Skip to main content

Approximation of function using generalized Zygmund class

Abstract

In this paper we review some of the previous work done by the earlier authors (Singh et al. in J. Inequal. Appl. 2017:101, 2017; Lal and Shireen in Bull. Math. Anal. Appl. 5(4):1–13, 2013), etc., on error approximation of a function g in the generalized Zygmund space and resolve the issue of these works. We also determine the best error approximation of the functions g and \(g^{\prime }\), where \(g^{\prime }\) is a derived function of a 2π-periodic function g, in the generalized Zygmund class \(X_{z}^{(\eta )}\), \(z\geq 1\), using matrix-Cesàro \((TC^{\delta })\) means of its Fourier series and its derived Fourier series, respectively. Theorem 2.1 of the present paper generalizes eight earlier results, which become its particular cases. Thus, the results of (Dhakal in Int. Math. Forum 5(35):1729–1735, 2010; Dhakal in Int. J. Eng. Technol. 2(3):1–15, 2013; Nigam in Surv. Math. Appl. 5:113–122, 2010; Nigam in Commun. Appl. Anal. 14(4):607–614, 2010; Nigam and Sharma in Kyungpook Math. J. 50:545–556, 2010; Nigam and Sharma in Int. J. Pure Appl. Math. 70(6):775–784, 2011; Kushwaha and Dhakal in Nepal J. Sci. Technol. 14(2):117–122, 2013; Shrivastava et al. in IOSR J. Math. 10(1 Ver. I):39–41, 2014) become particular cases of our Theorem 2.1. Several corollaries are also deduced from our Theorem 2.1.

Introduction

In the past few decades, researchers have been greatly interested in studying the error estimation of functions in different function spaces using summability operators due to their various applications in science and engineering. In this direction, several researchers [1121] have obtained results on error estimation of functions in different Lipschitz and Hölder classes using different single summability operators. Taking a view point that a product summability operator is more effective than the individual single summability operator, researchers [5, 9, 2124] have obtained the degree of approximation of functions in different Lipschitz and Hölder classes by different product summability operators.

After reviewing the above mentioned work, we observe that all of the above works cannot provide the best approximation of a function in the function spaces considered. This fact strongly motivated us to consider a more advanced class of functions, which can provide the best approximation of a function.

Therefore, in the present work, we establish a theorem on the best error approximation of a function g in the generalized Zygmund class \(X_{z}^{(\eta )}\) (\(z\ge 1\)) by using the matrix-Cesàro \((TC^{\delta })\) product operator of its Fourier series.

In the recent past, researchers have also been greatly interested in studying the derived Fourier series by single or product means. In this direction, Chandra and Dikshit [25] have studied \(\vert B \vert \) and \(\vert E,q \vert \) means of derived Fourier series. Lal and Nigam [26] have studied Karamata means of derived Fourier series. Lal and Yadav [27] have considered the \((N,p,q)(C,1)\) product means of derived Fourier series. However, no one has studied the degree of approximation of functions in any function space by using single or product means of its derived Fourier series. This fact has also motivated us to pursue a study of the degree of approximation of a function in a generalized Zygmund class by the matrix-Cesàro \((TC^{\delta })\) method of its derived Fourier series. Therefore, in this paper, we also establish a theorem on the best error approximation of a function in the generalized Zygmund class \(X_{z}^{(\eta )}\) (\(z\ge 1\)) by the matrix-Cesàro \((TC^{\delta })\) product of its derived Fourier series.

It is important to note that we have considered the \(TC^{\delta }\) product operator, which is the most general product operator developed for matrix-Cesàro means.

A separate study of derived Fourier series in the present direction of work is justified, due to its important applications in science and engineering.

In the last six years, investigators [1, 2] were working on the error estimation of a function in the \(X_{z}^{(\eta )}\) (\(z\ge 1\)) space using different summability operators.

In both works [1, 2], the second theorem has been proved by considering \(\frac{\eta (l)}{l\xi (l)}\) as a nonincreasing function l, in addition to the condition that \(\frac{\eta (l)}{\xi (l)}\) is nondecreasing, which was considered in their first theorems.

