Skip to main content

Some generalized Volterra–Fredholm type dynamical integral inequalities in two independent variables on time scale pairs

Abstract

In this paper, we study some new Volterra–Fredholm type dynamical integral inequalities in two independent variables on time scale pairs, which provide explicit bounds on unknown functions. These inequalities generalize and extend some known inequalities and can be used as effective tools in the qualitative theory of certain classes of partial dynamic equations on time scales. Finally, an example is provided to illustrate the usefulness of our result.

Introduction

Beginning in 1988, a seminal paper by Stefan Hilger [1] initiated a theory capable of containing both continuous and discrete analysis in a consistent way. Since then, the theory has attracted wide attention. As one of the most fundamental objects, dynamic equations on time scales has been extensively investigated in recent years, we refer the reader to the books [2, 3] and to the papers [424] and the references therein.

As we all known, inequalities are a powerful tool in the study of qualitative properties of solutions of differential, integral, and difference equations, and so on. During the last few years, a lot of dynamic inequalities have been extended by many authors. See [2537]. For example, Anderson [28] considered the following nonlinear integral inequality in two independent variables on time scale pairs:

$$\begin{aligned} u^{p}(x,y)\leq a(x,y)+b(x,y) \int ^{x}_{x_{0}} \int _{y}^{\infty }\bigl[c(s,t)u ^{q}(s,t)+d(s,t)u^{r}(s,t)+e(s,t) \bigr]\widetilde{\nabla } t\Delta s. \end{aligned}$$

Ferreira and Torres [36] studied the following nonlinear integral inequality in two independent variables on time scale pairs:

$$\begin{aligned} u^{p}(x,y)\leq a(x,y)+b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}c(x,y,s,t)u ^{q}(s,t) \Delta t\Delta s. \end{aligned}$$

Volterra–Fredholm-type integral inequality is an important integral inequality, which contains a definite integral of the unknown function, and has been given much attention by many authors, see [3846] and the references therein. For example, Feng et al. [38] studied the following Volterra–Fredholm-type finite difference inequality:

$$\begin{aligned} u^{p}(m,n) \leq & a(m,n) \\ &{}+\sum_{s=m_{0}}^{m-1}\sum _{t=n_{0}}^{n-1} \Biggl[c(s,t,m,n)u^{q}(s,t)+ \sum_{\xi =m_{0}}^{s}\sum _{\eta =n_{0}}^{t}d(\xi ,\eta ,m,n)u^{r}( \xi ,\eta ) \Biggr] \\ &{}+\sum_{s=m_{0}}^{M-1}\sum _{t=n_{0}}^{N-1} \Biggl[f(s,t,m,n)u^{l}(s,t)+ \sum_{\xi =m_{0}}^{s}\sum _{\eta =n_{0}}^{t}g(\xi ,\eta ,m,n)u^{k}( \xi ,\eta ) \Biggr]. \end{aligned}$$

Meng and Gu [46] considered the following nonlinear Volterra–Fredholm-type dynamic integral inequality on time scales:

$$\begin{aligned} u(x) \leq & k+ \int ^{x}_{x_{0}}f_{1}(s)w\bigl(u(s) \bigr)\Delta s+ \int ^{x}_{x_{0}}f _{2}(s) \int ^{s}_{x_{0}}f_{3}(\tau )w\bigl(u( \tau )\bigr)\Delta \tau \Delta s \\ &{}+ \int ^{\alpha }_{x_{0}}f_{1}(s)w\bigl(u(s) \bigr)\Delta s+ \int ^{\alpha }_{x _{0}}f_{2}(s) \int ^{s}_{x_{0}}f_{3}(\tau )w\bigl(u( \tau )\bigr)\Delta \tau \Delta s. \end{aligned}$$

But to our knowledge, Volterra–Fredholm-type dynamic integral inequalities in two independent variables on time scale pairs have been paid little attention in the literature so far. Motivated by the work done in [36, 38, 46], in this paper, we establish some generalized Volterra–Fredholm-type dynamic integral inequalities in two independent variables on time scale pairs, which not only extend some existing results in the literature, unify some known continuous and discrete inequalities, but also may be applied to the analysis of certain classes of partial dynamic equations on time scales.

Preliminaries

In what follows, we assume that \(\mathbf{T}_{1}\) and \(\mathbf{T}_{2}\) are two time scales with at least two points, \(x_{0}, \alpha\in\mathbf{T}_{1}\), \(y_{0}, \beta\in\widetilde{\mathbf{T}}_{2}\), \(\alpha>x_{0}\), \(\beta>y_{0}\), \(\widetilde{\mathbf{T}}_{1}=[x_{0},\infty)\cap\mathbf{T}_{1}\), \(\widetilde{\mathbf{T}}_{2}=[y_{0},\infty)\cap\mathbf{T}_{2}\), \(I_{1}=[x_{0},\alpha]\cap\mathbf{T}_{1}\), \(I_{2}=[y_{0},\beta]\cap\mathbf{T}_{2}\), \(D=\{(x,y,s,t)\in\widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}\times \widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}: x_{0}\leq s \leq x, y_{0}\leq t \leq y\}\), \(E=\{(x,y,s,t)\in {\widetilde{T}}_{1}\times\widetilde{\mathbf{T}}_{2} \times I_{1}\times I_{2}\}\). \(\mathcal{R}\) denotes the set of all regressive and rd-continuous functions, \(\mathcal{R}^{+}=\{P\in\mathcal{R}, 1+\mu(t)P(t)>0, t\in\mathbf{T}\}\). R denotes the set of real numbers, \(\mathbf{R}_{+}=[0, \infty)\), while Z denotes the set of integers.

Lemma 2.1

([33])

Let \(m>0\), \(n>0\), \(p>0\), \(\alpha>0\)and \(\beta>0\)be given, then for each \(x\geq0\),

$$ mx^{\alpha}-nx^{\beta}\leq \frac{m(\beta-\alpha)}{\beta-p} \biggl(\frac{(\beta-p)n}{(\alpha-p)m}\biggr)^{(\alpha-p)/(\alpha-\beta)}x^{p} $$

holds for the cases when \(0< p<\alpha<\beta\)or \(0<\beta<\alpha<p\).

Lemma 2.2

([47])

Assume that \(x\geq0\), \(p\geq q\geq0\), and \(p\neq0\), then for any \(K>0\),

$$ x^{q/p}\leq\frac{q}{p}K^{(q-p)/p}x+\frac{p-q}{p}K^{q/p}. $$

Lemma 2.3

([2, Theorem 6.1])

Supposeyandfare rd-continuous functions and \(p\in\mathcal{R}^{+}\). Then

$$ y^{\Delta}(t)\leq p(t)y(t)+f(t),\quad \textit{for all } t \in \mathbf{T} $$

implies

$$ y(t)\leq y(t_{0})e_{p}(t,t_{0})+\int_{t_{0}}^{t}e_{p}\bigl(t,\sigma(\tau)\bigr)f(\tau)\Delta\tau, \quad \textit{for all } t \in \mathbf{T}. $$

Lemma 2.4

([36])

Let \(u, a, f\in C(\widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}, \mathbf{R}_{+})\), withaandfnondecreasing in each of the variables and \(g\in C(D, \mathbf{R}_{+})\)be nondecreasing inxandy. If

$$ u(x,y)\leq a(x,y)+f(x,y)\int^{x}_{x_{0}}\int^{y}_{y_{0}}g(x,y,s,t)u(s,t)\Delta t\Delta s,\quad (x,y)\in\widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}, $$

then

$$ u(x,y)\leq a(x,y)e_{p(x,y,\cdot)}(x,x_{0}),\quad (x,y)\in\widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}, $$

where \(p(x,y,s)=\int^{y}_{y_{0}}f(x,y)g(x,y,s,t)\Delta t\).

