Skip to main content

Theory and Modern Applications

Solution of fractional kinetic equations involving class of functions and Sumudu transform

Abstract

Fractional kinetic equations (FKEs) including a wide variety of special functions have been widely and successfully applied in describing and solving many important problems of physics and astrophysics. In this paper, we derive the solutions for FKEs including the class of functions with the help of Sumudu transforms. Many important special cases are then revealed and analyzed. The use of the class of functions to obtain the solution of FKEs is fairly general and can be efficiently used to construct several well-known and novel FKEs.

1 Introduction

Fractional calculus has been developed and used in different fields of applied science and engineering. Recently, fractional calculus got more importance due to its wide variety of applications in numerous topics, such as wave-like equations, the SIRS-SI malaria disease model, diabetes model, the model of the Ambartsumian equation and the model of Lienard’s equation [17, 19, 22, 23, 42]. Very recently, the fractional calculus with Mittag-Leffler law was widely studied due to its significance and applicability in various fields [20, 21, 24, 41, 43]. During the last decades, FKEs of different models have been successfully applied in describing and explaining numerous problems of physics and astrophysics (see, e.g., [1–3, 5, 13, 16, 18, 28–31, 35–39, 49] and the references therein).

1.1 Fractional kinetic equations

In [15] one determined the fractional differential equation for the rate of change of reaction. The destruction rate and the production rate follow

$$ \frac{d\mathfrak{M}}{dt}=-d (\mathfrak{M}_{t} ) +p ( \mathfrak{M} _{t} ), $$
(1.1)

where \(\mathfrak{M}=\mathfrak{M} ( t ) \) and \(d=d (\mathfrak{M} ) \) the rate of reaction and the rate of destruction, respectively. The rate of production is denoted by \(p=p (\mathfrak{M} ) \) and \(\mathfrak{M}_{t} ( t^{ \ast } ) =\mathfrak{M} (t-t^{\ast } ) \), \(t^{\ast }>0\).

By neglecting the spatial fluctuations or in homogeneities in \(\mathfrak{M} ( t ) \), the particular case of (1.1) is formed as

$$ \frac{d\mathfrak{M}}{dt}=-c_{i}\mathfrak{M}_{i} ( t ), $$
(1.2)

with t \(\mathfrak{M}_{i} ( t=0 ) =\mathfrak{M}_{0}\) is the number of density of species i at time \(t=0\) and \(c_{i}>0\). Integrating the standard kinetic equation (1.2), not considering the index i, we get

$$ \mathfrak{M} ( t ) -\mathfrak{M}_{0}=-c_{0}D_{t}^{-1} \mathfrak{M} ( t ), $$
(1.3)

where \({}_{0}D_{t}^{-1}\) is the particular form of the Riemann–Liouville operator \({}_{0}D_{t}^{-\tau }\) defined by

$$ _{0}D_{t}^{-\tau }f ( t ) =\frac{1}{\varGamma ( \tau ) } \int _{0}^{t} ( t-s ) ^{\tau -1}f ( s )\,ds,\quad t>0,\Re ( \tau ) >0. $$

The fractional generalized form of the standard kinetic equation (1.3) is given in [15] as

$$ \mathfrak{M} ( t )-\mathfrak{M}_{0}=-c_{0}^{\tau }D_{t} ^{-1}\mathfrak{M} ( t ). $$
(1.4)

The solution of (1.4) is

$$ \mathfrak{M} ( t ) =\mathfrak{M}_{0}\sum _{k=0}^{ \infty }\frac{ ( -1 ) ^{k}}{\varGamma ( \tau k+1 ) } ( ct ) ^{\tau k}. $$
(1.5)

Another generalized form of FKE is given in [36] as

$$ \mathfrak{M} ( t )-\mathfrak{M}_{0}f (t ) =-c ^{\tau } \bigl(_{0}D_{t}^{-1}\mathfrak{M} \bigr) ( t ) \quad \bigl( \Re ( \tau ) >0 \bigr), $$
(1.6)

where \(\mathfrak{M}(t)\), \(\mathfrak{M}_{0}=\mathfrak{M} ( 0 ) \) is the same as (1.2), c is a constant and \(f\in L(0, \infty )\). The use of the Laplace transform (LT) to (1.6) (see [36]) gives

