }_{2}}} \frac{\partial {{{\Psi }_{2}}}}{\partial {{{\varphi }}}}-{\rho } \biggl({ \frac{\partial ^{2}{{{\Psi }_{2}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Psi }_{2}}}}{\partial {{{\varphi }}^{2}}}} \biggr)+{q} \biggr\} \biggr], \end{aligned} \\& {\Phi }_{3}({{\chi }},{{\varphi }},{\eta })=-e^{{{\chi }}+{{ \varphi }}}+e^{{{\chi }}+{{\varphi }}} \frac{2\rho {\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}+ \frac{q{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}-e^{{{\chi }}+{{ \varphi }}} \frac{(2\rho )^{2}{\eta }^{2{{\Upsilon }}}}{\Gamma (2{{\Upsilon }}+1)}+e^{{{ \chi }}+{{\varphi }}} \frac{(2\rho )^{3}{\eta }^{3{{\Upsilon }}}}{\Gamma (3{{\Upsilon }}+1)}, \\& {\Psi }_{3}({{\chi }},{{\varphi }},{\eta })=e^{{{\chi }}+{{\varphi }}}-e^{{{ \chi }}+{{\varphi }}} \frac{2\rho {\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}- \frac{q{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}+e^{{{\chi }}+{{ \varphi }}} \frac{(2\rho )^{2}{\eta }^{2{{\Upsilon }}}}{\Gamma (2{{\Upsilon }}+1)}-e^{{{ \chi }}+{{\varphi }}} \frac{(2\rho )^{3}{\eta }^{3{{\Upsilon }}}}{\Gamma (3{{\Upsilon }}+1)}, \\& \begin{gathered} {\Phi }({{\chi }},{{\varphi }},{\eta })=\sum _{m=0}^{\infty }{ \Phi }_{m}({{\chi }},{{\varphi }})=-e^{{{\chi }}+{{\varphi }}}\sum_{m=0}^{ \infty } \frac{(-2\rho )^{m}{\eta }^{m{{\Upsilon }}}}{\Gamma (m{{\Upsilon }}+1)}+ \frac{q{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}, \\ {\Psi }({{\chi }},{{\varphi }},{\eta })=\sum_{m=0}^{\infty }{ \Phi }_{m}({{ \chi }},{{\varphi }})=e^{{{\chi }}+{{\varphi }}}\sum _{m=0}^{\infty } \frac{(-2\rho )^{m}{\eta }^{m{{\Upsilon }}}}{\Gamma (m{{\Upsilon }}+1)}- \frac{q{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}. \end{gathered} \end{aligned}$$
(19)

The exact result of equation (15) at \({{\Upsilon }}=1\) and \(q=0\),

$$ \begin{aligned} &{\Phi }({{\chi }},{{\varphi }},{\eta })=-e^{{{\chi }}+{{ \varphi }}+2\rho {\eta }}, \\ &{\Psi }({{\chi }},{{\varphi }},{\eta })=e^{{{\chi }}+{{\varphi }}+2\rho { \eta }}. \end{aligned} $$
(20)

Figures 7 and 10 show the behavior of solutions of the exact and analytical results using the initial conditions given in equation (16). In Fig. 7, the exact and analytical solutions of Φ at \({\Upsilon }=1\) show close contact with each other. In Figs. 7 and 9 for different values of \({\Upsilon }=0.8,0.6\), and 0.4 for Φ. In Fig. 10, we show the exact and analytical solution of Ψ at \({\Upsilon }=1\). In Figs. 11 and 12 for different values of \({\Upsilon }=0.8,0.6\), and 0.4 for Ψ. The fractional results are investigated to be convergent to an integer-order result of each problem.

Figure 7
figure 7

The graph of exact (a) and approximate (b) solution of \({\Phi }({{\chi }},{{\varphi }},{\eta })\) at \({{\Upsilon }}=1\) of Example 2

Figure 8
figure 8

The graph of different approximate solution of \({\Phi }({{\chi }},{{\varphi }},{\eta })\) at ϒ = (c) 0.8 and (d) 0.6 of Example 2

Figure 9
figure 9

The graph of approximate (e) solution of \({\Phi }({{\chi }},{{\varphi }},{\eta })\) at \({{\Upsilon }}=0.4\) of Example 2

Figure 10
figure 10

The graph of exact (a) and approximate (b) solution of \({\Psi }({{\chi }},{{\varphi }},{\eta })\) at \({{\Upsilon }}=1\) of Example 2

Figure 11
figure 11

The graph of different approximate solution of \({\Psi }({{\chi }},{{\varphi }},{\eta })\) at ϒ = (c) 0.8 and (d) 0.6 of Example 2

Figure 12
figure 12

The graph of approximate (e) solution of \({\Psi }({{\chi }},{{\varphi }},{\eta })\) at \({{\Upsilon }}=0.4\) of Example 2