Lemma 2.5

Let \(u, c, d\in C(\widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}, \mathbf{R}_{+})\)and \(k\geq0\)be a constant. If

$$ u(x,y)\leq k+\int^{x}_{x_{0}}\int^{y}_{y_{0}}\biggl[c(s,t)u\bigl(s,\sigma(t)\bigr)+d(s,t)u(s,t)\biggr]\Delta t\Delta s, \quad (x,y)\in\widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}, $$
(1)

then

$$ u(x,y)\leq ke_{p(\cdot,y)}(x,x_{0}), \quad (x,y)\in\widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}, $$
(2)

where

$$\begin{aligned}& p(x,y) = \int^{y}_{y_{0}}h(x,t)\Delta t, \quad \textit{and} \end{aligned}$$
(3)
$$\begin{aligned}& h(x,y) = c(x,y)+d(x,y). \end{aligned}$$
(4)

Proof

For an arbitrary \(\varepsilon>0\), denote

$$ z(x,y)=k+\varepsilon+\int^{x}_{x_{0}}\int^{y}_{y_{0}}\biggl[c(s,t)u\bigl(s,\sigma(t)\bigr)+d(s,t)u(s,t)\biggr]\Delta t\Delta s. $$
(5)

From the assumptions, we have z is positive and nondecreasing in each of the variables. By (1) and (5), we have that

$$ u(x,y)\leq z(x,y), \quad (x,y)\in\widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}. $$

Delta differentiating with respect to the first variable and then with respect to the second, we obtain

$$\begin{aligned} \frac{\partial}{\Delta_{2} y}\biggl(\frac{\partial z(x,y)}{\Delta_{1} x}\biggr) =&c(x,y)u\bigl(x,\sigma(y)\bigr)+d(x,y)u(x,y) \\ \leq&c(x,y)z\bigl(x,\sigma(y)\bigr)+d(x,y)z(x,y),\quad (x,y)\in\widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}. \end{aligned}$$
(6)

From (6), we get

$$\begin{aligned} \frac{z(x,y)\frac{\partial}{\Delta_{2} y}(\frac{\Delta z(x,y)}{\Delta_{1} x})}{z(x,y)z(x,\sigma(y))} \leq&\biggl[c(x,y)+d(x,y)\frac{z(x,y)}{z(x,\sigma(y))}\biggr] \\ \leq&\biggl[c(x,y)+d(x,y)\biggr] \\ =&h(x,y), \end{aligned}$$

where \(h(x,y)\) is defined as in (4). Hence,

$$ \frac{z(x,y)\frac{\partial}{\Delta_{2} y}(\frac{\partial z(x,y)}{\Delta_{1} x})}{z(x,y)z(x,\sigma(y))} -\frac{\frac{\partial z(x,y)}{\Delta_{1} x}\frac{\partial z(x,y)}{\Delta_{2} y}}{z(x,y)z(x,\sigma(y))}\leq h(x,y), $$
(7)

i.e.,

$$ \frac{\partial}{\Delta_{2} y}\biggl(\frac{\frac{\partial z(x,y)}{\Delta_{1} x}}{z(x,y)}\biggr) \leq h(x,y). $$

Delta integrating with respect to the second variable from \(y_{0}\) to y and noting that \(\frac{\partial z(x,y)}{\Delta_{1} x}|_{(x,y_{0})}=0\), we have

$$ \frac{\frac{\partial z(x,y)}{\Delta_{1} x}}{z(x,y)} \leq \int^{y}_{y_{0}}h(x,t)\Delta t, $$

that is,

$$ \frac{\partial z(x,y)}{\Delta_{1} x} \leq z(x,y)\int^{y}_{y_{0}}h(x,t)\Delta t. $$
(8)

By (3) and (8) we get

$$ \frac{\partial z(x,y)}{\Delta_{1} x} \leq p(x,y)z(x,y). $$

From Lemma 2.3 and \(z(x_{0},y)=k+\varepsilon\), we obtain

$$ z(x,y) \leq (k+\varepsilon)e_{p(\cdot,y)}(x,x_{0}). $$
(9)

Noting that \(u(x,y)\leq z(x,y)\) and ε is arbitrary, it follows (2). This completes the proof. □

Lemma 2.6

Let \(u, c, d\in C(\mathbf{\widetilde{T}}_{1}\times\widetilde{\mathbf{T}}_{2}, \mathbf{R}_{+})\)and \(k\geq0\)be a constant. If

$$ u(x,y)\leq k+\int^{x}_{x_{0}}\int^{y}_{y_{0}}\biggl[c(s,t)u\bigl(\sigma(s),t\bigr)+d(s,t)u(s,t)\biggr]\Delta t\Delta s,\quad (x,y)\in\widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}, $$

then

$$ u(x,y)\leq ke_{p(x,\cdot)}(y,y_{0}),\quad (x,y)\in\widetilde{\mathbf{T}}_{1}\times\widetilde{\mathbf{T}}_{2}, $$

where

$$\begin{aligned}& p(x,y) = \int^{x}_{x_{0}}h(s,y)\Delta s,\quad \textit{and} \\& h(x,y) = c(x,y)+d(x,y). \end{aligned}$$

The proof of the Lemma is similar to the proof in Lemma 2.5, and therefore is omitted.

Main results

Theorem 3.1

Let \(u, a, b, h\in C(\mathbf{\widetilde{T}}_{1} \times \mathbf{\widetilde{T}}_{2}, \mathbf{R}_{+})\), withbandhnondecreasing in each variable, \(c, d\in C(D, R_{+})\)and let \(f, g\in C(E, R_{+})\)be nondecreasing inxandy. Assumep, q, r, mandnare nonnegative constants with \(p\geq q\), \(p\geq r\), \(p\geq m\), \(p\geq n\), \(p\neq 0\). Suppose thatusatisfies the following inequality:

$$\begin{aligned}& u^{p}(x,y)\leq a(x,y) \\& \hphantom{u^{p}(x,y)\leq} {}+b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[c(x,y,s,t)u ^{q}(s,t)+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta )u^{r}( \tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \hphantom{u^{p}(x,y)\leq}{} +h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[f(x,y,s,t)u^{m}(s,t) \\& \hphantom{u^{p}(x,y)\leq}{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y, \tau ,\eta )u^{n}(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t \Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}. \end{aligned}$$
(10)

If there exist positive constants \(K_{1}\)and \(K_{2}\)such that

$$\begin{aligned} \lambda :=& \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}f( \alpha ,\beta ,s,t)e_{R(s,t,\cdot )}(s,x _{0}) \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g( \alpha ,\beta ,\tau ,\eta )e_{R(\tau ,\eta ,\cdot )}(\tau ,x_{0})\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\ < &\frac{1}{h(\alpha ,\beta )}, \end{aligned}$$
(11)

then for arbitrary positive constants \(K_{3}\)and \(K_{4}\),

$$\begin{aligned} u(x,y)\leq \biggl[a(x,y)+\frac{A(\alpha ,\beta )}{1-\lambda h(\alpha , \beta )}e_{R(x,y,\cdot )}(x,x_{0}) \biggr]^{1/p},\quad (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}, \end{aligned}$$
(12)

where

$$\begin{aligned}& \begin{aligned}[b] A(x,y) ={}&b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(x,y,s,t) \biggl[ \frac{q}{p}K_{3}^{(q-p)/p}a(s,t)+ \frac{p-q}{p}K_{3}^{q/p} \biggr] \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta ) \biggl[ \frac{r}{p}K _{4}^{(r-p)/p}a(\tau ,\eta )+ \frac{p-r}{p}K_{4}^{r/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s \\ &{}+h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}a(s,t)+ \frac{p-m}{p}K_{1}^{m/p} \biggr] \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \biggl[ \frac{n}{p}K _{2}^{(n-p)/p}a(\tau ,\eta )+ \frac{p-n}{p}K_{2}^{n/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s, \end{aligned} \end{aligned}$$
(13)
$$\begin{aligned}& R(x,y,s) = \int ^{y}_{y_{0}}b(x,y)F(x,y,s,t)\Delta t, \quad \textit{and} \end{aligned}$$
(14)
$$\begin{aligned}& F(x,y,s,t) =\frac{q}{p}K_{3}^{(q-p)/p}c(x,y,s,t)+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{r}{p}K_{4}^{(r-p)/p}d(x,y, \tau ,\eta )\Delta \eta \Delta \tau . \end{aligned}$$
(15)

Proof

Denote

$$\begin{aligned}& z(x,y) \\& \quad =b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[c(x,y,s,t)u ^{q}(s,t)+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta )u^{r}( \tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \qquad {}+ h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[f(x,y,s,t)u^{m}(s,t)+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y, \tau ,\eta )u^{n}(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t \Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}. \end{aligned}$$
(16)

Then z is nondecreasing in each variable on \(\mathbf{\widetilde{T}} _{1}\times \mathbf{\widetilde{T}}_{2}\). From (10) and (16), we get

$$\begin{aligned} u(x,y)\leq \bigl[a(x,y)+z(x,y)\bigr]^{1/p}, \quad (x,y)\in \mathbf{ \widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}. \end{aligned}$$
(17)