$$\begin{aligned} \mathcal{L} \bigl[ \mathfrak{M} ( t ) \bigr] ( p ) &= \mathfrak{M}_{0}\frac{F (p ) }{1+c^{\tau }p ^{-\tau }} \\ &=\mathfrak{M}_{0} \Biggl( \sum_{n=0}^{\infty } \bigl( -c^{\tau } \bigr) ^{n}p^{-n\tau } \Biggr) F ( p ), \end{aligned}$$
(1.7)

where \(n\in \mathfrak{M}_{0}\), \(\vert \frac{c}{p} \vert <1\) and the LT ([44]) is defined by

$$ F ( p ) =\mathcal{L} \bigl[ f(t) \bigr] = \int _{0} ^{\infty }e^{-pt}f ( t ) \,dt\quad \Re ( p ) >0. \vadjust{\goodbreak} $$
(1.8)

To proceed our study, we need the definitions of the Mittag-Leffler (M-L) functions \(E_{\rho } (z )\) (see [27]) and \(E_{\rho ,\lambda } ( x )\) [48]:

$$\begin{aligned}& E_{\tau } ( z ) =\sum_{n=0}^{\infty } \frac{z^{n}}{\varGamma ( \tau n+1 ) }\quad \bigl(z,\tau \in \mathbb{C}; \vert z \vert < 0, \Re ( \tau )>0 \bigr) , \end{aligned}$$
(1.9)
$$\begin{aligned}& E_{\tau ,\eta } ( x ) =\sum_{n=0}^{\infty } \frac{x^{n}}{ \varGamma ( \tau n+\eta ) }\quad \bigl(z,\tau , \eta \in \mathbb{C};\Re ( \tau )>0, \Re ( \eta )>0 \bigr) . \end{aligned}$$
(1.10)

For the details as regards FKEs and solutions, one can refer to [14, 28–31, 35–39, 49].

1.2 Class of functions

A class of functions \(\mathfrak{F}_{\rho }^{\lambda }\) is introduced in [34] and is defined by

$$ \mathfrak{F}_{\rho , \lambda }(x)=\sum _{n=0}^{\infty }\frac{\sigma (n)}{ \varGamma (\rho n+\lambda )}x^{n}, $$
(1.11)

where \(\rho , \lambda \in \mathbb{C}\), \(\Re (\rho )>0\), \(|x|<\mathbb{R}\) and the coefficient \(\sigma (n)\) is a bounded arbitrary sequence of real (or complex) numbers.

1.3 Special cases

  • If we set

    $$\begin{aligned} \sigma (n)=\frac{(\delta )_{\kappa n}}{n!} \end{aligned}$$
    (1.12)

    then (1.11) reduces to the generalized M-L function given by Srivastava and Tomovski [45].

  • If we consider \(\sigma (n)=\frac{(\delta )_{qn}}{n!}\), \(q\in (0,1) \cup \mathbb{N}\) gives \(E_{\rho ,\lambda }^{\delta ,q}(x)\) of [40].

  • By considering \(\sigma (n)=\frac{(\delta )_{k}}{n!}\), (1.11) turns into the generalized Mittag-Leffler function defined in [32].

  • Choosing \(\sigma (n)=1\) we get the well-known generalized M-L function \(E_{\rho ,\lambda }(x)\) [48].

For more details as regards the class of functions and its properties, the interesting reader is referred to [25, 26, 33].

1.4 Sumudu transform

The Sumudu transform is widely used to solve various type of problems in science and engineering and it was introduced by Watugala (see [46, 47]). For the details of Sumudu transforms, properties and its applications the interesting reader is referred to [4, 6–12].

The Sumudu transform over the set functions

$$ A=\bigl\{ f ( t ) \vert \exists ~M,\tau _{1},\tau _{2}>0, \bigl\vert f ( t ) \bigr\vert < Me^{ \vert t \vert / \tau _{j}} ,\text{ if }t\in ( -1 ) ^{j}\times {}[ 0,\infty ) \bigr\} $$

is defined by

$$ G ( u ) =S \bigl[ f ( t ) ;u \bigr] = \int _{0} ^{\infty }f ( ut ) e^{-t}\,dt,\quad u \in ( -\tau _{1},\tau _{2} ). $$
(1.13)

The main aim of this study is to establish the generalized FKEs involving \(\mathfrak{F}_{\rho ,\lambda }(x)\). Here, we consider the Sumudu transform methodology to achieve the results.