Example 3

Consider the time fractional-order \((2+1)\) dimensional Navier–Stokes equation

$$\begin{aligned}& D_{\eta }^{{{\Upsilon }}}{({\Phi })}+{{{\Phi }}} \frac{\partial {{{\Phi }}}}{\partial {{{\chi }}}}+{{{\Psi }}} \frac{\partial {{{\Phi }}}}{\partial {{{\varphi }}}}+{{{\Theta }}} \frac{\partial {{{\Phi }}}}{\partial {{\mathcal{Z}}}}={\rho } \biggl[{ \frac{\partial ^{2}{{{\Phi }}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Phi }}}}{\partial {{{\varphi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Phi }}}}{\partial {{\mathcal{Z}}^{2}}}} \biggr]+q_{1}, \\& D_{\eta }^{{{\Upsilon }}}{({\Psi })}+{{{\Phi }}} \frac{\partial {{{\Psi }}}}{\partial {{{\chi }}}}+{{{\Psi }}} \frac{\partial {{{\Psi }}}}{\partial {{{\varphi }}}}+{{{\Theta }}} \frac{\partial {{{\Psi }}}}{\partial {{\mathcal{Z}}}}={\rho } \biggl[{ \frac{\partial ^{2}{{{\Psi }}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Psi }}}}{\partial {{{\varphi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Psi }}}}{\partial {{\mathcal{Z}}^{2}}}} \biggr]+{q_{2}}, \\& D_{\eta }^{{{\Upsilon }}}{({\Theta })}+{{{\Phi }}} \frac{\partial {{{\Theta }}}}{\partial {{{\chi }}}}+{{{ \Psi }}} \frac{\partial {{{\Theta }}}}{\partial {{{\varphi }}}}+{{{\Theta }}} \frac{\partial {{{\Theta }}}}{\partial {{\mathcal{Z}}}}={\rho } \biggl[{ \frac{\partial ^{2}{{{\Theta }}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Theta }}}}{\partial {{{\varphi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Theta }}}}{\partial {{\mathcal{Z}}^{2}}}} \biggr]+{q_{3}}, \end{aligned}$$
(21)

with the initial conditions

$$ \textstyle\begin{cases} {{\Phi }({{\chi }},{{\varphi }},{\mathcal{Z}},0)}=-0.5{{\chi }}+{{ \varphi }}+{\mathcal{Z}}, \\ {{\Psi }({{\chi }},{{\varphi }},{\mathcal{Z}},0)}={{\chi }}-0.5{{\varphi }}+{ \mathcal{Z}}, \\ {{\Theta }({{\chi }},{{\varphi }},{\mathcal{Z}},0)}={{\chi }}+{{\varphi }}-0.5{ \mathcal{Z}}. \end{cases} $$
(22)

Further, if ρ is known, then \(q_{1}=-\frac{1}{\rho }\frac{\partial g}{\partial {{\chi }}}\), \(q_{2}=-\frac{1}{\rho }\frac{\partial g}{\partial {{\varphi }}}\), and \(q_{1}=-\frac{1}{\rho }\frac{\partial g}{\partial {\mathcal{Z}}}\) can be determined.

According to equation (7), the iteration formulas for equation (21) are as follows:

$$ \begin{gathered} \begin{aligned} &{\Phi }_{m+1}({{\chi }},{{ \varphi }},{ \mathcal{Z}},{\eta }) \\ &\quad ={ \Phi }_{m}({{\chi }},{{\varphi }},{ \mathcal{Z}},{\eta })-{L^{-1}} \biggl[ \frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{\Upsilon }}}} \frac{\partial {\Phi }_{m}}{\partial {\eta }} \\ &\quad\quad {}+{{{\Phi }_{m}}} \frac{\partial {{{\Phi }_{m}}}}{\partial {{{\chi }}}}+{{{\Psi }}} \frac{\partial {{{\Phi }_{m}}}}{\partial {{{\varphi }}}}+{{{\Theta }}} \frac{\partial {{{\Phi }_{m}}}}{\partial {{\mathcal{Z}}}}={\rho } \biggl({ \frac{\partial ^{2}{{{\Phi }_{m}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Phi }_{m}}}}{\partial {{{\varphi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Phi }_{m}}}}{\partial {{\mathcal{Z}}^{2}}}} \biggr)+q_{1} \biggr\} \biggr], \end{aligned} \\ \begin{aligned} &{\Psi }_{m+1}({{\chi }},{{\varphi }},{\mathcal{Z}},{ \eta }) \\ &\quad ={\Psi }_{m}({{ \chi }},{{\varphi }},{\mathcal{Z}},{\eta })-{L^{-1}} \biggl[ \frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{\Upsilon }}}} \frac{\partial {\Psi }_{m}}{\partial {\eta }} \\ &\quad\quad {}+{{{\Phi }_{m}}} \frac{\partial {{{\Psi }_{m}}}}{\partial {{{\chi }}}}+{{{\Psi }_{m}}} \frac{\partial {{{\Psi }_{m}}}}{\partial {{{\varphi }}}}+{{{\Theta }}} \frac{\partial {{{\Psi }_{m}}}}{\partial {{\mathcal{Z}}}}={\rho } \biggl({ \frac{\partial ^{2}{{{\Psi }_{m}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Psi }_{m}}}}{\partial {{{\varphi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Psi }_{m}}}}{\partial {{\mathcal{Z}}^{2}}}} \biggr)+{q_{2}} \biggr\} \biggr], \end{aligned} \\ \begin{aligned} &{\Theta }_{m+1}({{\chi }},{{\varphi }},{\mathcal{Z}},{ \eta }) \\ &\quad ={\Theta }_{m}({{ \chi }},{{\varphi }},{\mathcal{Z}},{\eta })-{L^{-1}} \biggl[ \frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{\Upsilon }}}} \frac{\partial {\Psi }_{m}}{\partial {\eta }} \\ &\quad\quad {}+{{{ \Phi }_{m}}}\frac{\partial {{{\Theta }_{m}}}}{\partial {{{\chi }}}}+{{{ \Psi }_{m}}} \frac{\partial {{{\Theta }_{m}}}}{\partial {{{\varphi }}}}+{{{ \Theta }_{m}}}\frac{\partial {{{\Theta }_{m}}}}{\partial {{\mathcal{Z}}}}={ \rho } \biggl({ \frac{\partial ^{2}{{{\Theta }_{m}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Theta }_{m}}}}{\partial {{{\varphi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Theta }_{m}}}}{\partial {{\mathcal{Z}}^{2}}}} \biggr)+{q_{3}} \biggr\} \biggr], \end{aligned} \end{gathered} $$
(23)