By (16) and (17), we obtain

$$\begin{aligned} z(x,y) \leq &b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(x,y,s,t) \bigl[a(s,t)+z(s,t) \bigr]^{q/p} \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta ) \bigl[a(\tau , \eta )+z(\tau ,\eta ) \bigr]^{r/p}\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s \\ &{}+h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \bigl[a(s,t)+z(s,t) \bigr]^{m/p} \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \bigl[a(\tau , \eta )+z(\tau ,\eta ) \bigr]^{n/p}\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s, \\ & (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}. \end{aligned}$$
(18)

Then for \(K_{1}\), \(K_{2}\) satisfying (11) and arbitrary \(K_{3}, K_{4}>0\), it follows from Lemma 2.2 that

$$\begin{aligned}& \bigl[a(x,y)+z(x,y)\bigr]^{q/p}\leq \frac{q}{p}K_{3}^{(q-p)/p} \bigl[a(x,y)+z(x,y)\bigr]+ \frac{p-q}{p}K_{3}^{q/p}, \end{aligned}$$
(19)
$$\begin{aligned}& \bigl[a(x,y)+z(x,y)\bigr]^{r/p}\leq \frac{r}{p}K_{4}^{(r-p)/p} \bigl[a(x,y)+z(x,y)\bigr]+ \frac{p-r}{p}K_{4}^{r/p}, \end{aligned}$$
(20)
$$\begin{aligned}& \bigl[a(x,y)+z(x,y)\bigr]^{m/p}\leq \frac{m}{p}K_{1}^{(m-p)/p} \bigl[a(x,y)+z(x,y)\bigr]+ \frac{p-m}{p}K_{1}^{q/p}, \end{aligned}$$
(21)
$$\begin{aligned}& \bigl[a(x,y)+z(x,y)\bigr]^{n/p}\leq \frac{n}{p}K_{2}^{(n-p)/p} \bigl[a(x,y)+z(x,y)\bigr]+ \frac{p-n}{p}K_{2}^{r/p}. \end{aligned}$$
(22)

According to (18)–(22), we have

$$\begin{aligned}& z(x,y) \\& \quad \leq b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(x,y,s,t) \biggl[ \frac{q}{p}K_{3}^{(q-p)/p}\bigl[a(s,t)+z(s,t)\bigr]+ \frac{p-q}{p}K_{3}^{q/p} \biggr] \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta ) \biggl[ \frac{r}{p}K_{4}^{(r-p)/p}\bigl[a(\tau ,\eta )+z( \tau ,\eta )\bigr]+ \frac{p-r}{p}K_{4}^{r/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t \Delta s \\& \qquad {} +h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}\bigl[a(s,t)+z(s,t)\bigr]+ \frac{p-m}{p}K_{1}^{m/p} \biggr] \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \biggl[ \frac{n}{p}K_{2}^{(n-p)/p}\bigl[a(\tau ,\eta )+z( \tau ,\eta )\bigr]+ \frac{p-n}{p}K_{2}^{n/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t \Delta s \\& \quad \leq b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(x,y,s,t) \biggl[ \frac{q}{p}K_{3}^{(q-p)/p}a(s,t)+ \frac{p-q}{p}K_{3}^{q/p} \biggr] \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta ) \biggl[ \frac{r}{p}K_{4}^{(r-p)/p}a(\tau ,\eta )+ \frac{p-r}{p}K_{4}^{r/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s \\& \qquad {} +h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}a(s,t)+ \frac{p-m}{p}K_{1} ^{m/p} \biggr] \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \biggl[ \frac{n}{p}K_{2}^{(n-p)/p}a(\tau ,\eta )+ \frac{p-n}{p}K_{2}^{n/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s \\& \qquad {} +b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[\frac{q}{p}K _{3}^{(q-p)/p}c(x,y,s,t)z(s,t) \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{r}{p}K_{4}^{(r-p)/p}d(x,y, \tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \qquad {} +h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}f(x,y,s,t)z(s,t) \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g(x,y, \tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \quad =A(x,y)+B(x,y)+b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[\frac{q}{p}K_{3}^{(q-p)/p}c(x,y,s,t)z(s,t) \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{r}{p}K_{4}^{(r-p)/p}d(x,y, \tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \quad \leq A(x,y)+B(x,y)+b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y _{0}} \biggl[\frac{q}{p}K_{1}^{(q-p)/p}c(x,y,s,t)z(s,t) \\& \qquad {} +z(s,t) \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{r}{p}K_{4} ^{(r-p)/p}d(x,y,\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t \Delta s \\& \quad =A(x,y)+B(x,y)+b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}F(x,y,s,t)z(s,t) \Delta t\Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}, \end{aligned}$$
(23)

where \(A(x,y)\) is defined in (13), and

$$\begin{aligned} B(x,y) =&h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}f(x,y,s,t)z(s,t) \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g(x,y, \tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s. \end{aligned}$$

From (23) and Lemma 2.4, we have

$$\begin{aligned} z(x,y)\leq \bigl(A(x,y)+B(x,y)\bigr)e_{R(x,y,\cdot )}(x,x_{0}),\quad (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}, \end{aligned}$$
(24)

where \(R(x,y)\) is defined in (14). By (24) and since A, B are nondecreasing in each variable on \(\mathbf{\widetilde{T}} _{1}\times \mathbf{\widetilde{T}}_{2}\), we obtain

$$\begin{aligned} z(x,y) \leq & \bigl(A(x,y)+B(x,y)\bigr)e_{R(x,y,\cdot )}(x,x_{0}) \\ \leq & \bigl(A(\alpha ,\beta )+B(\alpha ,\beta )\bigr)e_{R(x,y,\cdot )}(x,x _{0}) \\ =&C(\alpha ,\beta )e_{R(x,y,\cdot )}(x,x_{0}), \end{aligned}$$
(25)

where \(C(x,y)=A(x,y)+B(x,y)\). From the definitions of B, C, λ and (25), we obtain

$$\begin{aligned} C(\alpha ,\beta ) =&A(\alpha ,\beta )+B(\alpha ,\beta ) \\ =&A(\alpha ,\beta )+h(\alpha ,\beta ) \int ^{\alpha }_{x_{0}} \int ^{ \beta }_{y_{0}} \biggl[\frac{m}{p}K_{1}^{(m-p)/p}f( \alpha ,\beta ,s,t)z(s,t) \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g( \alpha ,\beta ,\tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t \Delta s \\ \leq &A(\alpha ,\beta )+h(\alpha ,\beta ) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[\frac{m}{p}K_{1}^{(m-p)/p}f( \alpha ,\beta ,s,t)C(\alpha ,\beta )e_{R(s,t,\cdot )}(s,x_{0}) \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g( \alpha ,\beta ,\tau ,\eta )C(\alpha ,\beta )e_{R(\tau ,\eta ,\cdot )}(\tau ,x _{0})\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\ =&A(\alpha ,\beta )+C(\alpha ,\beta )h(\alpha ,\beta ) \int ^{\alpha } _{x_{0}} \int ^{\beta }_{y_{0}} \biggl[\frac{m}{p}K_{1}^{(m-p)/p}f( \alpha ,\beta ,s,t)e_{R(s,t,\cdot )}(s,x_{0}) \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g( \alpha ,\beta ,\tau ,\eta )e_{R(\tau ,\eta ,\cdot )}(\tau ,x_{0})\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\ =&A(\alpha ,\beta )+\lambda C(\alpha ,\beta )h(\alpha ,\beta ). \end{aligned}$$

So we get

$$\begin{aligned} C(\alpha ,\beta ) \leq &\frac{A(\alpha ,\beta )}{1-\lambda h(\alpha , \beta )}. \end{aligned}$$
(26)

Noting (17), (25), and (26), we get the desired inequality (12). This completes the proof. □

Remark 3.1

If we take \(\mathbf{T}=\mathbf{N}\), \(b(x,y)=h(x,y) \equiv 1\), then Theorem 3.1 reduces to [38, Theorem 5]. If we take \(\mathbf{T}=\mathbf{N}\), \(b(x,y)=h(x,y)\equiv 1\), \(c(x,y,s,t)=c(s,t)\), \(f(x,y,s,t)=c(s,t)\), \(d(x,y,s,t)=g(x,y,s,t)\equiv 0\), then Theorem 3.1 reduces to [39, Theorem 2.1].