2 Solution of generalized fractional kinetic equations involving class of functions

The solution of the generalized fractional kinetic equations involving is given in this section.

Theorem 2.1

If \(d>0\), \(\upsilon >0\), \(\rho ,\lambda , t\in \mathbb{C}\), \(\Re (\rho ) >0\)and \(|x|<\mathbb{R}\). Then the solution of the equation

$$ \mathfrak{N} ( t ) -\mathfrak{N}_{0}\mathfrak{F}_{\rho , \lambda } (t ) =-d^{\upsilon }{ }_{0}D_{t}^{-\upsilon } \mathfrak{N} ( t ) $$
(2.1)

is given by

$$ \mathfrak{N} ( t ) =\mathfrak{N}_{0}\sum _{n=0}^{ \infty }\frac{\sigma {(n)}\varGamma (n+1)}{\varGamma (\rho n+\lambda )}t^{n-1} E_{\upsilon , n} \bigl(-d^{\upsilon }t^{\upsilon } \bigr), $$
(2.2)

where \(E_{v,n} ( . ) \)is the generalized Mittag-Leffler function [27].

Proof

The Sumudu transform of Riemann–Liouville fractional operator is given by

$$ S\bigl[{}_{0}D_{t}^{\upsilon }f(t);u \bigr]=u^{\upsilon }G(u), $$
(2.3)

where \(G(u)\) is defined in (1.13). Applying the Sumudu transform to both sides of (2.1) gives

$$\begin{aligned}& S \bigl[ \mathfrak{N} ( t ) ;u \bigr] =\mathfrak{N}_{0}S \bigl[ \mathfrak{F}_{\rho ,\lambda } (t ) ;u \bigr] -d ^{\upsilon }S \bigl[ _{0}D_{t}^{-\upsilon }\mathfrak{N} (t ) ;u \bigr], \\& \mathfrak{N}^{*} (u ) =\mathfrak{N}_{0} \Biggl( \int _{0} ^{\infty }e^{-t}\sum _{n=0}^{\infty }\frac{\sigma (n)}{\varGamma ( \rho n +\lambda )}(ut)^{n}\,dt \Biggr) -d^{\upsilon }u^{\upsilon } \mathfrak{N}^{*} (u ), \end{aligned}$$

where \(S\{t^{\mu -1}\}=u^{\mu -1}\varGamma (\mu )\). Interchanging integration and summation, we get

$$\begin{aligned} \mathfrak{N}^{*} (u )+d^{\upsilon }u^{\upsilon } \mathfrak{N}^{*} (u ) &=\mathfrak{N}_{0}\sum _{n=0} ^{\infty }\frac{\sigma (n)}{\varGamma (\rho n +\lambda )}(u)^{n} \int _{0} ^{\infty }e^{-t}t^{n}\,dt \\ &=\mathfrak{N}_{0}\sum_{n=0}^{\infty } \frac{\sigma (n)}{ \varGamma (\rho n +\lambda )}(u)^{n}\varGamma (n+1). \end{aligned}$$

This implies that

$$ \mathfrak{N}^{*} (u ) =\mathfrak{N}_{0} \sum_{n=0} ^{\infty }\frac{\sigma (n)}{\varGamma (\rho n +\lambda )} \varGamma (n+1)u ^{n}\sum_{r=0}^{\infty } \bigl[- (du )^{\upsilon } \bigr] ^{r}. $$
(2.4)

Taking the Sumudu inverse of (2.4), and by using

$$ S^{-1} \bigl\{ u^{\upsilon }; t \bigr\} =\frac{t^{\upsilon -1}}{ \varGamma ( \upsilon ) },\quad \Re (\upsilon ) >0, $$