with the initial conditions

$$ \textstyle\begin{cases} {{\Phi }({{\chi }},{{\varphi }},{\mathcal{Z}},0)}=-0.5{{\chi }}+{{ \varphi }}+{\mathcal{Z}}, \\ {{\Psi }({{\chi }},{{\varphi }},{\mathcal{Z}},0)}={{\chi }}-0.5{{\varphi }}+{ \mathcal{Z}}, \\ {{\Theta }({{\chi }},{{\varphi }},{\mathcal{Z}},0)}={{\chi }}+{{\varphi }}-0.5{ \mathcal{Z}}. \end{cases} $$
(24)

Then \(q_{1}\), \(q_{2}\), and \(q_{3}\) are equal to zero. For \(m=0,1,2,\ldots \) ,

$$\begin{aligned}& \begin{aligned} {\Phi }_{1}({{\chi }},{{\varphi }},{ \mathcal{Z}},{\eta })={}&{ \Phi }_{0}({{\chi }},{{\varphi }},{ \mathcal{Z}},{\eta })-{L^{-1}} \biggl[ \frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{\Upsilon }}}} \frac{\partial {\Phi }_{0}}{\partial {\eta }}+{{{\Phi }_{0}}} \frac{\partial {{{\Phi }_{0}}}}{\partial {{{\chi }}}}+{{{\Psi }_{0}}} \frac{\partial {{{\Phi }_{0}}}}{\partial {{{\varphi }}}}+{{{\Theta }_{0}}} \frac{\partial {{{\Phi }_{0}}}}{\partial {{\mathcal{Z}}}} \\ &{}+{\rho } \biggl({ \frac{\partial ^{2}{{{\Phi }_{0}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Phi }_{0}}}}{\partial {{{\varphi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Phi }_{0}}}}{\partial {{\mathcal{Z}}^{2}}}} \biggr) \biggr\} \biggr], \end{aligned} \\ & \begin{aligned} {\Psi }_{1}({{\chi }},{{\varphi }},{\mathcal{Z}},{ \eta })={}&{\Psi }_{0}({{ \chi }},{{\varphi }},{\mathcal{Z}},{\eta })-{L^{-1}} \biggl[ \frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{\Upsilon }}}} \frac{\partial {\Psi }_{0}}{\partial {\eta }}+{{{ \Phi }_{0}}} \frac{\partial {{{\Psi }_{0}}}}{\partial {{{\chi }}}}+{{{\Psi }_{0}}} \frac{\partial {{{\Psi }_{0}}}}{\partial {{{\varphi }}}}+{{{\Theta }_{0}}} \frac{\partial {{{\Psi }_{0}}}}{\partial {{\mathcal{Z}}}} \\ &{}+{\rho } \biggl({ \frac{\partial ^{2}{{{\Psi }_{0}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Psi }_{0}}}}{\partial {{{\varphi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Psi }_{0}}}}{\partial {{\mathcal{Z}}^{2}}}} \biggr) \biggr\} \biggr], \end{aligned} \\ & \begin{aligned} {\Theta }_{1}({{\chi }},{{\varphi }},{\mathcal{Z}},{ \eta })={}&{\Theta }_{0}({{ \chi }},{{\varphi }},{\mathcal{Z}},{\eta })-{L^{-1}} \biggl[ \frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{\Upsilon }}}} \frac{\partial {\Psi }_{0}}{\partial {\eta }}+{{{ \Phi }_{0}}} \frac{\partial {{{\Theta }_{0}}}}{\partial {{{\chi }}}}+{{{\Psi }_{0}}} \frac{\partial {{{\Theta }_{0}}}}{\partial {{{\varphi }}}}+{{{\Theta }_{0}}} \frac{\partial {{{\Theta }_{0}}}}{\partial {{\mathcal{Z}}}} \\ &{}+{\rho } \biggl({ \frac{\partial ^{2}{{{\Theta }_{0}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Theta }_{0}}}}{\partial {{{\varphi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Theta }_{0}}}}{\partial {{\mathcal{Z}}^{2}}}} \biggr) \biggr\} \biggr], \end{aligned} \\ & {\Phi }_{1}({{\chi }},{{\varphi }},{ \mathcal{Z}},{\eta })=-0.5{{ \chi }}+{{\varphi }}+{\mathcal{Z}}- \frac{2.25 {{\chi }}{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}, \\ & {\Psi }_{1}({{\chi }},{{\varphi }},{\mathcal{Z}},{\eta })={{\chi }}-0.5{{ \varphi }}+{\mathcal{Z}}- \frac{2.25 {{\varphi }}{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}, \\ & {\Theta }_{1}({{\chi }},{{\varphi }},{\mathcal{Z}},{\eta })={{\chi }}+{{ \varphi }}-0.5{\mathcal{Z}}- \frac{2.25 {\mathcal{Z}}{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}, \\ & \begin{aligned} {\Phi }_{2}({{\chi }},{{\varphi }},{ \mathcal{Z}},{\eta })={}&{ \Phi }_{1}({{\chi }},{{\varphi }},{ \mathcal{Z}},{\eta })-{L^{-1}} \biggl[ \frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{\Upsilon }}}} \frac{\partial {\Phi }_{1}}{\partial {\eta }}+{{{\Phi }_{1}}} \frac{\partial {{{\Phi }_{1}}}}{\partial {{{\chi }}}}+{{{\Psi }_{1}}} \frac{\partial {{{\Phi }_{1}}}}{\partial {{{\varphi }}}}+{{{\Theta }_{1}}} \frac{\partial {{{\Phi }_{1}}}}{\partial {{\mathcal{Z}}}} \\ &{}+{\rho } \biggl({ \frac{\partial ^{2}{{{\Phi }_{1}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Phi }_{1}}}}{\partial {{{\varphi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Phi }_{1}}}}{\partial {{\mathcal{Z}}^{2}}}} \biggr) \biggr\} \biggr], \end{aligned} \\ & \begin{aligned} {\Psi }_{2}({{\chi }},{{\varphi }},{\mathcal{Z}},{\eta })={}&{\Psi }_{1}({{ \chi }},{{\varphi }},{\mathcal{Z}},{\eta })-{L^{-1}} \biggl[ \frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{\Upsilon }}}} \frac{\partial {\Psi }_{1}}{\partial {\eta }}+{{{ \Phi }_{1}}} \frac{\partial {{{\Psi }_{1}}}}{\partial {{{\chi }}}}+{{{\Psi }_{1}}} \frac{\partial {{{\Psi }_{1}}}}{\partial {{{\varphi }}}}+{{{\Theta }_{1}}} \frac{\partial {{{\Psi }_{1}}}}{\partial {{\mathcal{Z}}}} \\ &{}+{\rho } \biggl({ \frac{\partial ^{2}{{{\Psi }_{1}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Psi }_{1}}}}{\partial {{{\varphi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Psi }_{1}}}}{\partial {{\mathcal{Z}}^{2}}}} \biggr) \biggr\} \biggr], \end{aligned} \\ & \begin{aligned} {\Theta }_{2}({{\chi }},{{\varphi }},{\mathcal{Z}},{ \eta })={}&{\Theta }_{1}({{ \chi }},{{\varphi }},{\mathcal{Z}},{\eta })-{L^{-1}} \biggl[ \frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{\Upsilon }}}} \frac{\partial {\Psi }_{1}}{\partial {\eta }}+{{{ \Phi }_{1}}} \frac{\partial {{{\Theta }_{1}}}}{\partial {{{\chi }}}}+{{{\Psi }_{1}}} \frac{\partial {{{\Theta }_{1}}}}{\partial {{{\varphi }}}}+{{{\Theta }_{1}}} \frac{\partial {{{\Theta }_{1}}}}{\partial {{\mathcal{Z}}}} \\ &{}+{\rho } \biggl({ \frac{\partial ^{2}{{{\Theta }_{1}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Theta }_{1}}}}{\partial {{{\varphi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Theta }_{1}}}}{\partial {{\mathcal{Z}}^{2}}}} \biggr) \biggr\} \biggr], \end{aligned} \\ & {\Phi }_{2}({{\chi }},{{\varphi }},{ \mathcal{Z}},{\eta })=-0.5{{ \chi }}+{{\varphi }}+{\mathcal{Z}}- \frac{2.25 {{\chi }}{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}+ \frac{2(2.25) {{\chi }}{\eta }^{2{{\Upsilon }}}}{\Gamma (2{{\Upsilon }}+1)}(-0.5{{ \chi }}+{{\varphi }}+{ \mathcal{Z}},) \\ & {\Psi }_{2}({{\chi }},{{\varphi }},{\mathcal{Z}},{\eta })={{\chi }}-0.5{{ \varphi }}+{\mathcal{Z}}- \frac{2.25 {{\varphi }}{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}+ \frac{2(2.25) {{\varphi }}{\eta }^{2{{\Upsilon }}}}{\Gamma (2{{\Upsilon }}+1)}({{ \chi }}-0.5{{\varphi }}+{\mathcal{Z}}), \\ & {\Theta }_{2}({{\chi }},{{\varphi }},{\mathcal{Z}},{\eta })={{\chi }}+{{ \varphi }}-0.5{\mathcal{Z}}- \frac{2.25 {\mathcal{Z}}{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}+ \frac{2(2.25) {\mathcal{Z}}{\eta }^{2{{\Upsilon }}}}{\Gamma (2{{\Upsilon }}+1)}({{ \chi }}+{{\varphi }}-0.5{\mathcal{Z}}), \\ & \begin{aligned} {\Phi }_{3}({{\chi }},{{\varphi }},{ \mathcal{Z}},{\eta })={}&{ \Phi }_{2}({{\chi }},{{\varphi }},{ \mathcal{Z}},{\eta })-{L^{-1}} \biggl[ \frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{\Upsilon }}}} \frac{\partial {\Phi }_{2}}{\partial {\eta }}+{{{\Phi }_{2}}} \frac{\partial {{{\Phi }_{2}}}}{\partial {{{\chi }}}}+{{{\Psi }_{2}}} \frac{\partial {{{\Phi }_{2}}}}{\partial {{{\varphi }}}}+{{{\Theta }_{2}}} \frac{\partial {{{\Phi }_{2}}}}{\partial {{\mathcal{Z}}}} \\ &{}+{\rho } \biggl({ \frac{\partial ^{2}{{{\Phi }_{2}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Phi }_{2}}}}{\partial {{{\varphi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Phi }_{2}}}}{\partial {{\mathcal{Z}}^{2}}}} \biggr) \biggr\} \biggr], \end{aligned} \\ & \begin{aligned} {\Psi }_{3}({{\chi }},{{\varphi }},{\mathcal{Z}},{ \eta })={}&{\Psi }_{2}({{ \chi }},{{\varphi }},{\mathcal{Z}},{\eta })-{L^{-1}} \biggl[ \frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{\Upsilon }}}} \frac{\partial {\Psi }_{2}}{\partial {\eta }}+{{{ \Phi }_{2}}} \frac{\partial {{{\Psi }_{2}}}}{\partial {{{\chi }}}}+{{{\Psi }_{2}}} \frac{\partial {{{\Psi }_{2}}}}{\partial {{{\varphi }}}}+{{{\Theta }_{2}}} \frac{\partial {{{\Psi }_{2}}}}{\partial {{\mathcal{Z}}}} \\ &{}+{\rho } \biggl({ \frac{\partial ^{2}{{{\Psi }_{2}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Psi }_{2}}}}{\partial {{{\varphi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Psi }_{2}}}}{\partial {{\mathcal{Z}}^{2}}}} \biggr) \biggr\} \biggr], \end{aligned} \\ & \begin{aligned} {\Theta }_{3}({{\chi }},{{\varphi }},{\mathcal{Z}},{ \eta })={}&{\Theta }_{2}({{ \chi }},{{\varphi }},{\mathcal{Z}},{\eta })-{L^{-1}} \biggl[ \frac{1}{s^{{\Upsilon }}}{L} \biggl\{ {s^{{{\Upsilon }}}} \frac{\partial {\Psi }_{2}}{\partial {\eta }}+{{{ \Phi }_{2}}} \frac{\partial {{{\Theta }_{2}}}}{\partial {{{\chi }}}}+{{{\Psi }_{2}}} \frac{\partial {{{\Theta }_{2}}}}{\partial {{{\varphi }}}}+{{{\Theta }_{2}}} \frac{\partial {{{\Theta }_{2}}}}{\partial {{\mathcal{Z}}}} \\ &{}+{\rho } \biggl({ \frac{\partial ^{2}{{{\Theta }_{2}}}}{\partial {{{\chi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Theta }_{2}}}}{\partial {{{\varphi }}^{2}}}}+{ \frac{\partial ^{2}{{{\Theta }_{2}}}}{\partial {{\mathcal{Z}}^{2}}}} \biggr) \biggr\} \biggr], \end{aligned} \\ & \begin{aligned} {\Phi }_{3}({{\chi }},{{\varphi }},{ \mathcal{Z}},{\eta })={}&{-}0.5{{ \chi }}+{{\varphi }}+{\mathcal{Z}}- \frac{2.25 {{\chi }}{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}+ \frac{2(2.25) {{\chi }}{\eta }^{2{{\Upsilon }}}}{\Gamma (2{{\Upsilon }}+1)} \\ &{}\times (-0.5{{\chi }}+{{\varphi }}+{\mathcal{Z}})- \frac{(2.25)^{2} {{\chi }}(4(\Gamma ({{\Upsilon }}+1))^{2}+\Gamma (2{{\Upsilon }}+1)){\eta }^{3{{\Upsilon }}}}{\Gamma (2{{\Upsilon }}+1) (\Gamma ({{\Upsilon }}+1))^{2}}, \end{aligned} \\ & \begin{aligned} {\Psi }_{3}({{\chi }},{{\varphi }},{\mathcal{Z}},{ \eta })={}&{{\chi }}-0.5{{ \varphi }}+{\mathcal{Z}}- \frac{2.25 {{\varphi }}{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}+ \frac{2(2.25) {{\varphi }}{\eta }^{2{{\Upsilon }}}}{\Gamma (2{{\Upsilon }}+1)} \\ &{}\times ({{\chi }}-0.5{{\varphi }}+{\mathcal{Z}})- \frac{(2.25)^{2} {{\varphi }}(4(\Gamma ({{\Upsilon }}+1))^{2}+\Gamma (2{{\Upsilon }}+1)){\eta }^{3{{\Upsilon }}}}{\Gamma (2{{\Upsilon }}+1)(\Gamma ({{\Upsilon }}+ 1))^{2}}, \end{aligned} \\ & \begin{aligned} {\Theta }_{3}({{\chi }},{{\varphi }},{\mathcal{Z}},{ \eta })={}&{{\chi }}+{{ \varphi }}-0.5{\mathcal{Z}}- \frac{2.25 {\mathcal{Z}}{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}+ \frac{2(2.25) {\mathcal{Z}}{\eta }^{2{{\Upsilon }}}}{\Gamma (2{{\Upsilon }}+1)} \\ &{}\times ({{\chi }}+{{\varphi }}-0.5{\mathcal{Z}})- \frac{(2.25)^{2} {\mathcal{Z}}(4(\Gamma ({{\Upsilon }}+1))^{2}+\Gamma (2{{\Upsilon }}+1)){\eta }^{3{{\Upsilon }}}}{\Gamma (2{{\Upsilon }}+1)(\Gamma ({{\Upsilon }}+ 1))^{2}}. \end{aligned} \end{aligned}$$