Theorem 3.2

Assume \(l\in C(\mathbf{\widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}, \mathbf{R}_{+})\)and \(b\in C( \mathbf{\widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}, (0, \infty ))\)are nondecreasing in each variable, \(v\in C(D, (0,\infty ))\)is nondecreasing inxandy, \(w\in C(D, (0,\infty ))\)is nonincreasing inxandy. Assumeu, a, c, d, f, g, h, p, q, r, mandnare defined as in Theorem 3.1; whilekandθare nonnegative constants with \(0< p< k<\theta \)or \(0<\theta <k<p\). Suppose thatusatisfies the following inequality:

$$\begin{aligned}& u^{p}(x,y) \\& \quad \leq a(x,y) \\& \qquad {}+ b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[c(x,y,s,t)u ^{q}(s,t)+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta )u^{r}( \tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \qquad {}+ l(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \bigl[v(x,y,s,t)u ^{k}(s,t)-w(x,y,s,t)u^{\theta }(s,t) \bigr]\Delta t\Delta s \\& \qquad {}+ h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[f(x,y,s,t)u^{m}(s,t)+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y, \tau ,\eta )u^{n}(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t \Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}. \end{aligned}$$
(27)

If there exist positive constants \(K_{1}\)and \(K_{2}\)such that

$$\begin{aligned} \widetilde{\lambda } :=& \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[\frac{m}{p}K_{1}^{(m-p)/p}f( \alpha ,\beta ,s,t)e_{\widetilde{R}(s,t, \cdot )}(s,x_{0}) \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g( \alpha ,\beta ,\tau ,\eta )e_{\widetilde{R}(\tau ,\eta ,\cdot )}(\tau ,x_{0}) \Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\ < &\frac{1}{h(\alpha ,\beta )}, \end{aligned}$$
(28)

then for arbitrary positive constants \(K_{3}\)and \(K_{4}\),

$$\begin{aligned} u(x,y)\leq \biggl[a(x,y)+\frac{\widetilde{A}(\alpha ,\beta )}{1- \widetilde{\lambda } h(\alpha ,\beta )}e_{\widetilde{R}(x,y,\cdot )}(x,x _{0}) \biggr]^{1/p},\quad (x,y)\in \mathbf{ \widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}, \end{aligned}$$
(29)

where

$$\begin{aligned}& \widetilde{A}(x,y)=b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y _{0}} \biggl\{ c(x,y,s,t) \biggl[ \frac{q}{p}K_{3}^{(q-p)/p}a(s,t)+ \frac{p-q}{p}K_{3}^{q/p} \biggr] \\& \hphantom{\widetilde{A}(x,y)=}{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta ) \biggl[ \frac{r}{p}K _{4}^{(r-p)/p}a(\tau ,\eta )+ \frac{p-r}{p}K_{4}^{r/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s \\& \hphantom{\widetilde{A}(x,y)=}{}+l(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}\varphi (x,y,s,t)a(s,t) \Delta t \Delta s \\& \hphantom{\widetilde{A}(x,y)=}{}+h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}a(s,t)+ \frac{p-m}{p}K_{1}^{m/p} \biggr] \\& \hphantom{\widetilde{A}(x,y)=}{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \biggl[ \frac{n}{p}K _{2}^{(n-p)/p}a(\tau ,\eta )+ \frac{p-n}{p}K_{2}^{n/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s, \end{aligned}$$
(30)
$$\begin{aligned}& \widetilde{R}(x,y,s)= \int ^{y}_{y_{0}}b(x,y) \widetilde{F}(x,y,s,t)\Delta t, \end{aligned}$$
(31)
$$\begin{aligned}& \widetilde{F}(x,y,s,t)=\frac{q}{p}K_{3}^{(q-p)/p}c(x,y,s,t)+ \frac{l(x,y)}{b(x,y)}\varphi (x,y,s,t) \\& \hphantom{\widetilde{F}(x,y,s,t)=}{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{r}{p}K_{4}^{(r-p)/p}d(x,y, \tau ,\eta )\Delta \eta \Delta \tau ,\quad \textit{and} \end{aligned}$$
(32)
$$\begin{aligned}& \varphi (x,y,s,t)=\frac{v(x,y,s,t)(\theta -k)}{\theta -p} \biggl(\frac{(\theta -p)w(x,y,s,t)}{(k-p)v(x,y,s,t)} \biggr)^{(k-p)/(k- \theta )}. \end{aligned}$$
(33)

Proof

From Lemma 2.1 and (27), we have

$$\begin{aligned}& u^{p}(x,y) \\& \quad \leq a(x,y) \\& \qquad {} +b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[c(x,y,s,t)u ^{q}(s,t)+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta )u^{r}( \tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \qquad {} +l(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}\varphi (x,y,s,t)u ^{p}(s,t)\Delta t\Delta s \\& \qquad {} +h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[f(x,y,s,t)u^{m}(s,t)+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y, \tau ,\eta )u^{n}(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t \Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}. \end{aligned}$$
(34)

Denote

$$\begin{aligned}& z(x,y) \\& \quad = b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[c(x,y,s,t)u ^{q}(s,t)+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta )u^{r}( \tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \qquad {}+l(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}\varphi (x,y,s,t)u ^{p}(s,t)\Delta t\Delta s \\& \qquad {} +h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[f(x,y,s,t)u^{m}(s,t)+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y, \tau ,\eta )u^{n}(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t \Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}. \end{aligned}$$
(35)

From the assumptions on v and w, we have that φ is nondecreasing in x and y, then z is nondecreasing in each variable on \(\mathbf{\widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}\). From (34) and (35), we get

$$\begin{aligned} u(x,y)\leq \bigl[a(x,y)+z(x,y)\bigr]^{1/p},\quad (x,y)\in \mathbf{ \widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}. \end{aligned}$$
(36)

By (35) and (36), we obtain

$$\begin{aligned}& z(x,y) \leq b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(x,y,s,t) \bigl[a(s,t)+z(s,t) \bigr]^{q/p} \\& \hphantom{z(x,y) \leq}{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta ) \bigl[a(\tau , \eta )+z(\tau ,\eta ) \bigr]^{r/p}\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s \\& \hphantom{z(x,y) \leq}{}+l(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}\varphi (x,y,s,t) \bigl[a(s,t)+z(s,t) \bigr]\Delta t\Delta s \\& \hphantom{z(x,y) \leq}{}+h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \bigl[a(s,t)+z(s,t) \bigr]^{m/p} \\& \hphantom{z(x,y) \leq}{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \bigl[a(\tau , \eta )+z(\tau ,\eta ) \bigr]^{n/p}\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{\widetilde{T}} _{2}. \end{aligned}$$
(37)

For \(K_{1}\), \(K_{2}\) satisfying (28) and arbitrary \(K_{3}, K _{4}>0\), it follows from Lemma 2.2 that

$$\begin{aligned}& \bigl[a(x,y)+z(x,y)\bigr]^{q/p}\leq \frac{q}{p}K_{3}^{(q-p)/p} \bigl[a(x,y)+z(x,y)\bigr]+ \frac{p-q}{p}K_{3}^{q/p}, \end{aligned}$$
(38)
$$\begin{aligned}& \bigl[a(x,y)+z(x,y)\bigr]^{r/p}\leq \frac{r}{p}K_{4}^{(r-p)/p} \bigl[a(x,y)+z(x,y)\bigr]+ \frac{p-r}{p}K_{4}^{r/p}, \end{aligned}$$
(39)
$$\begin{aligned}& \bigl[a(x,y)+z(x,y)\bigr]^{m/p}\leq \frac{m}{p}K_{1}^{(m-p)/p} \bigl[a(x,y)+z(x,y)\bigr]+ \frac{p-m}{p}K_{1}^{q/p}, \end{aligned}$$
(40)
$$\begin{aligned}& \bigl[a(x,y)+z(x,y)\bigr]^{n/p}\leq \frac{n}{p}K_{2}^{(n-p)/p} \bigl[a(x,y)+z(x,y)\bigr]+ \frac{p-n}{p}K_{2}^{r/p}. \end{aligned}$$
(41)