Since the modulus of continuity η is a subadditive function, \(\frac{\eta (l)}{l}\) is a nonincreasing function of l, and the second theorem in each of the above works follows from the first theorem without any additional condition.

Let \(\sum_{j=0}^{\infty }d_{j}\) be an infinite series having jth partial sum \(s_{j}=\sum_{\nu =0}^{j}d_{\nu }\). Under usual assumptions on the function g, the Fourier series of g is given by

$$ g(y) := \frac{1}{2}a_{0} + \sum_{j=1}^{\infty }(a_{j} \cos jy + b_{j} \sin jy) $$
(1)

with the jth partial sums \(s_{j}(g;y)\), and the conjugate Fourier series of g is given by

$$ \tilde{s}(g;y):=\sum_{j=1}^{\infty }(a_{j} \sin jy-b_{j}\cos jy). $$
(2)

The series

$$ g^{\prime }(y):=\sum_{j=1}^{\infty }j(b_{j} \cos jy - a_{j}\sin jy), $$
(3)

which is obtained by differentiating (1) term-by-term, is called the first derived Fourier series of \(g(y)\) (Zygmund, [28]).

Let \(T\equiv (a_{j,r} )\) be an infinite triangular matrix satisfying the conditions of regularity [29], i.e.,

$$\begin{aligned} &\sum_{r=0}^{j}a_{j,r} =1\quad \text{as } j\to \infty ; \\ &\text{each } r\ge 0 \text{ is such that}\quad a_{j,r} =0 \quad \text{as }j\to \infty ; \\ &\exists N>0\ \forall j\ge 0 \text{ is such that} \quad \sum _{r=0}^{\infty } \vert a_{j,r} \vert < N. \end{aligned}$$
(4)

The sequence-to-sequence transformation

$$\begin{aligned} t_{j}^{T}&:= \sum_{r=0}^{j}a_{j,r}s_{r} \\ &= \sum_{r=0}^{j}a_{j,j-r}s_{j-r} \end{aligned}$$

defines the sequence \(t_{j}^{T}\) of triangular matrix means of the sequence \(\{ s_{j} \} \), generated by the sequence of coefficients \((a_{j,r})\).

If \(t_{j}^{T}\to s\) as \(j\to \infty \), then the infinite series \(\sum_{j=0}^{\infty }d_{j}\) or the sequence \(\{ s_{j} \} \) is summable to s by the triangular matrix \((T)\) [28].

We write \(A_{j}^{0}=s_{j}=\sum_{v=0}^{j}d_{v}\), \(A_{j}^{\delta }=A_{0}^{\delta -1}+A_{1}^{\delta -1}+\cdots +A_{j}^{ \delta -1}\), and \(E_{j}^{\delta }\) for the value of \(A_{j}^{\delta }\) when \(a_{0}=1\) and \(a_{j}=0\) for \(j>0\), i.e., when \(A_{j}=1\).

If

$$\begin{aligned} C_{j}^{\delta }&=\frac{A_{j}^{\delta }}{E_{j}^{\delta }} \\ &=\frac{1}{E_{j}^{\delta }}\sum_{r=0}^{j}A_{j-r}^{\delta -1} \to s\quad \text{as }j\to \infty, \end{aligned}$$

where \(A_{j}^{\delta }=\sum_{r=0}^{j}\binom{j-r+\delta -1}{\delta -1}\) and \(E_{j}^{\delta }=\binom{j+\delta }{\delta }\), then we say that \(\sum_{j=0}^{\infty }d_{j}\) or the sequence \(\{ s_{j} \} \) is summable to the sum s by \(C^{\delta }\) (the Cesàro means of order δ) [30].

Superimposing the T-method on the \(C^{\delta }\) method, \(TC^{\delta }\) is obtained. That is, the \(TC^{\delta }\) mean of the sequence \(\{ s_{j} \} \) is given by

$$\begin{aligned} t_{j}^{TC^{\delta }} &:=\sum_{r=0}^{j}a_{j,j-r}C_{j}^{\delta } \\ &=\sum_{r=0}^{j}a_{j,j-r} \frac{1}{A_{j}^{\delta }}\sum_{\nu =0}^{j}A_{j- \nu }^{\delta -1}s_{\nu } \\ &=\sum_{r=0}^{j}a_{j,r}\sum _{v=0}^{r} \frac{\binom{r-v+\delta -1}{\delta -1}}{\binom{r+\delta }{\delta }}s_{v}. \end{aligned}$$

If \(t_{j}^{TC^{\delta }}\to s\) as \(j\to \infty \), then \(\{ s_{j} \} \) is summable by the \(TC^{\delta }\) means to the limit s.