In the same procedure, the remaining \({\Phi }_{m}\), \({\Psi }_{m}\), and \({\Theta }_{m}\) (\(m>3\)) components of the VITM solution can be obtained smoothly.

$$ \begin{gathered} \begin{aligned} {\Phi }({{\chi }},{{\varphi }},{ \mathcal{Z}},{\eta })={}&{-}0.5{{ \chi }}+{{\varphi }}+{\mathcal{Z}}- \frac{2.25 {{\chi }}{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}+ \frac{2(2.25) {{\chi }}{\eta }^{2{{\Upsilon }}}}{\Gamma (2{{\Upsilon }}+1)} \\ &{}\times (-0.5{{\chi }}+{{\varphi }}+{\mathcal{Z}})- \frac{(2.25)^{2} {{\chi }}(4({\mathcal{Z}}({{\Upsilon }}+1))^{2}+\Gamma (2{{\Upsilon }}+1)){\eta }^{3{{\Upsilon }}}}{\Gamma (2{{\Upsilon }}+1)(\Gamma ({{\Upsilon }}+1))^{2}}+ \cdots , \end{aligned} \\ \begin{aligned} {\Psi }({{\chi }},{{\varphi }},{\mathcal{Z}},{\eta })={}&{{\chi }}-0.5{{ \varphi }}+{\mathcal{Z}}- \frac{2.25 {{\varphi }}{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}+ \frac{2(2.25) {{\varphi }}{\eta }^{2{{\Upsilon }}}}{\Gamma (2{{\Upsilon }}+1)} \\ &{}\times ({{\chi }}-0.5{{\varphi }}+{\mathcal{Z}})- \frac{(2.25)^{2} {{\varphi }}(4(\Gamma ({{\Upsilon }}+1))^{2}+\Gamma (2{{\Upsilon }}+1)){\eta }^{3{{\Upsilon }}}}{\Gamma (2{{\Upsilon }}+1)(\Gamma ({{\Upsilon }}+1))^{2}}+ \cdots , \end{aligned} \\ \begin{aligned} {\Theta }({{\chi }},{{\varphi }},{\mathcal{Z}},{\eta })={}&{{ \chi }}+{{ \varphi }}-0.5{\mathcal{Z}}- \frac{2.25 {\mathcal{Z}}{\eta }^{{\Upsilon }}}{\Gamma ({{\Upsilon }}+1)}+ \frac{2(2.25) {\mathcal{Z}}{\eta }^{2{{\Upsilon }}}}{\Gamma (2{{\Upsilon }}+1)} \\ &{}\times ({{\chi }}+{{\varphi }}-0.5{\mathcal{Z}})- \frac{(2.25)^{2} {\mathcal{Z}}(4(\Gamma ({{\Upsilon }}+1))^{2}+\Gamma (2{{\Upsilon }}+1)){\eta }^{3{{\Upsilon }}}}{\Gamma (2{{\Upsilon }}+1)(\Gamma ({{\Upsilon }}+1))^{2}}+ \cdots . \end{aligned} \end{gathered} $$

The exact result of equation (21) at \({{\Upsilon }}=1\) and \(q_{1}=q_{2}=q_{3}=0\) is as follows:

$$ \begin{aligned} &{\Phi }({{\chi }},{{\varphi }},{\mathcal{Z}},{\eta })= \frac{-0.5{{\chi }}+{{\varphi }}+{\mathcal{Z}}-2.25{{\chi }}{\eta }}{1-2.25{\eta }^{2}}, \\ &{\Psi }({{\chi }},{{\varphi }},{\mathcal{Z}},{\eta })= \frac{{{\chi }}-0.5{{\varphi }}+{\mathcal{Z}}-2.25{{\varphi }}{\eta }}{1-2.25{\eta }^{2}}, \\ &{\Theta }({{\chi }},{{\varphi }},{\mathcal{Z}},{\eta })= \frac{{{\chi }}+{{\varphi }}-0.5{\mathcal{Z}}-2.25{\mathcal{Z}}{\eta }}{1-2.25{\eta }^{2}}. \end{aligned} $$
(25)

Figures 13 and 14 show the behavior of solutions of the exact and analytical results using the initial conditions given in equation (22). In Fig. 13 (a) of Φ, subfigure (b) of Ψ, and Fig. 14 of Θ the exact and analytical solutions at \({\Upsilon }=1\) show close contact with each other.

Figure 13
figure 13

The (a) graph of exact and approximate solution of \({\Phi }({{\chi }},{{\varphi }},{\eta })\) (b\({\Psi }({{\chi }},{{\varphi }},{\eta })\) at \({{\Upsilon }}=1\) of Example 3

Figure 14
figure 14

The graph of exact and approximate solution of \({\Theta }({{\chi }},{{\varphi }},{\eta })\) at \({{\Upsilon }}=1\) of Example 3

5 Conclusion

In this article, we evaluated the fractional-order multi-dimensional Navier–Stokes equations using a variational iteration transform technique. The solutions for specific examples are explained using the current method. The VITM result is in close contact with the exact result of the given problems. The graphical analysis of the fractional-order solutions obtained has verified the convergence towards the solutions of integer order. One may see that the obtained results are in excellent agreement with FRDTM [54] and HPETM [48]. Moreover, the present technique is straightforward, simple, and carrying less computational cost; the suggested method can be modified to solve other fractional-order partial differential equations.

Availability of data and materials

Not applicable.

