Skip to main content

New results on global exponential stability for a periodic Nicholson’s blowflies model involving time-varying delays

Abstract

This paper investigates a periodic Nicholson’s blowflies equation with multiple time-varying delays. By using differential inequality techniques and the fluctuation lemma, we establish a criterion to ensure the global exponential stability on the positive solutions of the addressed equation, which improves and complements some existing ones. The effectiveness of the obtained result is illustrated by some numerical simulations.

Introduction

Recently, the global exponential stability of positive periodic solutions and almost-periodic solutions for the famous Nicholson’s blowflies equation with multiple time-varying delays:

$$\begin{aligned} x'(t)=-\beta (t)x(t)+\sum_{j=1}^{m} \alpha _{j}(t)x\bigl(t-\sigma _{j}(t)\bigr)e ^{-\gamma _{j}(t)x(t-\sigma _{j}(t))},\quad t \geq t_{0}, \end{aligned}$$
(1.1)

has been intensively studied in [13]. Here, \(\beta (t), \alpha _{j}(t), \sigma _{j}(t)\), and \(\gamma _{j}(t)\) are all continuous and nonnegative functions, \(\beta (t) \) and \(\gamma _{j}(t)\) are bounded below by positive constants, \(\beta (t) x(t)\) is the death rate of the population which depends on time t and the current population level \(x (t)\), \(\alpha _{j}(t) x(t-\sigma _{j} (t) )e^{- \gamma _{j}(t) x(t-\sigma _{j}(t))}\) is the time-dependent birth function which involves maturation delay \(\sigma _{ j}(t)\), and reproduces at its maximum rate \(\frac{1}{\gamma _{ j}(t)}\), and \(j\in \varPi:=\{1,2, \dots, m\}\).

It should be mentioned that, by restricting the existence of the periodic and almost-periodic solutions for (1.1) in a small interval \([\kappa, \widetilde{\kappa }]\approx [0.7215355, 1.342276]\), all results in [13] were obtained under the crucial assumption:

$$\begin{aligned} \gamma _{j}(t)\geq 1, \quad\text{for all } t\in \mathbb{R}, j\in \varPi, \end{aligned}$$
(1.2)

where \(\kappa \in (0, 1)\) and \(\tilde{\kappa }\in (1,+\infty )\) satisfy

$$\begin{aligned} \frac{1-\kappa }{e^{\kappa }}=\frac{1}{e^{2}}, \qquad \sup_{x\geq \kappa } \biggl\vert \frac{1-x}{e^{x}} \biggr\vert =\frac{1}{e^{2}}, \qquad \kappa e^{-\kappa }=\widetilde{\kappa } e^{-\widetilde{\kappa }}. \end{aligned}$$
(1.3)

Most recently, the authors in [46] pointed out that it is interesting that when the maximum reproduction rate is not limited (i.e., \(\frac{1}{\gamma _{j}(t)}\) maybe sufficiently large), the stability of a class of delayed nonlinear density-dependent mortality Nicholson’s blowflies models without the assumption (1.2) can be established. However, there are no research works on the global exponential stability of periodic solutions for Nicholson’s blowflies equation (1.1) without assumption (1.2) and \([\kappa, \widetilde{\kappa }]\) as the existence interval for the periodic solutions.

Based on the above discussions, in this paper, avoiding assumption (1.2) and without adopting \([\kappa, \widetilde{\kappa }]\) as the existence interval of periodic solutions, we establish the global exponential stability of periodic solutions for system (1.1). The proposed criterion improves and complements some existing results in the recent publications [13], and its effectiveness is demonstrated by a numerical example.

From now on, we suppose that \(\beta, \gamma _{j}:[ t_{0}, +\infty ) \rightarrow (0, +\infty ) \) and \(\sigma _{j}, \alpha _{j}:[ t_{0}, + \infty )\rightarrow [0, +\infty )\) are continuous T-periodic functions with \(T>0\) and \(j\in \varPi \). Let

$$\begin{aligned} 1\geq \gamma ^{+}=\max_{j\in \varPi }\Bigl\{ \sup _{t\in [t_{0}, +\infty )}\gamma _{j}(t)\Bigr\} , \qquad \gamma ^{-}=\min_{j\in \varPi }\Bigl\{ \inf_{t\in [t_{0}, +\infty )} \gamma _{j}(t)\Bigr\} , \end{aligned}$$

and

$$\begin{aligned} \sigma =\max_{ j\in \varPi }\Bigl\{ \sup_{t\in [t_{0}, +\infty )} \sigma _{j}(t)\Bigr\} ,\qquad C_{+}= C\bigl([- \sigma, 0], [0, +\infty)\bigr). \end{aligned}$$

Furthermore, consider the following initial value conditions:

$$\begin{aligned} x(t_{0}+\theta ) =\varphi (\theta ), \quad\theta \in [-\sigma, 0], \varphi \in C_{+} \text{ and } \varphi (0)>0. \end{aligned}$$
(1.4)

We let \(x(t; t_{0}, \varphi ) \) denote a solution of the initial value problem (1.1) and (1.4), and the maximal right-interval of existence of \(x(t; t_{0}, \varphi )\) is marked by \([t_{0}, \eta (\varphi ))\). Then, the existence and uniqueness of \(x(t; t_{0}, \varphi )\) is straightforwardly established in [1].

Preliminary results

In this section, we give three lemmas which will play important roles in the next section.

Lemma 2.1

LetAandδbe constants such that \(A>1, e<\frac{1}{\delta }\leq e^{2}\), and \(\delta =Ae^{-A}\). Then, \(\delta A> \frac{1}{e}\).

Proof

Evidently,

$$\begin{aligned} \delta A=A^{2}e^{-A} \quad\text{and} \quad e< \frac{e^{A}}{A}\leq e^{2}. \end{aligned}$$
(2.1)

Define \(f(u)=\frac{e^{u}}{u}\) for \(u\in (0, +\infty )\) and \(f(x_{0})=e^{2}\) with \(x_{0}>1\). Then, \(f'(u)= \frac{e^{u}(u-1)}{u^{2}}>0 (u>1)\), and \(f(u)\) is monotonously increasing on \((1,+\infty )\). Clearly, \(f(1)=e, f(e)=e^{e-1}< e^{2}\), which, together with (2.1), suggests that \(A\in (1,x_{0} ]\), and \(x_{0}>e\).