Since the T and \(C^{\delta }\) methods are regular, the \(TC^{\delta }\) method is also regular. This can be shown as follows:

$$\begin{aligned} s_{j}\to s \quad \implies \quad & C_{j}^{\delta }\to s, \text{as } j\to \infty , \text{since the } C^{\delta }\text{ method is regular} \\ \implies\quad &T \bigl(C_{j}^{\delta } \bigr)= t_{j}^{T C^{\delta }} \to s, \text{as } j \to \infty , \text{since the } T \text{ method is regular} \\ \implies \quad & \bigl(TC^{\delta } \bigr) \text{ method is regular.} \end{aligned}$$

Remark 1

The \(TC^{\delta }\) means reduces to:

  1. (i)

    \((H, \frac{1}{j+1} )C^{\delta }\) or \(H C^{\delta }\) if \(a_{j,r}=\frac{1}{(j-r+1)\log (j+1)}\);

  2. (ii)

    \((N,p,q)C^{\delta }\) or \(N_{p,q}C^{\delta }\) if \(a_{j,r}=\frac{p_{j-r}q_{r}}{R_{j}}\), \(R_{j}=\sum_{r=0}^{j}p_{r}q_{j-r}\ne 0\), where \(p_{j}\) and \(q_{j}\) have their usual meanings;

  3. (iii)

    \((N,p_{j})C^{\delta }\) or \(N_{p}C^{\delta }\) if \(a_{j,r}=\frac{p_{j-r}}{P_{j}}\), \(P_{j}=\sum_{kr=0}^{j}p_{j}\ne 0\), \(q_{j}=1\) j, where \(p_{j}\) has its usual meaning;

  4. (iv)

    \((\tilde{N}, p_{j})C^{\delta }\) or \(\tilde{N}_{p}C^{\delta }\) if \(a_{j,r}=\frac{p_{r}}{P_{j}}\), \(q_{j}=1\) j, where \(q_{j}\) has its usual meaning;

  5. (v)

    \((E, q)C^{\delta }\) or \(E_{q}C^{\delta }\) if \(a_{j,r}=\frac{1}{(1+q)^{j}}\binom{ j}{ r}q^{j-r}\);

  6. (vi)

    \((E, 1)C^{\delta }\) or \(E_{1}C^{\delta }\) if \(a_{j,r}=\frac{1}{2^{j}}\binom{ j}{ r}\).

Remark 2

In view of Remark 1, \(TC^{\delta }\) (\(\delta =1\)) mean also reduces to \(H C^{1}\), \(N_{p,q}C^{1}\), \(N_{p}C^{1}\), \(\tilde{N}_{p}C^{1} \), \(E_{q} C^{1}\), \(E_{1}C^{1}\) means.

Example 1

Consider the series

$$ 1-10\sum_{v=1}^{j}(-9)^{v-1}. $$
(5)

Then \(\{ s_{j} \} \) of (5) is given by

$$ s_{j}=(-9)^{j}. $$

Take

$$ a_{j,r}=\frac{1}{5^{j}}\binom{j}{r}4^{j-r}. $$

Then

$$\begin{aligned} t_{j}^{T}&=\sum_{r=0}^{n}a_{j,r}=a_{j,0}s_{0}+a_{j,1}s_{1}+\cdots +a_{j,j}s_{j} \\ &=\frac{1}{5^{j}} \biggl[\binom{j}{0}4^{j}\cdot 1- \binom{j}{1}4^{j-1} \cdot 9+\binom{j}{2}4^{j-2} \cdot 9^{2}+\cdots +(-1)^{n}\binom{n}{n}4^{n-n} \cdot 9^{n} \biggr] \\ &=\frac{1}{5^{j}}(4-9)^{j} \\ &=(-1)^{j}. \end{aligned}$$

Here,

$$ (-1)^{j}=\textstyle\begin{cases} 1, & j \text{ is even,} \\ -1, & j \text{ is odd.}\end{cases}$$
(6)

We observe that (5) is not summable by \(C^{1}\) means.

