Skip to main content

Theory and Modern Applications

Table 2 Results for \({}_{\mathcal{H}^{(r)}}\mathit{F}^{(c,\upsilon )}_{n}(x,y,z)\)

From: Construction of a new family of Fubini-type polynomials and its applications

Generating function

\(\frac{2^{\upsilon }}{(2-e^{t})^{2\upsilon }} e^{xt+yt^{r}} \cos (zt)= \sum_{n=0}^{\infty } {}_{\mathcal{H}^{(r)}}\mathit{F}^{(c,\upsilon )}_{n}(x,y,z) \frac{ t^{n}}{n!} \)

Multiplicative and derivative operators

\(\hat{M}_{GH\mathit{F}c}=x+ryD^{r-1}_{x}+\frac{2\upsilon e^{D_{x}}}{2-e^{D_{x}}}-z \tan (zD_{x})\), \(\hat{P}_{GH\mathit{F}c}:= D_{x}\)

Differential equation

\((xD_{x}+ryD^{r}_{x}+\frac{2\upsilon e^{D_{x}}}{2-e^{D_{x}}}D_{x}-z \tan (zD_{x})D_{x}-n ){}_{\mathcal{H}^{(r)}}\mathit{F}^{(c,\upsilon )}_{n}(x,y,z)=0\)

Identities and relations

\({}_{\mathcal{H}^{(r)}}\mathit{F}^{(c,\upsilon )}_{n}(x,y,z)=\sum_{\kappa =0}^{n} \binom{n }{\kappa } \mathit{F}^{(c,\upsilon )}_{n-\kappa }(z) \mathcal{H}^{(r)}_{\kappa }(x,y)\)

\({}_{\mathcal{H}^{(r)}}\mathit{F}^{(c,\upsilon )}_{n}(x+u,y,z)=\sum_{\kappa =0}^{n} \binom{n }{\kappa } {}_{\mathcal{H}^{(r)}}\mathit{F}^{(c,\upsilon )}_{n-\kappa }(x,y,z) u^{\kappa }\)

\({}_{\mathcal{H}^{(r)}}\mathit{F}^{(c,\upsilon )}_{n+\kappa }(\omega ,y,z)=\sum_{l=0}^{n}\sum_{m=0}^{\kappa } \binom{n }{l} \binom{\kappa }{m} (\omega -x)^{l+m} {}_{\mathcal{H}^{(r)}}\mathit{F}^{(c,\upsilon )}_{n+\kappa -l-m}(x,y,z)\)

\({}_{\mathcal{H}^{(r)}}\mathit{F}^{(c,\upsilon +\sigma )}_{n}(x,y,z)=\sum_{\kappa =0}^{n} \binom{n }{\kappa } \mathit{F}^{(\upsilon )}_{\kappa } {}_{\mathcal{H}^{(r)}}\mathit{F}^{(c,\sigma )}_{n-\kappa }(x,y,z)\)

\(x^{n} e^{yt^{r}} \cos (zt)=\sum_{\delta =0}^{2\upsilon }\sum_{\kappa =0}^{n}(-1)^{\delta } \binom{2\upsilon }{\delta }\binom{n }{\kappa }2^{\upsilon -\delta } \delta ^{n-\kappa } {}_{\mathcal{H}^{(r)}}\mathit{F}^{(c,\upsilon )}_{\kappa }(x,y,z)\)

Partial derivatives equations

\(\frac{\partial ^{m}}{\partial x^{m}} \lbrace {}_{\mathcal{H}^{(r)}}\mathit{F}^{(c,\upsilon )}_{n}(x,y,z) \rbrace =2^{-\frac{3\delta }{2}} \sum_{\kappa =0}^{n}m! \binom{n }{\kappa }\binom{n-\kappa }{m} \mathcal{E}^{(\delta )}_{\kappa } (-\frac{1}{2} ) {}_{\mathcal{H}^{(r)}}\mathit{F}^{ (c,\upsilon -\frac{\delta }{2} )}_{n-\kappa -m}(x,y,z)\)

\(\frac{\partial ^{m}}{\partial u^{m}} \lbrace {}_{\mathcal{H}^{(r)}}\mathit{F}^{(c,\upsilon +\sigma )}_{n}(x+u,y,z) \rbrace = \frac{n!}{2^{\upsilon } (n+2\upsilon )!} \sum_{\kappa =0}^{n+2\upsilon }m! \binom{n+2\upsilon }{\kappa }\binom{\kappa }{m} \mathfrak{B}^{(2\upsilon )}_{\kappa -m} (x,\frac{1}{2} ) {}_{\mathcal{H}^{(r)}}\mathit{F}^{(c,\sigma )}_{n+2\upsilon -\kappa }(u,y,z)\)

\(\frac{\partial }{\partial x} \lbrace {}_{\mathcal{H}^{(r)}}\mathit{F}^{(c,\upsilon )}_{n}(x,y,z) \rbrace =\frac{1}{2^{3\delta }} \sum_{\kappa =0}^{n}(n-\kappa )\binom{n }{\kappa } \mathcal{E}^{(2\delta )}_{\kappa } (-\frac{1}{2} ) {}_{\mathcal{H}^{(r)}}\mathit{F}^{(c,\upsilon -\delta )}_{n-\kappa -1}(x,y,z)\)