we get

$$\begin{aligned}& S^{-1} \bigl(\mathfrak{N} (t ) \bigr) =\mathfrak{N}_{0} \sum_{n=0}^{\infty }\frac{\sigma (n)\varGamma (n+1)}{\varGamma ( \rho n +\lambda )} S^{-1} \Biggl\{ \sum_{r=0}^{\infty }d^{ \upsilon r}u^{ (n+\upsilon r ) } \Biggr\} , \\& \begin{aligned} \mathfrak{N} ( t ) &=\mathfrak{N}_{0}\sum _{n=0} ^{\infty }\frac{\sigma (n)}{\varGamma (\rho n +\lambda )}\varGamma (n+1) \Biggl\{ \sum_{r=0}^{\infty } ( -1 ) ^{r}d^{\upsilon r}\frac{t^{ (n+\upsilon r )-1}}{\varGamma (n+\upsilon r ) } \Biggr\} \\ &=\mathfrak{N}_{0}\sum_{n=0}^{\infty } \frac{\sigma (n)}{ \varGamma (\rho n +\lambda )}t^{n-1} \Biggl\{ \sum _{r=0}^{\infty } ( -1 ) ^{r}d^{\upsilon r} \frac{t^{\upsilon r}}{\varGamma (n+\upsilon r ) } \Biggr\} . \end{aligned} \end{aligned}$$

In view of Eq. (1.9), we obtain the desired result. □

Theorem 2.2

If \(d>0\), \(\upsilon >0\), \(\rho ,\lambda , t\in \mathbb{C}\), \(\Re (\rho ) >0\)and \(|x|<\mathbb{R}\), then the solution of the equation

$$ \mathfrak{N} ( t ) -\mathfrak{N}_{0}\mathfrak{F}_{\rho , \lambda } \bigl(d^{\upsilon }t^{\upsilon } \bigr) =-d^{\upsilon }{ }_{0}D_{t}^{-\upsilon } \mathfrak{N} ( t ) $$
(2.5)

is given by

$$ \mathfrak{N} ( t ) =\mathfrak{N}_{0}\sum _{n=0}^{ \infty }\frac{\sigma {(n)}\varGamma (n+1)}{\varGamma (\rho n+\lambda )} \bigl(d^{\upsilon }\bigr)t^{\upsilon -1} E_{\upsilon , n} \bigl(-d^{ \upsilon }t^{\upsilon } \bigr). $$
(2.6)

Proof

This theorem can be proved like Theorem 2.1. So the details are omitted. □

Theorem 2.3

If \(d>0\), \(\upsilon >0\), \(\rho ,\lambda , t\in \mathbb{C}\), \(\Re (\rho ) >0\), \(\mathfrak{a} \neq d\)and \(|x|< \mathbb{R}\), then the solution of the equation

$$ \mathfrak{N} ( t ) -\mathfrak{N}_{0}\mathfrak{F}_{\rho , \lambda } \bigl(d^{\upsilon }t^{\upsilon } \bigr) =-{\mathfrak{a}} ^{\upsilon }{ }_{0}D_{t}^{-\upsilon } \mathfrak{N} ( t ) $$
(2.7)

is given by

$$ \mathfrak{N} ( t ) =\mathfrak{N}_{0}\sum _{n=0}^{ \infty }\frac{\sigma {(n)}\varGamma (n+1)}{\varGamma (\rho n+\lambda )} \bigl(d^{\upsilon }\bigr)t^{\upsilon -1} E_{\upsilon , n} \bigl(-{ \mathfrak{a}} ^{\upsilon }t^{\upsilon } \bigr). $$
(2.8)

Proof

Theorem 2.3 can easily be derived from Theorem 2.2, so the details are omitted. □

If we choose \(\sigma (n)=\frac{(\gamma )_{\kappa n}}{\varGamma (n+1)}\) then we get the fractional kinetic equation involving a generalized Mittag-Leffler function [45]

Corollary 2.1

If \(d>0\), \(\upsilon >0\), \(\rho ,\lambda , t\in \mathbb{C}\), \(\Re (\rho ) >0\)and \(|x|<\mathbb{R}\), then the solution of the equation

$$ \mathfrak{N} ( t ) -\mathfrak{N}_{0}E_{\rho ,\lambda }^{ \gamma ,\kappa } (t ) =-d^{\upsilon }{ }_{0}D_{t}^{- \upsilon } \mathfrak{N} ( t ) $$
(2.9)

is given by

$$ \mathfrak{N} ( t ) =\mathfrak{N}_{0}\sum _{n=0}^{ \infty } \frac{(\gamma )_{\kappa n}}{\varGamma (\rho n+\lambda )}t ^{n-1} E_{\upsilon , n} \bigl(-d^{\upsilon }t^{\upsilon } \bigr). $$
(2.10)