If \(a_{j,r}=\frac{1}{5^{j}}\binom{j}{r}4^{j-r}\), then (5) is also not summable by T means. But (5) is summable by \(TC^{1}\) means as (6) is summable by \(C^{1}\) means. This shows the effectiveness of the product means as compared to single means.

Let \(C_{2\pi }\) denote the Banach space of all 2π-periodic and continuous functions defined on \([0,2\pi ]\) under the supremum norm [28].

The jth order error approximation of a function \(g\in C_{2\pi }\) is defined by \(E_{j}(g):=\inf_{t_{j}} \Vert g-t_{j} \Vert \) where \(t_{j}\) is a trigonometric polynomial of degree j [28].

If \(E_{j}(g)\to 0\) as \(j\to \infty \), the \(E_{j}(g)\) is said to be the best approximation of g [28].

The \(L^{z}\) space is given by

$$ L^{z}[0,2\pi ]:= \biggl\{ g:[0,2\pi ]\mapsto \mathbb{R}: \int _{0}^{2\pi } \bigl\vert g(y) \bigr\vert ^{z}\,dy< \infty , z\ge 1 \biggr\} . $$

The norm \(\Vert \cdot \Vert _{r}\) is defined by

$$ \Vert g \Vert _{z}:= \textstyle\begin{cases} \{ \frac{1}{2\pi }\int _{0}^{2\pi } \vert g(y) \vert ^{z}\,dy \} ^{ \frac{1}{z}} & \text{for } 1\le z< \infty , \\ \operatorname{ess}\sup_{0< y< 2\pi } \vert g(y) \vert & \text{for } z=\infty .\end{cases}$$

Let \(\eta : [0,2\pi ]\mapsto \mathbb{R}\) be an arbitrary function with \(\eta (l)>0\) for \(0< l\le 2\pi \) and \(\lim_{l\to 0^{+}}\eta (l)=\eta (0)=0\). We define

$$ X_{z}^{(\eta )}:= \biggl\{ g\in L^{z}[0,2\pi ]:1\le z< \infty , \sup_{l \ne 0} \frac{ \Vert g(\cdot +l)+g(\cdot -l)-2g(\cdot ) \Vert _{z}}{\eta (l)}< \infty \biggr\} $$

and

$$ \Vert g \Vert _{z}^{(\eta )}:= \Vert g \Vert _{z}+\sup_{l\ne 0} \frac{ \Vert g(\cdot +l)+g(\cdot -l)-2g(\cdot ) \Vert _{z}}{\eta (l)}, \quad z\ge 1. $$

Clearly, \(\Vert \cdot \Vert _{z}^{(\eta )}\) is a norm on \(X_{z}^{(\eta )}\).

Hence the Zygmund space \((X_{z}^{(\eta )})\) is a Banach space under the norm \(\Vert \cdot \Vert _{z}^{(\eta )}\). The completeness of \(L^{z}(z\ge 1)\) implies the completeness of the space [28]. One can also refer to the papers [31, 32] for more details on the Zygmund space.

Remark 3

Throughout the paper, η and ξ denote the second order moduli of continuity such that \(\frac{\eta (l)}{\xi (l)}\) is positive and nondecreasing in l. Then

$$ \Vert g \Vert _{z}^{(\xi )}\le \max \biggl(1, \frac{\eta (2\pi )}{\xi (2\pi )} \biggr) \Vert g \Vert _{z}^{(\eta )}< \infty . $$

Thus,

$$ X_{z}^{(\eta )}\subset X_{z}^{(\xi )}\subset L^{z},\quad z\ge 1 $$

(Zygmund, [28]).