Now, letting \(G(u)=u^{2}e^{-u}\) on \((0, +\infty )\), it suffices to show that \(G(A)>\frac{1}{e}\). In fact, \(G'(u)= e^{-u}u(2-u)\), \(G(u)\) increases on \((1, 2)\) and decreases on \((2, x_{0})\), \(G(1)=e^{-1}=\frac{1}{e}\), as well as

$$\begin{aligned} G(x_{0})=x_{0}^{2}e^{-x_{0}}=\frac{x_{0}}{f(x_{0})}>\frac{e}{e^{2}}=\frac{1}{e}. \end{aligned}$$

Consequently, \(G(A)>\min \{G(1), G(x_{0})\}=\frac{1}{e}\). The proof is complete. □

Lemma 2.2

\(x (t; t_{0},\varphi )\)is positive and bounded on \([t_{0}, \eta ( \varphi )) \), and \(\eta (\varphi )=+\infty \).

Proof

First, it follows from Theorem 5.2.1 in [7], p. 81, that \(x_{t}(t_{0}, \varphi )\in C_{+}\) for all \(t \in [t_{0}, \eta (\varphi ))\). Let \(x (t )= x (t; t_{0},\varphi )\). Noting that \(x(t_{0})=\varphi (0)>0\), we gain

$$\begin{aligned} x(t)={}&e^{-\int _{t_{0}}^{t}\beta (v)\,dv}x(t_{0}) \\ &{} + \int _{t_{0}}^{t}e^{-\int _{s}^{t} \beta (v)\,dv}\sum _{j=1}^{m} \alpha _{j}(s)x \bigl(s- \sigma _{j}(s)\bigr)e^{- \gamma _{j}(s)x(s- \sigma _{j}(s))}\,ds \\ >{}&0, \quad\text{for all } t\in [t_{0}, \eta (\varphi )). \end{aligned}$$

Second, due to the positivity and periodicity of coefficient functions, we can choose a positive constant M such that

$$\begin{aligned} \sum_{j=1}^{m} \frac{\alpha _{j} (t)}{\beta (t)\gamma _{j} (t)} \leq M\quad \text{for all } t\in [t_{0}, +\infty ). \end{aligned}$$

Therefore, in view of the fact that \(\sup_{u\geq 0} ue^{-u}=\frac{1}{ e}\), we obtain

$$\begin{aligned} x(t)={}&e^{-\int _{t_{0}}^{t}\beta (v)\,dv}x(t_{0}) \\ & {}+ \int _{t_{0}}^{t} e^{ -\int _{s}^{t} \beta (v)\,dv}\sum _{j=1}^{m} \frac{\alpha _{j} (s)}{\gamma _{j} (s)}\gamma _{j} (s)x \bigl(s- \sigma _{j}(s)\bigr)e^{-\gamma _{j} (s)x(s-\sigma _{j} (s))} \,ds \\ \leq{} &e^{-\int _{t_{0}}^{t} \beta (v) \,dv}x(t_{0}) + \int_{t_{0}}^{t} e ^{ -\int _{s}^{t} \beta (v) \,dv} \sum _{j=1}^{m} \frac{\alpha _{j} (s)}{\gamma _{j} (s)} \frac{1}{e}\,ds \\ \leq{}& e^{-\int _{t_{0}}^{t} \beta (v) \,dv}x (t_{0}) +\frac{M}{e} \int _{t_{0}}^{t} e^{ -\int _{s}^{t} \beta (v) \,dv} \beta (s)\,ds \\ &=e^{-\int _{t_{0}}^{t}\beta (v)\,dv}x(t_{0})+\frac{M}{e} \bigl[1-e^{-\int _{t_{0}}^{t} \beta (v) \,dv}\bigr] \\ :={}&\varLambda (t), \quad\text{for all } t\in [t_{0}, \eta (\varphi )). \end{aligned}$$

Finally, we have from Theorem 2.3.1 in [8] and the boundedness of \(\varLambda (t)\) that \(\eta (\varphi )=+\infty \), and \(x (t )\) is positive and bounded on \([t_{0}, +\infty )\). □

Lemma 2.3

Let

$$ \textstyle\begin{cases} \inf_{t\in [t_{0}, +\infty )}(\frac{\sum_{j=1}^{m} \alpha _{j} (t)}{\beta (t)})>1, \\ e< \inf_{t\in [t_{0}, +\infty )}\sum_{j=1}^{m} \frac{ \alpha _{j} (t)}{\beta (t)\gamma _{j}(t)}\leq \sup_{t\in [t_{0}, +\infty )}\sum_{j=1}^{m} \frac{\alpha _{j} (t)}{\beta (t)\gamma _{j} (t)}< e^{2} \end{cases} $$
(2.2)

and

$$\begin{aligned} \inf_{t\in [t_{0}, +\infty )}\ln \biggl( \frac{\sum_{j=1} ^{m} \alpha _{j}(t)}{\beta (t)}\biggr)> \frac{\kappa }{\gamma ^{-}},\qquad \frac{ \inf_{t\in [t_{0}, +\infty )}\sum_{j=1}^{m} \frac{ \alpha _{j} (t)}{\beta (t) }}{\sup_{t\in [t_{0}, +\infty )} \sum_{j=1}^{m} \frac{\alpha _{j} (t)}{\beta (t)\gamma _{j} (t)}}>\frac{ \kappa }{\gamma ^{-}}. \end{aligned}$$
(2.3)

Then,

$$\begin{aligned} \frac{\kappa }{\gamma ^{-}}< l:= \liminf_{t\rightarrow +\infty }x(t; t_{0}, \varphi ) \leq L:= \limsup_{t\rightarrow +\infty }x(t; t_{0}, \varphi ) < A, \end{aligned}$$
(2.4)

where

$$\begin{aligned} \delta = \frac{1}{\sup_{t\in [t_{0}, +\infty )}\sum_{j=1}^{m} \frac{\alpha _{j}(t)}{\beta (t)\gamma _{j} (t)}},\qquad A>1 \quad\textit{and}\quad \delta =Ae^{-A}. \end{aligned}$$
(2.5)

Proof

From (2.2), (2.5) and Lemma 2.1, one can see that

$$\begin{aligned} \sup_{t\in [t_{0}, +\infty )}\sum_{j=1}^{m} \frac{ \alpha _{j} (t)}{\beta (t)\gamma _{j}(t)}\frac{1}{e}< A. \end{aligned}$$
(2.6)