If we choose \(\sigma (n)=\frac{(\gamma )_{n,q}}{\varGamma (n+1)}\) then we get the fractional kinetic equation involving the generalized Mittag-Leffler function [40]

Corollary 2.2

If \(d>0\), \(\upsilon >0\), \(\rho ,\lambda , t\in \mathbb{C}\), \(\Re (\rho ) >0\)and \(|x|<\mathbb{R}\), then the solution of the equation

$$ \mathfrak{N} ( t ) -\mathfrak{N}_{0}E_{\rho ,\lambda }^{ \gamma ,q} (t ) =-d^{\upsilon }{ }_{0}D_{t}^{-\upsilon } \mathfrak{N} ( t ) $$
(2.11)

is given by

$$ \mathfrak{N} ( t ) =\mathfrak{N}_{0}\sum _{n=0}^{ \infty }\frac{(\gamma )_{n,q}}{\varGamma (\rho n+\lambda )}t ^{n-1} E_{\upsilon , n} \bigl(-d^{\upsilon }t^{\upsilon } \bigr). $$
(2.12)

If we choose \(\sigma (n)=\frac{(\gamma )_{n}}{\varGamma (n+1)}\) then we get the fractional kinetic equation involving the generalized Mittag-Leffler function [32]

Corollary 2.3

If \(d>0\), \(\upsilon >0\), \(\rho ,\lambda , t\in \mathbb{C}\), \(\Re (\rho ) >0\)and \(|x|<\mathbb{R}\), then the solution of the equation

$$ \mathfrak{N} ( t ) -\mathfrak{N}_{0}E_{\rho ,\lambda }^{ \gamma } (t ) =-d^{\upsilon }{ }_{0}D_{t}^{-\upsilon } \mathfrak{N} ( t ) $$
(2.13)

is given by

$$ \mathfrak{N} ( t ) =\mathfrak{N}_{0}\sum _{n=0}^{ \infty }\frac{(\gamma )_{n}}{\varGamma (\rho n+\lambda )}t ^{n-1} E_{\upsilon , n} \bigl(-d^{\upsilon }t^{\upsilon } \bigr). $$
(2.14)

If we choose \(\sigma (n)=1\) then we get the fractional kinetic equation involving the generalized Mittag-Leffler function [48]

Corollary 2.4

If \(d>0\), \(\upsilon >0\), \(\rho ,\lambda , t\in \mathbb{C}\), \(\Re (\rho ) >0\)and \(|x|<\mathbb{R}\), then the solution of the equation

$$ \mathfrak{N} ( t ) -\mathfrak{N}_{0}E_{\rho ,\lambda } (t ) =-d^{\upsilon }{ }_{0}D_{t}^{-\upsilon } \mathfrak{N} ( t ) $$
(2.15)

is given by

$$ \mathfrak{N} ( t ) =\mathfrak{N}_{0}\sum _{n=0}^{ \infty }\frac{\varGamma (n+1)}{\varGamma (\rho n+\lambda )}t ^{n-1} E_{\upsilon , n} \bigl(-d^{\upsilon }t^{\upsilon } \bigr). $$
(2.16)

Remark 2.1

By choosing different values for \(\sigma (n)\), we can deduce many results from Theorem 2.1. Similarly, from Theorem 2.2 and Theorem 2.3, one can deduce many known and new solutions of the fractional kinetic equation involving a variety of special functions.

3 Graphical results and discussion

Figures 1 and 2 shows the 2D plots of solutions of (2.2) for \(\lambda = 1\) and \(\lambda = 2\), respectively, with parametric values \(\mathfrak{N_{0}}= 2\), \(\rho =1\), \(d=3\), \(\sigma (n)=1\) and for different values of \(\nu = 1,~0.8,~0.6\). We observe that for \(\lambda =2\) the growth rate is slow as compared to \(\lambda =1\) when ν approaches to 1.

Figure 1
figure 1

Solution of (2.2) for \(\lambda =1\)

Figure 2
figure 2

Solution of (2.2) for \(\lambda =2\)

In Figs. 3 and 4 3D plots are shown for the time interval \(0.3 < t<1.8\) which give the valid region of convergence of solutions for \(0\leq \nu \leq 1\) and also the time interval \(0.5 < t<3\) gives the valid region of convergence of solutions for \(1.5\leq \nu \leq 2\) of (2.2) for \(\lambda = 1\), respectively. Likewise the valid region of convergence of (2.2) for \(\lambda = 2\) is shown in Figs. 5 and 6.

