Skip to main content

Theory and Modern Applications

Table 2 The commutator table of \(L(G)\)

From: Some new exact solutions of \((3+1)\)-dimensional Burgers system via Lie symmetry analysis

[â‹…,â‹…]

\(X_{1}\)

\(X_{2}\)

\(X_{3}\)

\(X_{4}\)

\(X_{5}\)

\(A_{\tilde{f}}\)

\(B_{\tilde{g}}\)

\(C_{\tilde{h}}\)

\(X_{1}\)

0

\(-X_{3}\)

\(-X_{1}\)

0

\(-\frac{1}{2}X_{4}\)

\(A_{t(t\tilde{f}'-\tilde{f})/2}\)

\(B_{(t\tilde{g}'-\tilde{g})/2}\)

\(C_{t^{2}\tilde{h}'/2}\)

\(X_{2}\)

\(X_{3}\)

0

0

\(X_{5}\)

0

\(A_{\tilde{f}'}\)

\(B_{\tilde{g}'}\)

\(C_{\tilde{h}'}\)

\(X_{3}\)

\(X_{1}\)

0

0

\(\frac{1}{2}X_{4}\)

\(-\frac{1}{2}X_{5}\)

\(A_{t\tilde{f}'-\tilde{f}/2}\)

\(B_{t\tilde{g}'-\tilde{g}/2}\)

\(C_{t\tilde{h}'}\)

\(X_{4}\)

0

\(-X_{5}\)

\(-\frac{1}{2}X_{4}\)

0

0

0

0

0

\(X_{5}\)

\(\frac{1}{2}X_{4}\)

0

\(\frac{1}{2}X_{5}\)

0

0

0

0

0

\(A_{f}\)

\(-A_{(tf'-f)/2}\)

\(-A_{f'}\)

\(-A_{tf'-f/2}\)

0

0

0

0

\(B_{\tilde{h}f}\)

\(B_{g}\)

\(-B_{(tg'-g)/2}\)

\(-B_{g'}\)

\(-B_{tg'-g/2}\)

0

0

0

0

\(-A_{\tilde{h}g}\)

\(C_{h}\)

\(-C_{t^{2}h'/2}\)

\(-C_{h'}\)

\(-C_{th'}\)

0

0

\(-B_{h\tilde{f}}\)

\(A_{h\tilde{g}}\)

0