We claim that \(\liminf_{t\to +\infty } x(t)=l>0\). Otherwise, \(l=0\). For any \(t\geq t_{0} \), we set

$$\begin{aligned} \nu (t)=\max \Bigl\{ \varrho \in [t_{0}, t]|x(\varrho )=\min _{t_{0} \leq s\leq t} x (s) \Bigr\} . \end{aligned}$$

We conclude from \(l=0\) that \(\nu (t) \to +\infty \) as \(t\to +\infty \) and \(\lim_{t\to +\infty }x(\nu (t))=0\). On the other hand, \(x(\nu (t))=\min_{t_{0} \leq s\leq t}x(s)\), and \(x'(\nu (t)) \leq 0 \text{ for all } \nu (t)>t_{0}\). Then, (1.1) leads to

$$\begin{aligned} 0 \geq x'\bigl(\nu (t)\bigr)= {}&{-}\beta \bigl(\nu (t)\bigr)x\bigl( \nu (t)\bigr) \\ &{}+\sum_{j=1}^{m}\alpha _{j}\bigl(\nu (t)\bigr)x\bigl(\nu (t) -\sigma _{j} \bigl( \nu (t)\bigr)\bigr)e^{-\gamma _{j}(\nu (t))x(\nu (t)-\sigma _{j}(\nu (t)))} \end{aligned}$$
(2.7)

and

$$\begin{aligned} \beta \bigl(\nu (t)\bigr) x \bigl(\nu (t)\bigr) \geq \alpha _{j} \bigl(\nu (t)\bigr) x \bigl(\nu (t)- \sigma _{j} \bigl(\nu (t)\bigr) \bigr)e^{- \gamma _{j} (\nu (t)) x (\nu (t)-\sigma _{j} ( \nu (t)))}, \end{aligned}$$

where \(\nu (t)>t_{0}, j\in \varPi \), which, together with the fact that \(\lim_{t\to +\infty }x (\nu (t))=0 \), suggests that

$$\begin{aligned} \lim_{t\rightarrow +\infty }x \bigl(\nu (t)- \sigma _{j} \bigl( \nu (t)\bigr)\bigr)=0,\quad j\in \varPi. \end{aligned}$$
(2.8)

From (2.2), (2.7), (2.8) and the fact that

$$\begin{aligned} 1 &\geq \frac{1}{\beta (\nu (t))} \sum_{j=1}^{m} \alpha _{j} \bigl( \nu (t)\bigr) \frac{x (\nu (t)-\sigma _{j} (\nu (t)))}{x (\nu (t))}e^{- \gamma _{j} (\nu (t)) x (\nu (t)-\sigma _{j} (\nu (t)))} \\ &\geq \frac{1}{\beta (\nu (t))} \sum_{j=1}^{m} \alpha _{j} \bigl( \nu (t)\bigr)e^{- \gamma _{j} (\nu (t))x(\nu (t)-\sigma _{j}(\nu (t)))}, \end{aligned}$$

letting \(t\rightarrow +\infty \) results in

$$\begin{aligned} 1\geq \limsup_{t\rightarrow +\infty }\biggl( \frac{\sum_{j=1} ^{m}\alpha _{j} (\nu (t))}{\beta (\nu (t))}\biggr)\geq \inf_{t\in [t_{0}, +\infty )}\biggl(\frac{\sum_{j=1}^{m}\alpha _{j} (t)}{\beta (t)}\biggr)>1, \end{aligned}$$

which is a contradiction. Hence, \(l>0\).

Now, by the fluctuation lemma [9], Lemma A.1., there are two sequences \(\{q_{k}^{*}\}_{k=1}^{+\infty }\) and \(\{q_{k}^{**}\}_{k=1}^{+\infty }\) obeying

$$\begin{aligned} \lim_{k\rightarrow +\infty }q_{k}^{*}\rightarrow + \infty,\qquad \lim_{k\rightarrow +\infty }x \bigl(q_{k}^{*} \bigr)=L\quad \text{and}\quad \lim_{k\rightarrow +\infty }x' \bigl(q_{k}^{*} \bigr) = 0, \end{aligned}$$
(2.9)

and

$$\begin{aligned} \lim_{k\rightarrow +\infty }q_{k}^{**}\rightarrow + \infty,\qquad \lim_{k\rightarrow +\infty }x \bigl(q_{k}^{**} \bigr) =l \quad\text{and} \quad\lim_{k\rightarrow +\infty } x' \bigl(q_{k}^{**} \bigr) = 0, \end{aligned}$$
(2.10)

respectively. Without loss of generality, regarding the periodicity of delays and coefficients, we can assume that \(\lim_{k \rightarrow + \infty } \beta (q_{k}^{*}), \lim_{k \rightarrow + \infty } \alpha _{j} (q_{k}^{*}), \lim_{k \rightarrow + \infty } \gamma _{j}(q_{k}^{*}), \lim_{k \rightarrow + \infty } x(q_{k}^{*}-\sigma _{ j} (q_{k}^{*})), \lim_{k \rightarrow + \infty } \beta (q_{k}^{**}), \lim_{k \rightarrow + \infty }\alpha _{j}(q_{k}^{**}), \lim_{k \rightarrow + \infty } \gamma _{j}(q_{k}^{**}) \) and \(\lim_{k \rightarrow + \infty }x(q_{k}^{**}-\sigma _{ j} (q _{k}^{**})) \) exist for all \(j\in \varPi \).