Figure 3
figure 3

Mesh-plot of (2.2) for \(\lambda = 1\), \(0.3< t<2\)

Figure 4
figure 4

Mesh-plot of (2.2) for \(\lambda = 1\), \(0.5< t<3\)

Figure 5
figure 5

Mesh-plot of (2.2) for \(\lambda =2\), \(0.4< t<2.4\)

Figure 6
figure 6

Mesh-plot of (2.2) for \(\lambda =2\), \(0.6< t<4\)

Figures 7 and 8 show the 2D plots of solutions of (2.6) for \(\lambda = 1\) and \(\lambda = 2\), respectively, with parametric values \(\mathfrak{N_{0}}= 2\), \(\rho =1\), \(d=3\), \(\sigma (n)=1\) and for different values of \(\nu = 1,~0.8,~0.6\). We observe that for \(\lambda =1\) the growth rate is slow as compared to \(\lambda =2\) when ν approaches 1.

Figure 7
figure 7

Solution of (2.6) for \(\lambda =1\)

Figure 8
figure 8

Solution of (2.6) for \(\lambda =2\)

Figures 9 and 10 represent 3D plots where the time interval \(0.3 < t<1.8\) gives the valid region of convergence of solutions for \(0\leq \nu \leq 1\) and the time interval \(0 < t<3\) gives the valid region of convergence of solutions for \(1.3\leq \nu \leq 2\) for \(\lambda = 1\) of (2.6), respectively. Likewise the valid regions of convergence of (2.6) for \(\lambda = 2\) for different values of λ and ν are shown in Figs. 11 and 12. The dark portion in all figures shows the beginning of the divergence of a solution.

Figure 9
figure 9

Mesh-plot of (2.6) for \(\lambda = 1\), \(0.4< t<2\)

Figure 10
figure 10

Mesh-plot of (2.6) for \(\lambda = 1\), \(0.5< t<3\)

Figure 11
figure 11

Mesh-plot of (2.6) for \(\lambda =2\), \(0.8< t<2\)

Figure 12
figure 12

Mesh-plot of (2.6) for \(\lambda =2\), \(0.9< t<4\)

The graphical results demonstrate that the region of convergence of solutions depends continuously on the fractional parameter ν as well as on λ. Hence, by examining the behavior of the solutions for different parameters and time intervals it is observed that \(\mathfrak{N} ( t )\) is negative as well as positive.

4 Conclusion

The fractional kinetic equation involving the class of functions is studied using the Sumudu transform technique. The results achieved here are rather general in nature and one can find various new and known solutions of FKEs containing a different type of special function. The behavior of the obtained solutions is studied with the help of graphs.

References

  1. Agarwal, P., Chand, M., Baleanu, D., O’Regan, D., Jain, S.: On the solutions of certain fractional kinetic equations involving k-Mittag-Leffler function. Adv. Differ. Equ. 2018, Article ID 249 (2018). https://doi.org/10.1186/s13662-018-1694-8

    Article  MathSciNet  MATH  Google Scholar 

  2. Al-Saqabi, B.N., Tuan, V.K.: Solution of a fractional differintegral equation. Integral Transforms Spec. Funct. 4(4), 321–326 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angulo, J.M., Anh, V.V., McVinish, R., Ruiz-Medina, M.D.: Fractional kinetic equations driven by Gaussian or infinitely divisible noise. Adv. Appl. Probab. 37, 366–392 (2005). https://doi.org/10.1239/aap/1118858630

    Article  MathSciNet  MATH  Google Scholar 

  4. Asiru, M.A.: Sumudu transform and the solution of integral equation of convolution type. Int. J. Math. Educ. Sci. Technol. 32, 906–910 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Batalov, L., Batalova, A.: Critical dynamics in systems controlled by fractional kinetic equations. Physica A 392, 602–611 (2013)

    Article  MathSciNet  Google Scholar 

  6. Belgacem, F.B.M.: Introducing and analyzing deeper Sumudu properties. Nonlinear Stud. 13, 23–42 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Belgacem, F.B.M.: Sumudu applications to Maxwell’s equations. PIERS Online 5, 355–360 (2009)