According to (37)–(41), we have

$$\begin{aligned}& z(x,y) \\& \quad \leq b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(x,y,s,t) \biggl[ \frac{q}{p}K_{3}^{(q-p)/p}\bigl[a(s,t)+z(s,t)\bigr]+ \frac{p-q}{p}K_{3}^{q/p} \biggr] \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta ) \biggl[ \frac{r}{p}K_{4}^{(r-p)/p}\bigl[a(\tau ,\eta )+z( \tau ,\eta )\bigr]+ \frac{p-r}{p}K_{4}^{r/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t \Delta s \\& \qquad {} +l(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}\varphi (x,y,s,t) \bigl[a(s,t)+z(s,t)\bigr] \Delta t\Delta s \\& \qquad {} +h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}\bigl[a(s,t)+z(s,t)\bigr]+ \frac{p-m}{p}K_{1}^{m/p} \biggr] \\& \qquad {}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \biggl[ \frac{n}{p}K_{2}^{(n-p)/p}\bigl[a(\tau ,\eta )+z( \tau ,\eta )\bigr]+ \frac{p-n}{p}K_{2}^{n/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t \Delta s \\& \quad \leq b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(x,y,s,t) \biggl[ \frac{q}{p}K_{3}^{(q-p)/p}a(s,t)+ \frac{p-q}{p}K_{3}^{q/p} \biggr] \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(x,y,\tau ,\eta ) \biggl[ \frac{r}{p}K_{4}^{(r-p)/p}a(\tau ,\eta )+ \frac{p-r}{p}K_{4}^{r/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s \\& \qquad {} +l(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}\varphi (x,y,s,t)a(s,t) \Delta t \Delta s \\& \qquad {}+h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}a(s,t)+ \frac{p-m}{p}K_{1} ^{m/p} \biggr] \\& \qquad {}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \biggl[ \frac{n}{p}K_{2}^{(n-p)/p}a(\tau ,\eta )+ \frac{p-n}{p}K_{2}^{n/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s \\& \qquad {} +b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[\frac{q}{p}K _{3}^{(q-p)/p}c(x,y,s,t)z(s,t) \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{r}{p}K_{4}^{(r-p)/p}d(x,y, \tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \qquad {}+l(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}\varphi (x,y,s,t)z(s,t) \Delta t \Delta s \\& \qquad {} +h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}f(x,y,s,t)z(s,t) \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g(x,y, \tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \quad =\widetilde{A}(x,y)+B(x,y)+b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[\frac{q}{p}K_{3}^{(q-p)/p}c(x,y,s,t)z(s,t) \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{r}{p}K_{4}^{(r-p)/p}d(x,y, \tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \qquad {} +l(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}\varphi (x,y,s,t)z(s,t) \Delta t \Delta s \\& \quad =\widetilde{A}(x,y)+B(x,y)+b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[\frac{q}{p}K_{3}^{(q-p)/p}c(x,y,s,t)z(s,t) \\& \qquad {}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{r}{p}K_{4}^{(r-p)/p}d(x,y, \tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \qquad {} +b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \frac{l(x,y)}{b(x,y)}\varphi (x,y,s,t)z(s,t)\Delta t\Delta s \\& \quad \leq \widetilde{A}(x,y)+B(x,y)+b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[\frac{q}{p}K_{3}^{(q-p)/p}c(x,y,s,t) + \frac{l(x,y)}{b(x,y)}\varphi (x,y,s,t) \\& \qquad {}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{r}{p}K_{4}^{(r-p)/p}d(x,y, \tau ,\eta )\Delta \eta \Delta \tau \biggr]z(s,t)\Delta t\Delta s \\& \quad =\widetilde{A}(x,y)+B(x,y)+b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}\widetilde{F}(x,y,s,t)z(s,t)\Delta t\Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}, \end{aligned}$$

where à and are defined in (30) and (32),

$$\begin{aligned} B(x,y) =&h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}f(x,y,s,t)z(s,t) \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g(x,y, \tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s. \end{aligned}$$

The rest of the argument is similar to that of Theorem 3.1, and therefore is omitted. This completes the proof. □

Theorem 3.3

Assume that \(u, a\in C(\mathbf{\widetilde{T}} _{1}\times \mathbf{\widetilde{T}}_{2}, \mathbf{R}_{+})\), whileb, c, d, f, g, h, p, q, r, mandnare defined as in Theorem 3.1. Suppose thatusatisfies the following inequality:

$$\begin{aligned}& u^{p}(x,y)\leq a(x,y) \\& \hphantom{u^{p}(x,y)\leq}{}+ b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \bigl[c(x,y,s,t)u ^{q} \bigl(s,\sigma (t)\bigr)+d(x,y,s,t)u^{r}(s,t) \bigr]\Delta t\Delta s \\& \hphantom{u^{p}(x,y)\leq}{}+ h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[f(x,y,s,t)u^{m}(s,t) \\& \hphantom{u^{p}(x,y)\leq}{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y, \tau ,\eta )u^{n}(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t \Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}. \end{aligned}$$
(42)

If there exist positive constants \(K_{1}\)and \(K_{2}\)such that

$$\begin{aligned} \xi :=& \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[\frac{m}{p}K _{1}^{(m-p)/p}f(\alpha ,\beta ,s,t)e_{Q(\cdot ,t)}(s,x_{0}) \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g( \alpha ,\beta ,\tau ,\eta )e_{Q(\cdot ,\eta )}(\tau ,x_{0})\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\ < &\frac{1}{h(\alpha ,\beta )}, \end{aligned}$$
(43)

then for arbitrary positive constants \(K_{3}\)and \(K_{4}\),

$$\begin{aligned} u(x,y)\leq \biggl[a(x,y)+\frac{\widetilde{A}(\alpha ,\beta )}{1-\xi h( \alpha ,\beta )}e_{Q(\cdot ,y)}(x,x_{0}) \biggr]^{1/p},\quad (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}, \end{aligned}$$
(44)

where

$$\begin{aligned}& \widetilde{A}(x,y) = b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(x,y,s,t) \biggl[ \frac{q}{p}K_{3}^{(q-p)/p}a\bigl(s,\sigma (t)\bigr)+ \frac{p-q}{p}K_{3}^{q/p} \biggr] \\& \hphantom{\widetilde{A}(x,y) =}{}+d(x,y,s,t) \biggl[\frac{r}{p}K_{4}^{(r-p)/p}a(s,t)+ \frac{p-r}{p}K_{4} ^{r/p} \biggr] \biggr\} \Delta t \Delta s \\& \hphantom{\widetilde{A}(x,y) =}{}+h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}a(s,t)+ \frac{p-m}{p}K_{1}^{m/p} \biggr] \\& \hphantom{\widetilde{A}(x,y) =}{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \biggl[ \frac{n}{p}K _{2}^{(n-p)/p}a(\tau ,\eta ) \\& \hphantom{\widetilde{A}(x,y) =}{}+\frac{p-n}{p}K_{2}^{n/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s, \end{aligned}$$
(45)
$$\begin{aligned}& Q(x,y) = \int ^{y}_{y_{0}}h(\alpha ,\beta ,x,t)\Delta t, \quad \textit{and} \end{aligned}$$
(46)
$$\begin{aligned}& h(\alpha ,\beta ,s,t)=\frac{q}{p}K_{3}^{(q-p)/p}b( \alpha ,\beta )c( \alpha ,\beta ,s,t) +\frac{r}{p}K_{4}^{(r-p)/p}b( \alpha ,\beta )d( \alpha ,\beta ,s,t). \end{aligned}$$
(47)

Proof

Denote

$$\begin{aligned}& z(x,y) \\& \quad =b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \bigl[c(x,y,s,t)u ^{q} \bigl(s,\sigma (t)\bigr)+d(x,y,s,t)u^{r}(s,t) \bigr]\Delta t\Delta s \\& \qquad {}+ h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[f(x,y,s,t)u^{m}(s,t) \\& \qquad {}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y, \tau ,\eta )u^{n}(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t \Delta s. \end{aligned}$$
(48)

Then z is nondecreasing in each variable on \(\mathbf{\widetilde{T}} _{1}\times \mathbf{\widetilde{T}}_{2}\). From (42) and (48), we get

$$\begin{aligned} u(x,y)\leq \bigl[a(x,y)+z(x,y)\bigr]^{1/p},\quad (x,y)\in \mathbf{ \widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}. \end{aligned}$$
(49)

By (48) and (49), we obtain

$$\begin{aligned}& z(x,y) \leq b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \bigl\{ c(x,y,s,t) \bigl[a\bigl(s, \sigma (t)\bigr)+z\bigl(s,\sigma (t)\bigr) \bigr]^{q/p} \\& \hphantom{z(x,y) \leq}{}+d(x,y,s,t) \bigl[a(s,t)+z(s,t) \bigr]^{r/p}\Delta \eta \Delta \tau \bigr\} \Delta t\Delta s \\& \hphantom{z(x,y) \leq}{}+h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \bigl[a(s,t)+z(s,t) \bigr]^{m/p} \\& \hphantom{z(x,y) \leq}{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \bigl[a(\tau , \eta )+z(\tau ,\eta ) \bigr]^{n/p}\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}. \end{aligned}$$
(50)