Likewise, (1.1), (2.6) and (2.9) yield

$$\begin{aligned} 0={}&\lim_{k \rightarrow + \infty }x' \bigl(q_{k}^{*} \bigr) \\ ={}&{-}\lim_{k \rightarrow + \infty }\beta \bigl(q_{k}^{*} \bigr) \lim_{k \rightarrow + \infty }x\bigl(q_{k}^{*} \bigr) \\ &{} +\sum_{j=1}^{m}\lim _{k \rightarrow + \infty }\frac{ \alpha _{j}(q_{k}^{*})}{\gamma _{j}(q_{k}^{*})} \lim_{k \rightarrow + \infty } \bigl[\gamma _{j}\bigl(q_{k}^{*}\bigr)x \bigl(q_{k}^{*}- \sigma _{j} \bigl(q_{k}^{*}\bigr) \bigr)e^{- \gamma _{j}(q_{k}^{*})x(q_{k}^{*}-\sigma _{j}(q_{k}^{*}))}\bigr] \\ \leq{}& {-}\lim_{k \rightarrow +\infty }\beta \bigl(q_{k}^{*} \bigr)L + \sum_{j=1}^{m}\lim _{k \rightarrow + \infty }\frac{\alpha _{j}(q_{k}^{*})}{\gamma _{j}(q_{k}^{*})}\frac{1}{e}, \end{aligned}$$

and

$$\begin{aligned} L\leq \lim_{k \rightarrow + \infty } \Biggl[\sum_{j=1}^{m} \frac{ \alpha _{j}(q_{k}^{*})}{\beta (q_{k}^{*})\gamma _{j}(q_{k}^{*})}\Biggr] \frac{1}{e}< A. \end{aligned}$$
(2.11)

Consequently, let \(j_{0}\in \varPi \) such that

$$\begin{aligned} \lim_{k \rightarrow + \infty } x \bigl(q_{k}^{**}- \sigma _{j_{0}} \bigl(q _{k}^{**}\bigr) \bigr)=l_{0}\in [l, L], \end{aligned}$$

and

$$\begin{aligned} &\lim_{k \rightarrow +\infty }\bigl[x \bigl(q_{k}^{**}- \sigma _{j_{0}} \bigl(q _{k}^{**}\bigr) \bigr)e^{-x(q_{k}^{**}-\sigma _{j_{0}}(q_{k}^{**}))}\bigr] \\ &\quad =l_{0}e^{-l_{0}}=\min_{j\in \varPi }\lim _{k \rightarrow + \infty }\bigl[x\bigl(q_{k}^{**}-\sigma _{j} \bigl(q_{k}^{**}\bigr) \bigr)e^{-x(q_{k}^{**}-\sigma _{j}(q_{k}^{**}))}\bigr]. \end{aligned}$$

It follows from (1.1), (2.10) and the fact that \(\min_{[a, b]\subseteq [0, +\infty )}ue^{-u}=\min \{ae^{-a}, be ^{-b}\}\) that

$$\begin{aligned} 0={}&\lim_{k \rightarrow + \infty }x' \bigl(q_{k}^{**} \bigr) \\ ={}&{-}\lim_{k \rightarrow + \infty }\beta \bigl(q_{k}^{**} \bigr)l+\sum_{j=1}^{m}\lim _{k \rightarrow + \infty }\alpha _{j}\bigl(q _{k}^{**} \bigr)\lim_{k \rightarrow + \infty }\bigl[x \bigl(q_{k}^{**}- \sigma _{j}\bigl(q_{k}^{**}\bigr)\bigr) \\ &{} \times e^{- \gamma _{j}(q_{k}^{**})x(q_{k}^{**}-\sigma _{j}(q_{k}^{**}))}\bigr] \\ \geq{} &{-}\lim_{k \rightarrow + \infty }\beta \bigl(q_{k}^{**} \bigr)l+ \sum_{j=1}^{m}\lim _{k \rightarrow + \infty }\alpha _{j}\bigl(q _{k}^{**} \bigr)\lim_{k \rightarrow + \infty }\bigl[x \bigl(q_{k}^{**}- \sigma _{j}\bigl(q_{k}^{**}\bigr)\bigr) \\ & {}\times e^{-x(q_{k}^{**}-\sigma _{j}(q_{k}^{**}))}\bigr] \\ \geq{}& {-}\lim_{k \rightarrow + \infty }\beta \bigl(q_{k}^{**} \bigr)l+l _{0}e^{-l_{0}}\sum_{j=1}^{m} \lim_{k \rightarrow +\infty }\alpha _{j}\bigl(q_{k}^{**} \bigr) \\ \geq{} &{-}\lim_{k \rightarrow + \infty }\beta \bigl(q_{k}^{**} \bigr)l+ \min \bigl\{ le^{-l}, Le^{-L}\bigr\} \sum _{j=1}^{m}\lim_{k \rightarrow +\infty }\alpha _{j}\bigl(q_{k}^{**}\bigr). \end{aligned}$$
(2.12)

If \(le^{-l}=\min \{le^{-l}, Le^{-L}\}\), (2.3) and (2.12) yield

$$\begin{aligned} l\geq \ln \biggl(\lim_{k \rightarrow +\infty }\frac{\sum_{j=1} ^{m}\alpha _{j}(q_{k}^{**})}{\beta (q_{k}^{**})}\biggr)\geq \inf_{t\in \mathbb{R}}\ln \biggl( \frac{\sum_{j=1}^{m}\alpha _{j}(t)}{ \beta (t)}\biggr)> \frac{\kappa }{\gamma ^{-}}. \end{aligned}$$
(2.13)

If \(Le^{-L}=\min \{le^{-l}, Le^{-L}\}< le^{-l}\), then (2.11) implies

$$\begin{aligned} 1< L\leq A,\qquad Le^{-L}\geq Ae^{-A}, \end{aligned}$$

which, together with (2.3) and (2.12), entails that

$$\begin{aligned} l\geq \frac{Ae^{-A}}{\lim_{k \rightarrow +\infty }\frac{\beta (q_{k}^{**})}{\sum_{j=1}^{m}\alpha _{j}(q_{k}^{**})} }\geq \frac{ \inf_{t\in [t_{0}, +\infty )}\sum_{j=1}^{m} \frac{ \alpha _{j} (t)}{\beta (t) }}{\sup_{t\in [t_{0}, +\infty )} \sum_{j=1}^{m} \frac{\alpha _{j} (t)}{\beta (t)\gamma _{j} (t)}}>\frac{ \kappa }{\gamma ^{-}}, \end{aligned}$$
(2.14)

which, together with (2.11) and (2.13), establishes (2.4). This finishes the proof of Lemma 2.3. □

Main results

The main results in this paper will now be presented as the subsequent proposition and theorem.