References

  1. Taylor, G.I.: On the decay of vortices in a viscous fluid. Philos. Mag. 46, 671–674 (1923)

    Article  MATH  Google Scholar 

  2. Ross, B.: A brief history and exposition of the fundamental theory of fractional calculus. In: Ross, B. (ed.) The Fractional Calculus and Its Applications, pp. 1–36. Springer, Berlin (1975)

    Chapter  Google Scholar 

  3. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equation. Wiley, New York (1993)

    MATH  Google Scholar 

  4. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  5. Kumar, S., Nisar, K.S., Kumar, R., Cattani, C., Samet, B.: A new Rabotnov fractional-exponential function based fractional derivative for diffusion equation under external force. Math. Methods Appl. Sci. 43(7), 4460–4471 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Kumar, S., Ghosh, S., Samet, B., Goufo, E.F.D.: An analysis for heat equations arises in diffusion process using new Yang Abdel Aty Cattani fractional operator. Math. Methods Appl. Sci. 43(9), 6062–6080 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kumar, S., Kumar, R., Agarwal, R.P., Samet, B.: A study of fractional Lotka–Volterra population model using Haar wavelet and Adams–Bash forth-Moulton methods. Math. Methods Appl. Sci. 43(8), 5564–5578 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kumar, S.: A new analytical modelling for fractional telegraph equation via Laplace transform. Appl. Math. Model. 38(13), 3154–3163 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kumar, S., Rashidi, M.M.: New analytical method for gas dynamics equation arising in shock fronts. Comput. Phys. Commun. 185(7), 1947–1954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kumar, S., Kumar, A., Baleanu, D.: Two analytical methods for time-fractional nonlinear coupled Boussinesq–Burgers equations arise in propagation of shallow water waves. Nonlinear Dyn. 85(2), 699–715 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kumar, S., Kumar, D., Abbasbandy, S., Rashidi, M.M.: Analytical solution of fractional Navier–Stokes equation by using modified Laplace decomposition method. Ain Shams Eng. J. 5(2), 569–574 (2014)

    Article  Google Scholar 

  12. Wang, K.-L., Yao, S.-W., Liu, Y.-P., Zhang, L.-N.: A fractal variational principle for the telegraph equation with fractal derivatives. Fractals 28(4), 2050058 (2020)

    Article  Google Scholar 

  13. Wang, K.-L., Wang, K.-J., He, C.-H.: Physical insight of local fractional calculus and its application to fractional Kdv-Burgers–Kuramoto equation. Fractals 27(07), 1950122 (2019)

    Article  MathSciNet  Google Scholar 

  14. Lv, C., Zhou, H., Deng, F.: Mittag-Leffler stabilization of an unstable time fractional hyperbolic PDE. IEEE Access 7, 102580–102588 (2019)

    Article  Google Scholar 

  15. Shoaib, M., Abdeljawad, T., Sarwar, M., Jarad, F.: Fixed point theorems for multi-valued contractions in b-metric spaces with applications to fractional differential and integral equations. IEEE Access 7, 127373–127383 (2019)

    Article  Google Scholar 

  16. Jena, R.M., Chakraverty, S., Baleanu, D., Alqurashi, M.M.: New aspects of ZZ transform to fractional operators with Mittag-Leffler kernel. Front. Phys. 8, 352 (2020)

    Article  Google Scholar 

  17. Jena, R.M., Chakraverty, S., Yavuz, M.: Two-hybrid techniques coupled with an integral transform for Caputo time-fractional Navier–Stokes equations. Prog. Fract. Differ. Appl. 6(4), 201–213 (2020)

    Google Scholar 

  18. Chakraverty, S., Jena, R.M., Jena, S.K.: Time-fractional order biological systems with uncertain parameters. Synth. Lect. Math. Stat. 12(1), 1–160 (2020)

    MATH  Google Scholar 

  19. Jena, R.M., Chakraverty, S., Baleanu, D.: Solitary wave solution for a generalized Hirota–Satsuma coupled KdV and MKdV equations: a semi-analytical approach. Alex. Eng. J. (2020). To appear

  20. Jena, R.M., Chakraverty, S.: Q-homotopy analysis Aboodh transform method based solution of proportional delay time-fractional partial differential equations. J. Interdiscip. Math. 22(6), 931–950 (2019)

    Article  Google Scholar 

  21. Srivastava, H.M., Jena, R.M., Chakraverty, S., Jena, S.K.: Dynamic response analysis of fractionally-damped generalized Bagley–Torvik equation subject to external loads. Russ. J. Math. Phys. 27, 254–268 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jena, R.M., Chakraverty, S., Baleanu, D.: On the solution of an imprecisely defined nonlinear time-fractional dynamical model of marriage. Mathematics 7(8), 689 (2019)

    Article  Google Scholar 

  23. Jena, R.M., Chakraverty, S., Jena, S.K.: Dynamic response analysis of fractionally damped beams subjected to external loads using homotopy analysis method. J. Appl. Comput. Mech. 5(2), 355–366 (2019)

    Google Scholar 

  24. Jena, R.M., Chakraverty, S.: Residual power series method for solving time-fractional model of vibration equation of large membranes. J. Appl. Comput. Mech. 5(4), 603–615 (2019)