For \(K_{1}\), \(K_{2}\) satisfying (43) and arbitrary \(K_{3}, K _{4}>0\), it follows from Lemma 2.2 that

$$\begin{aligned}& \bigl[a\bigl(x,\sigma (y)\bigr)+z\bigl(x,\sigma (y)\bigr) \bigr]^{q/p}\leq \frac{q}{p}K_{3}^{(q-p)/p} \bigl[a\bigl(x,\sigma (y)\bigr)+z\bigl(x,\sigma (y)\bigr)\bigr]+ \frac{p-q}{p}K_{3}^{q/p}, \end{aligned}$$
(51)
$$\begin{aligned}& \bigl[a(x,y)+z(x,y)\bigr]^{r/p}\leq \frac{r}{p}K_{4}^{(r-p)/p} \bigl[a(x,y)+z(x,y)\bigr]+ \frac{p-r}{p}K_{4}^{r/p}, \end{aligned}$$
(52)
$$\begin{aligned}& \bigl[a(x,y)+z(x,y)\bigr]^{m/p}\leq \frac{m}{p}K_{1}^{(m-p)/p} \bigl[a(x,y)+z(x,y)\bigr]+ \frac{p-m}{p}K_{1}^{m/p}, \end{aligned}$$
(53)
$$\begin{aligned}& \bigl[a(x,y)+z(x,y)\bigr]^{n/p}\leq \frac{n}{p}K_{2}^{(n-p)/p} \bigl[a(x,y)+z(x,y)\bigr]+ \frac{p-n}{p}K_{2}^{n/p}. \end{aligned}$$
(54)

According to (50)–(54), we have

$$\begin{aligned}& z(x,y) \\& \quad \leq b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(x,y,s,t) \biggl[ \frac{q}{p}K_{3}^{(q-p)/p}\bigl[a\bigl(s,\sigma (t) \bigr)+z\bigl(s,\sigma (t)\bigr)\bigr] \\& \qquad {}+ \frac{p-q}{p}K_{3}^{q/p} \biggr] \\& \qquad {}+d(x,y,s,t) \biggl[\frac{r}{p}K_{4}^{(r-p)/p} \bigl[a(s,t)+z(s,t)\bigr]+ \frac{p-r}{p}K_{4}^{r/p} \biggr] \biggr\} \Delta t\Delta s \\& \qquad {} +h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}\bigl[a(s,t)+z(s,t)\bigr]+ \frac{p-m}{p}K_{1}^{m/p} \biggr] \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \biggl[ \frac{n}{p}K_{2}^{(n-p)/p}\bigl[a(\tau ,\eta )+z( \tau ,\eta )\bigr]+ \frac{p-n}{p}K_{2}^{n/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t \Delta s \\& \quad \leq b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(x,y,s,t) \biggl[ \frac{q}{p}K_{3}^{(q-p)/p}a\bigl(s,\sigma (t)\bigr)+ \frac{p-q}{p}K_{3}^{q/p} \biggr] \\& \qquad {}+d(x,y,s,t) \biggl[\frac{r}{p}K_{4}^{(r-p)/p}a(s,t)+ \frac{p-r}{p}K_{4}^{r/p} \biggr] \biggr\} \Delta t \Delta s \\& \qquad {} +h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}a(s,t)+ \frac{p-m}{p}K_{1} ^{m/p} \biggr] \\& \qquad {} + \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \biggl[ \frac{n}{p}K_{2}^{(n-p)/p}a(\tau ,\eta )+ \frac{p-n}{p}K_{2}^{n/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s \\& \qquad {} +b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[\frac{q}{p}K _{3}^{(q-p)/p}c(x,y,s,t)z\bigl(s,\sigma (t)\bigr) \\& \qquad {}+\frac{r}{p}K_{4}^{(r-p)/p}d(x,y,s,t)z(s,t) \biggr]\Delta t \Delta s \\& \qquad {} +h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}f(x,y,s,t)z(s,t) \\& \qquad {}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g(x,y, \tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\& \quad =\widetilde{A}(x,y)+B(x,y)+b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[\frac{q}{p}K_{3}^{(q-p)/p}c(x,y,s,t)z \bigl(s,\sigma (t)\bigr) \\& \qquad {} +\frac{r}{p}K_{4}^{(r-p)/p}d(x,y,s,t)z(s,t) \biggr]\Delta t \Delta s \\& \quad \leq \widetilde{A}(\alpha ,\beta )+B(\alpha ,\beta )+b( \alpha ,\beta ) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[\frac{q}{p}K_{3} ^{(q-p)/p}c(\alpha ,\beta ,s,t)z\bigl(s,\sigma (t)\bigr) \\& \qquad {} +\frac{r}{p}K_{4}^{(r-p)/p}d(\alpha ,\beta ,s,t)z(s,t) \biggr]\Delta t\Delta s \\& \quad =\widetilde{C}(\alpha ,\beta )+b(\alpha ,\beta ) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[\frac{q}{p}K_{3}^{(q-p)/p}c( \alpha , \beta ,s,t)z\bigl(s,\sigma (t)\bigr) \\& \qquad {}+\frac{r}{p}K_{4}^{(r-p)/p}d(\alpha ,\beta ,s,t)z(s,t) \biggr]\Delta t\Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1} \times \mathbf{\widetilde{T}}_{2}, \end{aligned}$$

where \(\widetilde{C}(x,y)=\widetilde{A}(x,y)+B(x,y)\), Ã is defined in (45), and

$$\begin{aligned} B(x,y) =&h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}f(x,y,s,t)z(s,t) \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g(x,y, \tau ,\eta )z(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s. \end{aligned}$$

From Lemma 2.5, we have

$$\begin{aligned} z(x,y)\leq \widetilde{C}(\alpha ,\beta )e_{Q(\cdot ,y)}(x,x_{0}),\quad (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}, \end{aligned}$$

where Q is defined in (46). The rest of the proof is similar to that of Theorem 3.1, and therefore is omitted. This completes the proof. □

Theorem 3.4

Assume \(u, a\in C(\mathbf{\widetilde{T}}_{1} \times \mathbf{\widetilde{T}}_{2}, \mathbf{R}_{+})\), whileb, c, d, f, g, h, p, q, r, mandnare defined as in Theorem 3.1. Suppose thatusatisfies the following inequality:

$$\begin{aligned}& u^{p}(x,y)\leq a(x,y) \\& \hphantom{u^{p}(x,y)\leq}{}+ b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \bigl[c(x,y,s,t)u ^{q} \bigl(\sigma (s),t\bigr)+d(x,y,s,t)u^{r}(s,t) \bigr]\Delta t\Delta s \\& \hphantom{u^{p}(x,y)\leq}{}+ h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[f(x,y,s,t)u^{m}(s,t) \\& \hphantom{u^{p}(x,y)\leq}{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y, \tau ,\eta )u^{n}(\tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t \Delta s, \\& (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{ \widetilde{T}}_{2}. \end{aligned}$$

If there exist positive constants \(K_{1}\)and \(K_{2}\)such that

$$\begin{aligned} \xi :=& \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl[\frac{m}{p}K _{1}^{(m-p)/p}f(\alpha ,\beta ,s,t)e_{\widetilde{Q}(s,\cdot )}(t,y _{0}) \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}\frac{n}{p}K_{2}^{(n-p)/p}g( \alpha ,\beta ,\tau ,\eta )e_{\widetilde{Q}(\tau ,\cdot )}(\eta ,y_{0}) \Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\ < &\frac{1}{h(\alpha ,\beta )}, \end{aligned}$$

then for arbitrary positive constants \(K_{3}\)and \(K_{4}\),

$$\begin{aligned} u(x,y)\leq \biggl[a(x,y)+\frac{\widetilde{F}(\alpha ,\beta )}{1-\xi h( \alpha ,\beta )}e_{\widetilde{Q}(x,\cdot )}(y,y_{0}) \biggr]^{1/p}, \quad (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}, \end{aligned}$$

where

$$\begin{aligned} \widetilde{F}(x,y) =& b(x,y) \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(x,y,s,t) \biggl[ \frac{q}{p}K_{3}^{(q-p)/p}a\bigl(\sigma (s),t\bigr)+ \frac{p-q}{p}K_{3}^{q/p} \biggr] \\ &{}+d(x,y,s,t) \biggl[\frac{r}{p}K_{4}^{(r-p)/p}a(s,t)+ \frac{p-r}{p}K_{4} ^{r/p} \biggr] \biggr\} \Delta t \Delta s \\ &{}+h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \biggl\{ f(x,y,s,t) \biggl[ \frac{m}{p}K_{1}^{(m-p)/p}a(s,t)+ \frac{p-m}{p}K_{1}^{m/p} \biggr] \\ &{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}g(x,y,\tau ,\eta ) \biggl[ \frac{n}{p}K _{2}^{(n-p)/p}a(\tau ,\eta )+ \frac{p-n}{p}K_{2}^{n/p} \biggr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s, \end{aligned}$$

and

$$\begin{aligned} \widetilde{Q}(x,y) =& \int ^{x}_{x_{0}}h(\alpha ,\beta ,s,y)\Delta s. \end{aligned}$$

The proof of the theorem is similar to that of Theorem 3.3, and therefore is omitted.