Proposition 3.1

Suppose that all assumptions in Lemma 2.3are satisfied. Then, for \(\varphi,\psi \in C_{+}\)with \(\varphi (0)>0\)and \(\psi (0)>0\), there exist constants \(Q_{\varphi, \psi }>t_{0}\), \(K _{\varphi, \psi }>0\)and \(\lambda >0\)such that

$$\begin{aligned} \bigl\vert x(t; t_{0}, \varphi )-x(t; t_{0}, \psi ) \bigr\vert < K _{\varphi, \psi } e ^{-\lambda t} \quad\textit{for all } t>Q_{\varphi, \psi }>t_{0}. \end{aligned}$$
(3.1)

Proof

Denote \(x^{\varphi }(t)= x(t; t_{0}, \varphi )\) and \(x^{\psi }(t)= x(t; t_{0}, \psi )\). By Lemma 2.3 and the fact that \(\gamma ^{+}\leq 1\), there exists \(Q_{\varphi, \psi }>t_{0} \) such that

$$\begin{aligned} \frac{\kappa }{\gamma ^{-}} < x^{\varphi }(t),\qquad x^{\psi }(t)< A, \quad \kappa < \gamma _{j}(t)x^{\varphi }\bigl(t -\sigma _{j}(t)\bigr), \gamma _{j}(t)x ^{\psi }\bigl(t -\sigma _{j}(t)\bigr) \end{aligned}$$
(3.2)

for all \(t\in [Q_{\varphi, \psi }-\sigma, +\infty ) \) and \(j\in \varPi \). According to (2.2), we can take \(\lambda >0\) such that

$$\begin{aligned} \max_{t\in [0, T]} \Biggl\{ -\bigl[\beta (t)-\lambda \bigr] +\sum ^{m} _{j=1}\frac{\alpha _{ j}(t)}{\gamma _{ j}(t)} \frac{1}{e^{2}} e^{\lambda \sigma } \Biggr\} < 0. \end{aligned}$$
(3.3)

Define \(z(t)= x^{\varphi }(t)-x^{\psi }(t)\) and \(M (t) = |z(t)|e^{ \lambda t}\) for all \(t\in [t_{0}-\sigma, +\infty )\). Consequently,

$$\begin{aligned} z'(t)={}&{-}\beta (t)z(t)+\sum^{m}_{j=1} \alpha _{j}(t)\bigl[x^{\varphi }\bigl(t- \sigma _{j}(t)\bigr)e^{-\gamma _{ j}(t)x^{\varphi }(t-\sigma _{j}(t))} \\ &{} -x^{\psi }\bigl(t-\sigma _{j}(t)\bigr)e^{-\gamma _{j}(t)x^{\psi } (t-\sigma _{ j}(t))} \bigr] \end{aligned}$$

and

$$\begin{aligned} D^{-}\bigl(M (t)\bigr)\leq{}& {-}\beta (t) \bigl\vert z (t ) \bigr\vert e^{\lambda t} \\ &{} +\sum^{m}_{j=1}\alpha _{ j}(t) \bigl\vert x^{\varphi }\bigl(t-\sigma _{j}(t)\bigr)e ^{-\gamma _{ j}(t)x^{\varphi }(t-\sigma _{j}(t))}-x^{\psi }\bigl(t-\sigma _{j}(t)\bigr) \\ & {}\times e^{-\gamma _{ j}(t)x^{\psi }(t-\sigma _{ j}(t))} \bigr\vert e^{\lambda t}+ \lambda \bigl\vert z (t) \bigr\vert e^{\lambda t},\quad\text{for all }t>Q_{\varphi, \psi }. \end{aligned}$$
(3.4)

Now, we show that

$$\begin{aligned} M(t) &< e^{\lambda Q_{\varphi,\psi }}\Bigl(\max_{t\in [t_{0}-\sigma, Q_{\varphi, \psi }]} \bigl\vert x^{\varphi }(t)-x ^{\psi } (t) \bigr\vert +1\Bigr) \\ &:= K_{\varphi, \psi } \quad\text{for all }t>Q_{\varphi, \psi }. \end{aligned}$$
(3.5)

Suppose on the contrary and pick \(Q_{*}>Q_{\varphi, \psi }\) such that

$$\begin{aligned} M(Q_{*})=K_{\varphi, \psi } \quad\text{and}\quad M (t)< K _{\varphi, \psi }\quad \text{for all } t\in [t_{0}-\sigma, Q_{*}). \end{aligned}$$
(3.6)

From the definition of κ, we have

$$\begin{aligned} \bigl\vert ae^{-a}-be^{-b} \bigr\vert \leq \frac{1}{e^{2}} \vert a -b \vert \quad\text{for all } a,b\in [\kappa, + \infty ), \end{aligned}$$
(3.7)

which, together with (3.2), (3.3), (3.4), (3.6), and (3.7), results in

$$\begin{aligned} 0\leq{}& D^{-}\bigl(M (Q_{*})\bigr) \\ \leq{}& {-}\beta (Q_{*}) \bigl\vert z (Q_{*} ) \bigr\vert e^{\lambda Q_{*}}+\sum^{m}_{j=1} \frac{ \alpha _{ j}(Q_{*})}{\gamma _{ j}(Q_{*})} \bigl\vert \gamma _{ j}(Q_{*})x^{\varphi } \bigl(Q_{*}-\sigma _{j}(Q_{*})\bigr) \\ &{} \times e^{-\gamma _{ j}(Q_{*})x^{\varphi }(Q_{*}-\sigma _{ j}(Q_{*}))} \\ &{} -\gamma _{j}(Q_{*})x^{\psi } \bigl(Q_{*}-\sigma _{j}(Q_{*}) \bigr)e^{-\gamma _{j}(Q _{*})x^{\psi } (Q_{*}-\sigma _{ j}(Q_{*}))} \bigr\vert e^{\lambda Q_{*}}+\lambda \bigl\vert z (Q_{*}) \bigr\vert e^{\lambda Q_{*}} \\ \leq{}& {-}\bigl[\beta (Q_{*})-\lambda \bigr] \bigl\vert z (Q_{*} ) \bigr\vert e^{\lambda Q_{*}} \\ &{} +\sum^{m}_{j=1}\frac{\alpha _{ j}(Q_{*})}{\gamma _{ j}(Q_{*})} \frac{1}{e ^{2}} \bigl\vert z \bigl(Q_{*}-\sigma _{ j}(Q_{*})\bigr) \bigr\vert e^{\lambda (Q_{*}-\sigma _{ j}(Q _{*}))}e^{\lambda \sigma _{ j}(Q_{*}) } \\ \leq {}&\Biggl\{ -\bigl[\beta (Q_{*})-\lambda \bigr] +\sum ^{m}_{j=1}\frac{\alpha _{ j}(Q _{*})}{\gamma _{ j}(Q_{*})} \frac{1}{e^{2}} e^{\lambda \sigma }\Biggr\} K_{ \varphi, \psi } \end{aligned}$$

and

$$\begin{aligned} 0 \leq -\bigl[\beta (Q_{*})-\lambda \bigr] +\sum ^{m}_{j=1}\frac{\alpha _{ j}(Q _{*})}{\gamma _{ j}(Q_{*})} \frac{1}{e^{2}} e^{\lambda \sigma }< 0, \end{aligned}$$

which is a contradiction, validating (3.5). This implies that (3.1) holds, and the proof of the Proposition 3.1 is now finished. □