    Article  Google Scholar 

  8. Belgacem, F.B.M.: Applications with the Sumudu transform to Bessel functions and equations. Appl. Math. Sci. 4, 3665–3686 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Belgacem, F.B.M., Al-Shemas, E.H., Silambarasan, R.: Sumudu computation of the transient magnetic field in a lossy medium. Appl. Math. Inf. Sci. 6, 1–9 (2016)

    Google Scholar 

  10. Belgacem, F.B.M., Karaballi, A.A.: Sumudu transform fundamental properties investigations and applications. J. Appl. Math. Stoch. Anal. 2006, Article ID 91083 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Belgacem, F.B.M., Karaballi, A.A.: Sumudu transform fundamental properties investigations and applications. J. Appl. Math. Stoch. Anal. 2006, 1–23 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Belgacem, F.B.M., Karaballi, A.A., Kalla, S.L.: Analytical investigations of the Sumudu transform and applications to integral production equations. Math. Probl. Eng. 3, 103–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Borodikhin, V.N.: Fractional differential kinetic equation and growth of the nuclei of a new phase at phase transitions. Phys. Lett. A 376, 1952–1954 (2012)

    Article  MATH  Google Scholar 

  14. Chaurasia, V.B.L., Pandey, S.C.: On the new computable solution of the generalized fractional kinetic equations involving the generalized function for the fractional calculus and related functions. Astrophys. Space Sci. 317, 213–219 (2008)

    Article  Google Scholar 

  15. Haubold, H.J., Mathai, A.M.: The fractional kinetic equation and thermonuclear functions. Astrophys. Space Sci. 327, 53–63 (2000)

    Article  MATH  Google Scholar 

  16. Kumar, D.: Solution of fractional kinetic equation by a class of integral transform of pathway type. J. Math. Phys. 54, Article ID 043509 (2013). https://doi.org/10.1063/1.4800768

    Article  MathSciNet  MATH  Google Scholar 

  17. Kumar, D., Agarwal, R.P., Singh, J.: A modified numerical scheme and convergence analysis for fractional model of Lienard’s equation. J. Comput. Appl. Math. 339, 405–413 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kumar, D., Choi, J., Srivastava, H.M.: Solution of a general family of fractional kinetic equations associated with the generalized Mittag-Leffler function. Nonlinear Funct. Anal. Appl. 23(3), 455–471 (2018)

    MATH  Google Scholar 

  19. Kumar, D., Singh, J., Al Qurashi, M., Baleanu, D.: A new fractional SIRS-SI malaria disease model with application of vaccines, anti-malarial drugs, and spraying. Adv. Differ. Equ. 2019, 278 (2019). https://doi.org/10.1186/s13662-019-2199-9

    Article  Google Scholar 

  20. Kumar, D., Singh, J., Baleanu, D.: A new analysis of Fornberg–Whitham equation pertaining to a fractional derivative with Mittag-Leffler type kernel. Eur. Phys. J. Plus 133(2), 70 (2018). https://doi.org/10.1140/epjp/i2018-11934-y

    Article  Google Scholar 

  21. Kumar, D., Singh, J., Baleanu, D.: On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law. Math. Methods Appl. Sci. (2019). https://doi.org/10.1002/mma.5903

    Article  Google Scholar 

  22. Kumar, D., Singh, J., Baleanu, D., Rathore, S.: Analysis of a fractional model of Ambartsumian equation. Eur. Phys. J. Plus 133, 259 (2018)

    Article  Google Scholar 

  23. Kumar, D., Singh, J., Purohit, S.D., Swroop, R.: A hybrid analytical algorithm for nonlinear fractional wave-like equations. Math. Model. Nat. Phenom. 14, 304 (2019) (ISSN: 0973-5348)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kumar, S., Kumar, A., Momani, S., Aldhaifallah, M., Nisar, K.S.: Numerical solutions of nonlinear fractional model arising in the appearance of the stripe patterns in two-dimensional systems. Adv. Differ. Equ. 2019(1), 413 (2019)