Application

In this section, we will present an application for our results.

Example 1

Consider the following partial dynamic equation with positive and negative coefficients:

$$\begin{aligned} \textstyle\begin{cases} \frac{\partial }{\Delta _{2} y} ( \frac{\partial u(x,y)}{\Delta _{1} x} ) \\ \quad =c(x,y)u^{q}(x,y)+v(x,y)u ^{k}(x,y) \\ \qquad {}-w(x,y)u^{\theta }(x,y)+\int ^{x}_{x_{0}}\int ^{y}_{y_{0}}d(\tau , \eta )u^{r}(\tau ,\eta )\Delta \eta \Delta \tau \\ \qquad {}+g(x,y)\int ^{\alpha }_{x_{0}}\int ^{\beta }_{y_{0}}f(s,t)u^{m}(s,t) \Delta t\Delta s, \quad (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}, \\ u(x,y_{0})=\phi (x),\qquad u(x_{0},y)=\psi (y),\qquad u(x_{0},y_{0})=u_{0}, \end{cases}\displaystyle \end{aligned}$$
(55)

where \(u, c, d, f, g \in C(\mathbf{\widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}, \mathbf{R}_{+})\), \(v, w \in C( \mathbf{\widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}, (0, \infty ))\), q, r and m are nonnegative constants with \(1\geq q\), \(1 \geq r\), \(1\geq m\). Assume θ is a quotient of an even integer over odd integer, k is a nonnegative constant with \(0<1<k<\theta \) or \(0<\theta <k<1\).

If there exists a positive constant \(K_{1}\) such that

$$\begin{aligned} \widetilde{\lambda } :=& \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}} \bigl[mK_{1}^{m-1}f(s,t)e_{\widetilde{R}(\cdot ,t)}(s,x_{0}) \bigr] \Delta t\Delta s \\ < &\frac{1}{h(\alpha ,\beta )}, \end{aligned}$$
(56)

then for arbitrary positive constants \(K_{3}\) and \(K_{4}\),

$$\begin{aligned} u(x,y)\leq a(x,y)+\frac{\widetilde{A}(\alpha ,\beta )}{1- \widetilde{\lambda } h(\alpha ,\beta )}e_{\widetilde{R}(\cdot ,y)}(x,x _{0}),\quad (x,y)\in \mathbf{\widetilde{T}}_{1}\times \mathbf{\widetilde{T}}_{2}, \end{aligned}$$
(57)

where

$$\begin{aligned}& a(x,y) = \bigl\vert \phi (x) \bigr\vert + \bigl\vert \psi (y) \bigr\vert + \vert u_{0} \vert , \end{aligned}$$
(58)
$$\begin{aligned}& \widetilde{A}(x,y) = \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl\{ c(s,t) \bigl[qK_{3}^{q-1}a(s,t)+(1-q)K_{3}^{q} \bigr] \\& \hphantom{\widetilde{A}(x,y) =}{}+ \int ^{s}_{x_{0}} \int ^{t}_{y_{0}}d(\tau ,\eta ) \bigl[rK_{4}^{r-1}a( \tau ,\eta )+(1-r)K_{4}^{r} \bigr]\Delta \eta \Delta \tau \biggr\} \Delta t\Delta s \\& \hphantom{\widetilde{A}(x,y) =}{}+ \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}\varphi (s,t)a(s,t)\Delta t\Delta s \\& \hphantom{\widetilde{A}(x,y) =}{}+h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}}f(s,t) \bigl[mK_{1} ^{m-1}a(s,t)+(1-m)K_{1}^{m} \bigr]\Delta t \Delta s, \end{aligned}$$
(59)
$$\begin{aligned}& h(x,y) = \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}g(s,t)\Delta t\Delta s, \end{aligned}$$
(60)
$$\begin{aligned}& \widetilde{R}(x,y) = \int ^{y}_{y_{0}}\widetilde{F}(x,t)\Delta t, \end{aligned}$$
(61)
$$\begin{aligned}& \widetilde{F}(x,y) =qK_{3}^{q-1}c(x,y)+\varphi (x,y)+ \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}rK_{4}^{r-1}d( \tau ,\eta )\Delta \eta \Delta \tau , \quad \text{and} \end{aligned}$$
(62)
$$\begin{aligned}& \varphi (x,y) =\frac{(\theta -k)v(x,y)}{\theta -1} \biggl(\frac{( \theta -1)w(x,y)}{(k-1)v(x,y)} \biggr)^{(k-1)/(k-\theta )}. \end{aligned}$$
(63)

Proof

Let \(u(x,y)\) be a solution of (55). Then, it satisfies the following dynamical integral equation:

$$\begin{aligned} u(x,y) =&\phi (x)+\psi (y)-u_{0} \\ &{}+ \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[c(s,t)u^{q}(s,t)+ \int ^{s}_{x _{0}} \int ^{t}_{y_{0}}d(\tau ,\eta )u^{r}( \tau ,\eta )\Delta \eta \Delta \tau \biggr]\Delta t\Delta s \\ &{}+ \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \bigl[v(s,t)u^{k}(s,t)-w(s,t)u^{ \theta }(s,t) \bigr]\Delta t\Delta s \\ &{}+ \int ^{x}_{x_{0}} \int ^{y}_{y_{0}}g(s,t)\Delta t\Delta s \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}}f(s,t)u^{m}(s,t) \Delta t\Delta s. \end{aligned}$$
(64)

Then from (58), (60), and (63), we have

$$\begin{aligned} \bigl\vert u(x,y) \bigr\vert \leq& a(x,y) \\ &{}+ \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \biggl[c(s,t) \bigl\vert u(s,t) \bigr\vert ^{q}+ \int ^{s} _{x_{0}} \int ^{t}_{y_{0}}d(\tau ,\eta ) \bigl\vert u(\tau ,\eta ) \bigr\vert ^{r}\Delta \eta \Delta \tau \biggr]\Delta t \Delta s \\ &{}+ \int ^{x}_{x_{0}} \int ^{y}_{y_{0}} \bigl[v(s,t) \bigl\vert u(s,t) \bigr\vert ^{k}-w(s,t) \bigl\vert u(s,t) \bigr\vert ^{ \theta } \bigr]\Delta t\Delta s \\ &{}+h(x,y) \int ^{\alpha }_{x_{0}} \int ^{\beta }_{y_{0}}f(s,t) \bigl\vert u(s,t) \bigr\vert ^{m} \Delta t\Delta s,\quad (x,y)\in \mathbf{\widetilde{T}}_{1} \times \mathbf{\widetilde{T}}_{2}. \end{aligned}$$
(65)

An application of Theorem 3.2 with \(p=1\), \(b(x,y)=l(x,y)\equiv 1\), \(c(x,y,s,t)=c(s,t)\), \(d(x,y,s,t)=d(s,t)\), \(v(x,y,s,t)=v(s,t)\), \(w(x,y,s,t)=w(s,t)\), \(f(x,y,s,t)=f(s,t)\) and \(g(x,y,s,t)\equiv 0\) yields (57). □

Conclusions

We have established several generalized Volterra–Fredholm-type dynamical integral inequalities in two independent variables on time scale pairs using an inequality introduced in [33]. As one can see, Theorems 3.13.4 generalize many known results in the literature. Theorem 3.2 can be applied to deal with the bounds of solutions of certain partial dynamic equation with positive and negative coefficients. Moreover, unlike some existing results in the literature (e.g., [28, 36, 37]), the integral inequalities considered in this paper involve the forward jump operator \(\sigma (x)\) on a time scale, which results in difficulties in the estimation on the explicit bounds of the unknown function \(u(x,y)\).

References

  1. 1.

    Hilger, S.: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmanningfaltigkeiten. PhD thesis, Universität Würzburg (1988)

  2. 2.

    Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)

    Google Scholar 

  3. 3.

    Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)

    Google Scholar 

  4. 4.

    Atici, F.M., Biles, D.C., Lebedinsky, A.: An application of time scales to economics. Math. Comput. Model. 43, 718–726 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Liu, H.D., Meng, F.W., Liu, P.C.: Oscillation and asymptotic analysis on a new generalized Emden–Fowler equation. Appl. Math. Comput. 219(5), 2739–2748 (2012)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Chen, D., Kou, K.I., Xia, Y.H.: Linear quaternion-valued dynamic equations on time scales. J. Appl. Anal. Comput. 8, 172–201 (2018)

    MathSciNet  Google Scholar 

  7. 7.