Theorem 3.1

Under the assumptions of Proposition 3.1, system (1.1) has exactly one globally exponentially stable positiveT-periodic solution \(x^{*}(t)\in [\frac{\kappa }{\gamma ^{-}}, A]\).

Proof

According to Proposition 3.1 and Lemma 2.3, one can follow the argument of Theorem 3.1 in [1] to demonstrate that \(x(t+qT)=x(t+qT;t _{ 0},\varphi )\) is not only convergent on every compact interval as \(q\to +\infty \), but also converges uniformly to a continuous function \(x^{*}(t)\), where \(x^{*}\) is a T-periodic solution of (1.1), and such that

$$\begin{aligned} 0< \frac{\kappa }{\gamma ^{-}} \leq x^{*}(t) \leq A , \quad\text{for all } t \in \mathbb{R}. \end{aligned}$$

Furthermore, by applying a similar argument as in Lemma 2.3, we can validate the global exponential stability of \(x^{*}(t)\). This completes the proof of Theorem 3.1. □

By applying Theorem 3.1, we can obtain the following result.

Corollary 3.1

Assume that \(\beta \in (0, +\infty )\)and \(\sigma _{j}, \alpha _{j}\in [0, +\infty )\)are constants, and

$$\begin{aligned} e< \sum_{j=1}^{m} \frac{\alpha _{j} }{\beta } < e^{2}. \end{aligned}$$
(3.8)

Then, the classical autonomous Nicholson’s blowflies equation,

$$\begin{aligned} x'(t)=-\beta x(t) +\sum_{j=1}^{m} \alpha _{j}x\bigl(t-\sigma _{j} (t) \bigr)e ^{- x(t-\sigma _{j}(t))}, \end{aligned}$$

has a globally exponentially stable positive equilibrium point \(x^{*}\in [ \kappa, A]\), where

$$\begin{aligned} \delta = \frac{1}{ \sum_{j=1}^{m} \frac{\alpha _{j} }{\beta }},\quad A>1,\quad \textit{and}\quad \delta =Ae^{-A}. \end{aligned}$$
(3.9)

Remark 3.1

Under the conditions (3.8), the stability of the classical autonomous Nicholson’s blowflies equation in the main results of [10, 11] can be concluded from the above Corollary 3.1. In addition, in [10, 11], the exponential stability and existence range of a positive equilibrium point have not been considered for the classical autonomous Nicholson’s blowflies equation with the conditions (3.8), which implies that the obtained results of this present paper improve and complement some existing ones.

Example

In this section, we present a numerical example to verify the theoretical results derived in the previous section.

Example 4.1

Consider the delayed Nicholson’s blowflies equations described by

$$\begin{aligned} x'(t) ={}&{-}\bigl(10\sin ^{2}t+2\bigr)x(t) \\ &{} +2\bigl(10\sin ^{2}t+2\bigr) (1.1+0.01\cos t)x\bigl(t- 100\sin ^{2}t \bigr) \\ &{} \times e^{ -(0.9+0.01\sin t)x(t-100\sin ^{2}t )} \\ &{} + \bigl(10\sin ^{2}t+2\bigr) (1.1+0.01\cos 20t)x\bigl(t- 100\cos ^{2}t \bigr) \\ &{} \times e^{ -(0.9+0.01\cos t)x(t-100\cos ^{2}t )}. \end{aligned}$$
(4.1)

Obviously, it is observed that (4.1) satisfies (2.2) and (2.3). Therefore, from Theorem 3.1, one can see that (4.1) has exactly one globally exponentially stable positive 2π-periodic solution. This fact is also supported by the numerical simulations in Fig. 1 (numerical solutions of (4.1) for different initial values).

Figure 1
figure1

Numerical solutions on the state trajectories of state variables x of system (4.1) for differential initial values: \(\varphi (s) =0.9, 1, 1.2, s\in [-100,0]\)

Remark 4.1

It should be pointed out that in (4.1),

$$\begin{aligned} \gamma _{1}(t)=0.9+0.01\sin t< 1 \quad\text{and} \quad\gamma _{2}(t)=0.9+0.01 \cos t< 1 \end{aligned}$$

do not satisfy assumption (1.2) mentioned in Sect. 1. In addition, the results concerning on population dynamics in [1216] give no clue about the problem of periodic solutions of Nicholson’s blowflies model without assumption (1.2). This implies that all the results in [16, 1057] cannot be used to show the global exponential stability on the positive periodic solution of system (4.1).

Conclusions

In this paper, we combine the Lyapunov function method with the differential inequality method to establish some new criteria ensuring the existence and exponential stability of positive periodic solutions for a class of Nicholson’s blowflies equation with multiple time-varying delays. Avoiding the assumption that the maximum reproduction rate is less than 1, these criteria are obtained without assuming that \([\kappa, \widetilde{\kappa }] \approx [0.7215355, 1.342276] \) is the existence region of periodic solutions, and the analogous results in the recently published literature are summarized and refined. The approach presented in this article can be used as a possible way to study other population models involving multiple time-varying delays, for example, neoclassical growth model, Mackey–Glass model, epidemical system or age-structured population model, and so on.

References

  1. 1.