    Google Scholar 

  25. Wang, Q.: Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method. Appl. Math. Comput. 182(2), 1048–1055 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Momani, S., Shawagfeh, N.T.: Decomposition method for solving fractional Riccati differential equations. Appl. Math. Comput. 182(2), 1083–1092 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Gejji, V.D., Jafari, H.: Solving a multi-order fractional differential equation. Appl. Math. Comput. 189(1), 541–548 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Inc, M.: The approximate and exact solutions of the space and time-fractional Burgers equations with initial conditions by variational iteration method. J. Math. Anal. Appl. 345(1), 476–484 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Odibat, Z., Momani, S.: Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order. Chaos Solitons Fractals 36(1), 167–174 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hosseinnia, S., Ranjbar, A., Momani, S.: Using an enhanced homotopy perturbation method in fractional differential equations via deforming the linear part. Comput. Math. Appl. 56(12), 3138–3149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dhaigude, C.D., Nikam, V.R.: Solution of fractional partial differential equations using iterative method. Fract. Calc. Appl. Anal. 15(4), 684–699 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Secer, A., Akinlar, M.A., Cevikel, A.: Efficient solutions of systems of fractional partial differential equations by the differential transform method. Adv. Differ. Equ. 2013, 188 (2012)

    Article  MATH  Google Scholar 

  33. Yang, X.J., Baleanu, D.: Fractal heat conduction problem solved by local fractional variation iteration method. Therm. Sci. 17(2), 625–628 (2013)

    Article  Google Scholar 

  34. Yang, X.J., Baleanu, D., Khan, Y., Mohyud-Din, S.T.: Local fractional variational iteration method for differential and wave equations on Cantor sets. Rom. J. Phys. 59(1–2), 36–48 (2014)

    Google Scholar 

  35. Baleanu, D., Machado, J.A.T., Cattani, C., Baleanu, M.C., Yang, X.J.: Local fractional variational iteration and decomposition methods for wave equation on Cantor sets within local fractional operators. Abstr. Appl. Anal. 2014, 535048 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Zainal, N.H., Klman, A.: Solving fractional partial differential equations with corrected Fourier series method. Abstr. Appl. Anal. 2014, 958931 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. He, J.H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 167(1–2), 57–68 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Geng, F., Lin, Y., Cui, M.: A piecewise variational iteration method for Riccati differential equations. Comput. Math. Appl. 58(11–12), 2518–2522 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Odibat, Z., Momani, S.: The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics. Comput. Math. Appl. 58(11–12), 2199–2208 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Odibat, Z.M.: A study on the convergence of variational iteration method. Math. Comput. Model. 51(9–10), 1181–1192 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, X.J., Baleanu, D., Khan, Y., Mohyud-Din, S.T.: Local fractional variational iteration method for diffusion and wave equations on Cantor sets. Rom. J. Phys. 59(1–2), 36–48 (2014)

    MathSciNet  Google Scholar 

  42. Prakash, A., Kumar, M., Sharma, K.K.: Numerical method for solving fractional coupled Burgers equations. Appl. Math. Comput. 260, 314–320 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Sakar, M.G., Ergoren, H.: Alternative variational iteration method for solving the time-fractional Fornberg–Whitham equation. Appl. Math. Model. 39(14), 3972–3979 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yu, J., Tan, L., Zhou, S., Wang, L., Siddique, M.A.: Image denoising algorithm based on entropy and adaptive fractional order calculus operator. IEEE Access 5, 12275–12285 (2017)

    Article  Google Scholar 

  45. Singh, B.K., Kumar, P.: Fractional variational iteration method for solving fractional partial differential equations with proportional delay. Int. J. Differ. Equ. 2017, 5206380 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Bistafa, S.R.: On the development of the Navier–Stokes equation by Navier. Rev. Bras. Ensino Fasica 40(2), e2603 (2018)

    Google Scholar 

  47. Jaber, K.K., Ahmad, R.S.: Analytical solution of the time fractional Navier–Stokes equation. Ain Shams Eng. J. 9(4), 1917–1927 (2018)

    Article  Google Scholar 

  48. Jena, R.M., Chakraverty, S.: Solving time-fractional Navier–Stokes equations using homotopy perturbation Elzaki transform. SN Appl. Sci. 1(1), 16 (2019)

    Article  Google Scholar 

  49. Akbar, T., Zia, Q.M.Z.: Some exact solutions of two-dimensional Navier–Stokes equations by generalizing the local vorticity. Adv. Mech. Eng. 11(4), 1687814019831893 (2019)

    Article  Google Scholar 

  50. Dubey, V.P., Kumar, R., Kumar, D., Khan, I., Singh, J.: An efficient computational scheme for nonlinear time fractional systems of partial differential equations arising in physical sciences. Adv. Differ. Equ. 2020(1), 46 (2020)

    Article  MathSciNet  Google Scholar 

  51. Duan, X., Dang, Y., Lu, J.: A variational level set method for topology optimization problems in Navier–Stokes flow. IEEE Access 8, 48697–48706 (2020)

    Article  Google Scholar 

  52. Odibat, Z.M.: A study on the convergence of variational iteration method. Math. Comput. Model. 51(9–10), 1181–1192 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zedan, H.A., Tantawy, S.S., Sayed, Y.M.: Convergence of the variational iteration method for initial-boundary value problem of fractional integro-differential equations. J. Fract. Calc. Appl. 5(supplement 3), 1–14 (2014)

    MathSciNet  Google Scholar 

  54. Singh, B.K., Kumar, P.: FRDTM for numerical simulation of multi-dimensional, time-fractional model of Navier–Stokes equation. Ain Shams Eng. J. 9(4), 827–834 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2017R1D1A1B05030422).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equally contributed. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nehad Ali Shah.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, YM., Ali Shah, N., Agarwal, P. et al. Analysis of fractional multi-dimensional Navier–Stokes equation. Adv Differ Equ 2021, 91 (2021). https://doi.org/10.1186/s13662-021-03250-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-021-03250-x

Keywords