    Tunç, E., Liu, H.D.: Oscillatory behavior for second-order damped differential equation with nonlinearities including Riemann–Stieltjes integrals. Electron. J. Differ. Equ. 2018, 54 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Liu, H.D., Meng, F.W.: Existence of positive periodic solutions for a predator-prey system of Holling type IV function response with mutual interference and impulsive effects. Discrete Dyn. Nat. Soc. 2015, 138984 (2015)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Zhao, D.L., Liu, H.D.: Coexistence in a two species chemostat model with Markov switchings. Appl. Math. Lett. 94, 266–271 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Erbe, L., Jia, B.G., Peterson, A.: On the asymptotic behavior of solutions of Emden–Fowler equations on time scales. Ann. Mat. Pura Appl. 191, 205–217 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Liu, H.D., Ma, C.Q.: Oscillation criteria for second-order neutral delay dynamic equations with nonlinearities given by Riemann–Stieltjes integrals. Abstr. Appl. Anal. 2013, Article ID 530457 (2013)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Federson, M., Mesquita, J.G., Slavik, A.: Measure functional differential equations and functional dynamic equations on time scales. J. Differ. Equ. 252, 3816–3847 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Liu, H.D., Liu, P.C.: Oscillation criteria for some new generalized Emden–Fowler dynamic equations on time scales. Abstr. Appl. Anal. 2013, Article ID 962590 (2013)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Zhang, B., Zhuang, J.S., Liu, H.D., Cao, J.D., Xia, Y.H.: Master-slave synchronization of a class of fractional-order Takagi–Sugeno fuzzy neural networks. Adv. Differ. Equ. 2018, 473 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Zhao, D.L., Yuan, S.L., Liu, H.D.: Random periodic solution for a stochastic SIS epidemic model with constant population size. Adv. Differ. Equ. 2018, 64 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Liu, H.D., Ma, C.Q.: Oscillation criteria of even order delay dynamic equations with nonlinearities given by Riemann–Stieltjes integrals. Abstr. Appl. Anal. 2014, Article ID 395381 (2014)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Liu, H.D.: Lyapunov-type inequalities for certain higher-order difference equations with mixed non-linearities. Adv. Differ. Equ. 2018, 229 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Xia, Y.H., Li, J.B., Wong, P.J.Y.: On the topological classification of dynamic equations on time scales. Nonlinear Anal., Real World Appl. 14(6), 2231–2248 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Chen, L., Huang, C.D., Liu, H.D., Xia, Y.H.: Anti-synchronization of a class of chaotic systems with application to Lorenz system: a unified analysis of the integer order and fractional order. Mathematics 7(6), 559 (2019)

    Article  Google Scholar 

  20. 20.

    Karpuz, B.: Volterra theory on time scales. Results Math. 65(3), 263–292 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Liu, H.D., Meng, F.W.: Interval oscillation criteria for second-order nonlinear forced differential equations involving variable exponent. Adv. Differ. Equ. 2016, 291 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Zhao, D.L., Yuan, S.L., Liu, H.D.: Stochastic dynamics of the delayed chemostat with Lévy noises. Int. J. Biomath. 12(5), 1950056 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Liu, H.D.: Some new integral inequalities with mixed nonlinearities for discontinuous functions. Adv. Differ. Equ. 2018, 22 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Slavik, A.: Averaging dynamic equations on time scales. J. Math. Anal. Appl. 388, 996–1012 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Meng, Z.W., Zheng, B., Wen, C.B.: Some new integral inequalities on time scales containing integration on infinite intervals. J. Inequal. Appl. 2013, 245 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Liu, H.D.: An improvement of the Lyapunov inequality for certain higher order differential equations. J. Inequal. Appl. 2018, 215 (2018)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Agarwal, R.P., Bohner, M., Peterson, A.: Inequalities on time scales: a survey. Math. Inequal. Appl. 4, 535–557 (2001)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Anderson, D.R.: Nonlinear dynamic integral inequalities in two independent variables on time scale pairs. Adv. Dyn. Syst. Appl. 3, 1–13 (2008)

    MathSciNet  Google Scholar 

  29. 29.

    Liu, H.D., Meng, F.W.: Some new nonlinear integral inequalities with weakly singular kernel and their applications to FDEs. J. Inequal. Appl. 2015, 209 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Bohner, E.A., Bohner, M., Akin, F.: Pachpatte inequalities on time scale. J. Inequal. Pure Appl. Math. 6(1), Article ID 6 (2005)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Liu, H.D.: Some new half-linear integral inequalities on time scales and applications. Discrete Dyn. Nat. Soc. 2019, 9860302 (2019)

    MathSciNet  Google Scholar 

  32. 32.

    Saker, S.H.: Some nonlinear dynamic inequalities on time scales. Math. Inequal. Appl. 14, 633–645 (2011)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Liu, H.D., Li, C.Y., Shen, F.C.: A class of new nonlinear dynamic integral inequalities containing integration on infinite interval on time scales. Adv. Differ. Equ. 2019, 311 (2019)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Xia, Y.H., Chen, L., Kou, K.I.: Holder regularity of Grobman–Hartman theorem for dynamic equations on measure chains. Bull. Malays. Math. Sci. Soc. 41(3), 1153–1180 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Pachpatte, D.B.: Explicit estimates on integral inequalities with time scale. J. Inequal. Pure Appl. Math. 7, Article ID 143 (2006)

    MathSciNet  MATH  Google Scholar 

  36. 36.

    Ferreira, R.A.C., Torres, D.F.M.: Some linear and nonlinear integral inequalities on time scales in two independent variables. Nonlinear Dyn. Syst. Theory 9(2), 161–169 (2009)

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Liu, H.D., Meng, F.W.: Nonlinear retarded integral inequalities on time scales and their applications. J. Math. Inequal. 12(1), 219–234 (2018)

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Feng, Q.H., Meng, F.W., Fu, B.S.: Some new generalized Volterra–Fredholm type finite difference inequalities involving four iterated sums. Appl. Math. Comput. 219, 8247–8258 (2013)

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Ma, Q.H.: Estimates on some power nonlinear Volterra–Fredholm type discrete inequalities and their applications. J. Comput. Appl. Math. 233, 2170–2180 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    Liu, H.D.: Half-linear Volterra–Fredholm type integral inequalities on time scales and their applications. J. Appl. Anal. Comput. 10(1), 234–248 (2020)

    Google Scholar 

  41. 41.

    Meng, F.W., Shao, J.: Some new Volterra–Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 223, 444–451 (2013)

    MathSciNet  MATH  Google Scholar 

  42. 42.

    Liu, H.D., Meng, F.W.: Some new generalized Volterra–Fredholm type discrete fractional sum inequalities and their applications. J. High Energy Phys. 2016, 213 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  43. 43.

    Wang, J.F., Meng, F.W., Gu, J.: Estimates on some power nonlinear Volterra–Fredholm type dynamic integral inequalities on time scales. Adv. Differ. Equ. 2017, 257 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    Liu, H.D.: On some nonlinear retarded Volterra–Fredholm type integral inequalities on time scales and their applications. J. Inequal. Appl. 2018, 211 (2018)

    MathSciNet  Article  Google Scholar 

  45. 45.

    Liu, H.D.: A class of retarded Volterra–Fredholm type integral inequalities on time scales and their applications. J. Inequal. Appl. 2017, 293 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  46. 46.

    Gu, J., Meng, F.W.: Some new nonlinear Volterra–Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 245, 235–242 (2014)

    MathSciNet  MATH  Google Scholar 

  47. 47.

    Jiang, F.C., Meng, F.W.: Explicit bounds on some new nonlinear integral inequalities with delay. J. Comput. Appl. Math. 205, 479–486 (2007)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the anonymous referees for their valuable suggestions and helpful comments which helped improve the paper significantly.

Funding

This research was supported by the Natural Science Foundation of Shandong Province (China) (No. ZR2018MA018), and the National Natural Science Foundations of China (Nos. 11671227, 61873144).

Author information

Affiliations

Authors

Contributions

All authors contributed equally and read and approved the final version of the manuscript.

Corresponding author

Correspondence to Haidong Liu.

Ethics declarations

Competing interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Yin, C. Some generalized Volterra–Fredholm type dynamical integral inequalities in two independent variables on time scale pairs. Adv Differ Equ 2020, 31 (2020). https://doi.org/10.1186/s13662-020-2504-7

Download citation

Keywords

  • Time scale
  • Dynamical integral inequality
  • Volterra–Fredholm type
  • Two independent variables