    Liu, B.: Global exponential stability of positive periodic solutions for a delayed Nicholson’s blowflies model. J. Math. Anal. Appl. 412, 212–221 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Liu, B.: New results on global exponential stability of almost periodic solutions for a delayed Nicholson’s blowflies model. Ann. Pol. Math. 113(2), 191–208 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Xiong, W.: New results on positive pseudo-almost periodic solutions for a delayed Nicholson’s blowflies model. Nonlinear Dyn. 85, 563–571 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Xu, Y.: New stability theorem for periodic Nicholson’s model with mortality term. Appl. Math. Lett. 94, 59–65 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Son, D.T., Hien, L.V., Anh, T.T.: Global attractivity of positive periodic solution of a delayed Nicholson model with nonlinear density-dependent mortality term. J. Qual. Theory Differ. Equ. 8, 1–21 (2019)

    Google Scholar 

  6. 6.

    Ding, H., Fu, S.: Periodicity on Nicholson’s blowflies systems involving patch structure and mortality terms. J. Exp. Theor. Artif. Intell. (2019). https://doi.org/10.1080/0952813X.2019.1647567

    Article  Google Scholar 

  7. 7.

    Smith, H.L.: Monotone Dynamical Systems. Math. Surveys Monogr. Amer. Math. Soc., Providence (1995)

    Google Scholar 

  8. 8.

    Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Google Scholar 

  9. 9.

    Smith, H.L.: An Introduction to Delay Differential Equations with Applications to the Life Sciences. Springer, New York (2011)

    Google Scholar 

  10. 10.

    Liz, E., Tkachenko, V., Trofimchuk, S.: A global stability criterion for scalar functional differential equation. SIAM J. Math. Anal. 35(3), 596–622 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Berezansky, L., Braverman, E., Idels, L.: Nicholson’s blowflies differential equations revisited: main results and open problems. Appl. Math. Model. 34, 1405–1417 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Huang, C., Yang, Z., Yi, T., Zou, X.: On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities. J. Differ. Equ. 256, 2101–2114 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Huang, C., Qiao, Y., Huang, L., Agarwal, R.: Dynamical behaviors of a food-chain model with stage structure and time delays. Adv. Differ. Equ. 2018, 186 (2018). https://doi.org/10.1186/s13662-018-1589-8

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Huang, C., Zhang, H., Huang, L.: Almost periodicity analysis for a delayed Nicholson’s blowflies model with nonlinear density-dependent mortality term. Commun. Pure Appl. Anal. 18(6), 3337–3349 (2019)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Huang, C., Zhang, H., Cao, J., Hu, H.: Stability and Hopf bifurcation of a delayed prey–predator model with disease in the predator. Int. J. Bifurc. Chaos 29(7), 1950091 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Long, X., Gong, S.: New results on stability of Nicholson’s blowflies equation with multiple pairs of time-varying delays. Appl. Math. Lett. 100, 106027 (2020). https://doi.org/10.1016/j.aml.2019.106027

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Huang, C., Yang, X., Cao, J.: Stability analysis of Nicholson’s blowflies equation with two different delays. Math. Comput. Simul. (2019). https://doi.org/10.1016/j.matcom.2019.09.023

    Article  Google Scholar 

  18. 18.

    Tan, Y., Huang, C., Sun, B., Wang, T.: Dynamics of a class of delayed reaction–diffusion systems with Neumann boundary condition. J. Math. Anal. Appl. 458(2), 1115–1130 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Duan, L., Fang, X., Huang, C.: Global exponential convergence in a delayed almost periodic Nicholson’s blowflies model with discontinuous harvesting. Math. Methods Appl. Sci. 41(5), 1954–1965 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Hu, H., Zou, X.: Existence of an extinction wave in the Fisher equation with a shifting habitat. Proc. Am. Math. Soc. 145(11), 4763–4771 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Wang, J., Huang, C., Huang, L.: Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type. Nonlinear Anal. Hybrid Syst. 33, 162–178 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Wang, J., Chen, X., Huang, L.: The number and stability of limit cycles for planar piecewise linear systems of node-saddle type. J. Math. Anal. Appl. 469(1), 405–427 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Cai, Z., Huang, J., Huang, L.: Periodic orbit analysis for the delayed Filippov system. Proc. Am. Math. Soc. 146(11), 4667–4682 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Liu, J., Yan, L., Xu, F., Lai, M.: Homoclinic solutions for Hamiltonian system with impulsive effects. Adv. Differ. Equ. 2018(1), 326 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Chen, T., Huang, L., Yu, P., Huang, W.: Bifurcation of limit cycles at infinity in piecewise polynomial systems. Nonlinear Anal., Real World Appl. 41, 82–106 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Yang, X., Wen, S., Liu, Z., Li, C., Huang, C.: Dynamic properties of foreign exchange complex network. Mathematics 7, 832 (2019). https://doi.org/10.3390/math7090832

    Article  Google Scholar 

  27. 27.

    Iswarya, M., Raja, R., Rajchakit, G., Cao, J., Alzabut, J., Huang, C.: Existence, uniqueness and exponential stability of periodic solution for discrete-time delayed BAM neural networks based on coincidence degree theory and graph theoretic method. Mathematics 7(11), 1055 (2019). https://doi.org/10.3390/mathxx010005

    Article  Google Scholar 

  28. 28.

    Li, J., Ying, J., Xie, D.: On the analysis and application of an ion size-modified Poisson–Boltzmann equation. Nonlinear Anal., Real World Appl. 47, 188–203 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Li, X., Liu, Z., Li, J.: Existence and controllability for nonlinear fractional control systems with damping in Hilbert spaces. Acta Mech. Sin. Engl. Ser. 39(1), 229–242 (2019)

    Google Scholar 

  30. 30.

    Zhu, K., Xie, Y., Zhou, F.: Pullback attractors for a damped semilinear wave equation with delays. Acta Math. Sin. Engl. Ser. 34(7), 1131–1150 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Zhao, J., Liu, J., Fang, L.: Anti-periodic boundary value problems of second-order functional differential equations. Bull. Malays. Math. Sci. Soc. 37(2), 311–320 (2014)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Huang, C., Yang, L., Liu, B.: New results on periodicity of non-autonomous inertial neural networks involving non-reduced order method. Neural Process. Lett. 50, 595–606 (2019)

    Article  Google Scholar 

  33. 33.

    Huang, C.: Exponential stability of inertial neural networks involving proportional delays and non-reduced order method. J. Exp. Theor. Artif. Intell. (2019). https://doi.org/10.1080/0952813X.2019.1635654

    Article  MATH  Google Scholar 

  34. 34.