    Article  MathSciNet  Google Scholar 

  25. Luo, M.-J., Raina, R.K.: On certain classes of fractional kinetic equations. Filomat 28(10), 2077–2090 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Luo, M.-J., Raina, R.K.: A note on a class of convolution integral equations. Honam Math. J. 37, 397–409 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mittag-Leffler, G.M.: Sur la representation analytiqie d’une fonction monogene cinquieme note. Acta Math. 29, 101–181 (1905)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nisar, K.S., Baleanu, D., Alqurasi, M.: Fractional calculus and application of generalized Struve functions. SpringerPlus 5, 910 (2016)

    Article  Google Scholar 

  29. Nisar, K.S., Belgacem, F.B.M.: Dynamic k-Struve Sumudu solutions for fractional kinetic equations. Adv. Differ. Equ. 2017, 340 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nisar, K.S., Purohit, S.D., Mondal, S.R.: Generalized fractional kinetic equations involving generalized Struve function of the first kind. J. King Saud Univ., Sci. 28, 167–171 (2016)

    Article  Google Scholar 

  31. Nisar, K.S., Qi, F.: On solutions of fractional kinetic equations involving the generalized k-Bessel function. Note Mat. 37, 1–10 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)

    MathSciNet  MATH  Google Scholar 

  33. Rahman, G., Ghaffar, A., Nisar, K.S., Azeema: The \((k; s)\)-fractional calculus of class of a function. Honam Math. J. 40, 125–138 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Raina, R.K.: On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 21(2), 191–203 (2005)

    MATH  Google Scholar 

  35. Saichev, A., Zaslavsky, M.: Fractional kinetic equations: solutions and applications. Chaos 7, 753–764 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Saxena, R.K., Kalla, S.L.: On the solutions of certain fractional kinetic equations. Appl. Math. Comput. 199, 504–511 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Saxena, R.K., Mathai, A.M., Haubold, H.J.: On fractional kinetic equations. Astrophys. Space Sci. 282, 281–287 (2002)

    Article  Google Scholar 

  38. Saxena, R.K., Mathai, A.M., Haubold, H.J.: On generalized fractional kinetic equations. Physica A 344, 657–664 (2004)

    Article  MathSciNet  Google Scholar 

  39. Saxena, R.K., Mathai, A.M., Haubold, H.J.: Solution of generalized fractional reaction–diffusion equations. Astrophys. Space Sci. 305, 305–313 (2006)

    Article  MATH  Google Scholar 

  40. Shukla, A.K., Prajapati, J.C.: On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 336, 797–811 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Singh, J.: A new analysis for fractional rumor spreading dynamical model in a social network with Mittag-Leffler law. Chaos 29, 013137 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Singh, J., Kumar, D., Baleanu, D.: On the analysis of fractional diabetes model with exponential law. Adv. Differ. Equ. 2018, 231 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Singh, J., Kumar, D., Baleanu, D.: New aspects of fractional Biswas–Milovic model with Mittag-Leffler law. Math. Model. Nat. Phenom. 14(3), 303 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Spiegel, M.R.: Theory and Problems of Laplace Transforms. Schaums Outline Series. McGraw-Hill, New York (1965)

    Google Scholar 

  45. Srivastava, H.M., Tomovski, Z.: Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 211, 198–210 (2009)

    MathSciNet  MATH  Google Scholar 

  46. Watugala, G.K.: Sumudu transform: a new integral transform to solve differential equations and control engineering problems. Int. J. Math. Educ. Sci. Technol. 24, 35–43 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  47. Watugala, G.K.: The Sumudu transform for functions of two variables. Math. Eng. Ind. 8, 293–302 (2002)

    MathSciNet  MATH  Google Scholar 

  48. Wiman, A.: Uber den fundamental Satz in der Theorie der Funktionen \(E_{\alpha } (z )\). Acta Math. 29, 191–201 (1905)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zaslavsky, G.M.: Fractional kinetic equation for Hamiltonian chaos. Physica D 76, 110–122 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

None.

Availability of data and materials

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Writing of the original draft was by KSN, of software by AS; validation was by AS and GR; formal analysis was by KSN and DK. All authors read, revised and approved the manuscript.

Corresponding author

Correspondence to Amjad Shaikh.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nisar, K.S., Shaikh, A., Rahman, G. et al. Solution of fractional kinetic equations involving class of functions and Sumudu transform. Adv Differ Equ 2020, 39 (2020). https://doi.org/10.1186/s13662-020-2513-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-020-2513-6

MSC

Keywords