    Huang, C., Wen, S., Huang, L.: Dynamics of anti-periodic solutions on shunting inhibitory cellular neural networks with multi-proportional delays. Neurocomputing 357, 47–52 (2019)

    Article  Google Scholar 

  35. 35.

    Huang, C., Zhang, H.: Periodicity of non-autonomous inertial neural networks involving proportional delays and non-reduced order method. Int. J. Biomath. 12(2), 1950016 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Huang, C., Liu, B.: New studies on dynamic analysis of inertial neural networks involving non-reduced order method. Neurocomputing 325(24), 283–287 (2019)

    Article  Google Scholar 

  37. 37.

    Zhang, H.: Global large smooth solutions for 3-D hall-magnetohydrodynamics. Discrete Contin. Dyn. Syst. 39(11), 6669–6682 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Li, W., Huang, L., Ji, J.: Periodic solution and its stability of a delayed Beddington–DeAngelis type predator–prey system with discontinuous control strategy. Math. Methods Appl. Sci. 42(13), 4498–4515 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Qian, C., Hu, Y.: Novel stability criteria on nonlinear density-dependent mortality Nicholson’s blowflies systems in asymptotically almost periodic environments. J. Inequal. Appl. (2020). https://doi.org/10.1186/s13660-019-2275-4

    Article  Google Scholar 

  40. 40.

    Huang, C., Long, X., Huang, L., Fu, S.: Stability of almost periodic Nicholson’s blowflies model involving patch structure and mortality terms. Can. Math. Bull. (2019). https://doi.org/10.4153/S0008439519000511

    Article  Google Scholar 

  41. 41.

    Hu, H., Yi, T., Zou, X.: On spatial-temporal dynamics of Fisher–KPP equation with a shifting environment. Proc. Am. Math. Soc. 148(1), 213–221 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    Wang, F., Yao, Z.: Approximate controllability of fractional neutral differential systems with bounded delay. Fixed Point Theory 17, 495–508 (2016)

    MathSciNet  MATH  Google Scholar 

  43. 43.

    Hu, H., Yuan, X., Huang, L., Huang, C.: Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks. Math. Biosci. Eng. 16(5), 5729–5749 (2019)

    Article  Google Scholar 

  44. 44.

    Wei, Y., Yin, L., Long, X.: The coupling integrable couplings of the generalized coupled Burgers equation hierarchy and its Hamiltonian structure. Adv. Differ. Equ. 2019, 58 (2019). https://doi.org/10.1186/s13662-019-2004-9

    MathSciNet  Article  MATH  Google Scholar 

  45. 45.

    Zhang, J., Lu, C., Li, X., Kim, H.-J., Wang, J.: A full convolutional network based on DenseNet for remote sensing scene classification. Math. Biosci. Eng. 16(5), 3345–3367 (2019)

    Article  Google Scholar 

  46. 46.

    Hu, H., Liu, L.: Weighted inequalities for a general commutator associated to a singular integral operator satisfying a variant of Hormander’s condition. Math. Notes 101(5–6), 830–840 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    Huang, C., Liu, L.: Boundedness of multilinear singular integral operator with non-smooth kernels and mean oscillation. Quaest. Math. 40(3), 295–312 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    Huang, C., Cao, J., Wen, F., Yang, X.: Stability analysis of SIR model with distributed delay on complex networks. PLoS ONE 11(8), e0158813 (2016). https://doi.org/10.1371/journal.pone.0158813

    Article  Google Scholar 

  49. 49.

    Li, X., Liu, Y., Wu, J.: Flocking and pattern motion in a modified Cucker–Smale model. Bull. Korean Math. Soc. 53(5), 1327–1339 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  50. 50.

    Xie, Y., Li, Q., Zhu, K.: Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity. Nonlinear Anal., Real World Appl. 31, 23–37 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  51. 51.

    Xie, Y., Li, Y., Zeng, Y.: Uniform attractors for nonclassical diffusion equations with memory. J. Funct. Spaces 2016, Article ID 5340489 (2016). https://doi.org/10.1155/2016/5340489

    MathSciNet  Article  MATH  Google Scholar 

  52. 52.

    Wang, F., Wang, P., Yao, Z.: Approximate controllability of fractional partial differential equation. Adv. Differ. Equ. 2015, 367 (2015). https://doi.org/10.1186/s13662-015-0692-3

    MathSciNet  Article  MATH  Google Scholar 

  53. 53.

    Liu, Y., Wu, J.: Multiple solutions of ordinary differential systems with min-max terms and applications to the fuzzy differential equations. Adv. Differ. Equ. 2015, 379 (2015). https://doi.org/10.1186/s13662-015-0708-z

    MathSciNet  Article  MATH  Google Scholar 

  54. 54.

    Yan, L., Liu, J., Luo, Z.: Existence and multiplicity of solutions for second-order impulsive differential equations on the half-line. Adv. Differ. Equ. 2013, 293 (2013). https://doi.org/10.1186/1687-1847-2013-293

    MathSciNet  Article  MATH  Google Scholar 

  55. 55.

    Liu, Y., Wu, J.: Fixed point theorems in piecewise continuous function spaces and applications to some nonlinear problems. Math. Methods Appl. Sci. 37(4), 508–517 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  56. 56.

    Zhou, S., Jiang, Y.: Finite volume methods for N-dimensional time fractional Fokker–Planck equations. Bull. Malays. Math. Sci. Soc. 42(6), 3167–3186 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  57. 57.

    Liu, F., Feng, L., Vo, A., Li, J.: Unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional Bloch–Torrey equations on irregular convex domains. Comput. Math. Appl. 78(5), 1637–1650 (2019)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees and the editor for very helpful suggestions and comments which led to improvements of our original paper.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 11971076, 11771059, 51839002), the Foundation of Hunan Provincial Education Department of China (Grant No. 14C0806), and the Natural Scientific Research Fund of Hunan Provincial of China (Grant No. 2016JJ6104).

Author information

Affiliations

Authors

Contributions

The three authors contributed equally to this work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chaofan Qian.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, Q., Wang, G. & Qian, C. New results on global exponential stability for a periodic Nicholson’s blowflies model involving time-varying delays. Adv Differ Equ 2020, 43 (2020). https://doi.org/10.1186/s13662-020-2495-4

Download citation

Keywords

  • Positive periodic solution
  • Global exponential stability
  • Time-varying delay
  • Nicholson’s blowflies model