Remark 4

Necessary and sufficient conditions for a function to be a modulus of continuity of the first order were pointed out by Lebesgue [33] and Nikol’skii [34]. Any modulus of continuity of the first order, \(\eta = \eta (g, \cdot )\), satisfies the following conditions:

  1. (i)

    \(\eta (0)=0\);

  2. (ii)

    the function η is continuous on \([ 0, +\infty )\);

  3. (iii)

    the function η is nondecreasing on \([ 0, +\infty )\);

  4. (iv)

    the function η is semiadditive, i.e., the inequality \(\eta (l_{1}+l_{2})\le \eta (l_{1})+\eta (l_{2})\) holds for any \(l_{1}\ge 0\) and \(l_{2}\ge 0\).

    Conversely, if a function η satisfies \((i)\)\((\mathit{iv})\), then it is the first-order modulus of continuity of the function \(g(y)=\eta ( \vert y \vert )\). Moreover, it can be easily seen that η is the second order modulus of continuity of the function \(g(y)=\frac{\eta ( \vert y \vert )}{2}\). If a function η satisfies conditions \((i)\)\((\mathit{iii})\) and the function \(\frac{\eta (l)}{l}\) is nonincreasing on \((0, +\infty )\), then the semiadditivity condition \((\mathit{iv})\) also holds, and so η is the modulus of continuity of the first and second order for some continuous functions.

    The second order modulus of continuity satisfies conditions \((i)\)\((\mathit{iii})\) and a further condition, given as follows:

  5. (v)

    the inequality \(\eta (jl)\le j^{2}\eta (l)\) holds for any \(l\ge 0\) and \(j\in \mathbb{N}\).

    Geit [35] constructed a wide class of functions that are second-order moduli of continuity of 2π-periodic functions. It can be easily shown that condition \((v)\) for nonnegative functions follows from the following condition:

  6. (vi)

    the function \(\frac{\eta (l)}{l^{2}}\) is nonincreasing on \((0, +\infty )\).

Note 1

Readers may refer to the paper of Konyagin [36] in support of Remark 4. Readers may also refer to the paper of Weiss and Zygmund [37], which dealt with conditions on the second-order modulus of smoothness, sufficient to force absolute continuity of a function. The technique employed in [37] is nearly identical to that of [38].

Remark 5

Therefore, in view of Remark 4 and Note 1, we drop the second theorem established in the papers [1, 2], etc., where the condition that \(\frac{\eta (l)}{l\xi (l)}\) is a nonincreasing function of l, in addition to the condition of their first theorem, is used.

Remark 6

  1. (i)

    If we take \(\eta (l)=l^{\alpha }\) then \(X^{(\eta )}\) reduces to the \(X_{\alpha }\) class.

  2. (ii)

    By taking \(\eta (l)=l^{\alpha }\), \(X_{z}^{(\eta )}\) reduces to the \(X_{\alpha ,z}\) class.

  3. (iii)

    If \(z\to \infty \) then the \(X_{z}^{(\eta )}\) class reduces to the \(X^{(\eta )}\) class.

  4. (iv)

    If we take \(z\to \infty \) then the \(X_{z}^{(\eta )}\) class becomes the \(X_{\alpha ,z}\) class.

  5. (v)

    Let \(0\le \beta <\alpha <1\). If \(\eta (l)=l^{\alpha }\) and \(\xi (l)=l^{\alpha }\), then \(\frac{\eta (l)}{\xi (l)}\) is nondecreasing, while \(\frac{\eta (l)}{l\xi (l)}\) is a nonincreasing function of l.

We write

$$\begin{aligned}& \phi (y,l) =g(y+l)+g(y-l)-2g(y) , \\& h(y,l) =g(y+l)-g(y-l)-2lg^{\prime }(y) , \\& \Phi (y,l) = \int _{0}^{l} \bigl\vert \phi (u) \bigr\vert \,du , \\& H(y,l) = \int _{0}^{l} \bigl\vert \,dh(u) \bigr\vert , \\& \Delta a_{j,r} = a_{j,r}-a_{j,r+1}, \quad 0\le r\le j-1 , \\& K_{j}^{T C^{\delta }}(l) =\frac{1}{2\pi }\sum _{r=0}^{j}a_{j,j-r}\sum _{v=0}^{r}\frac{\binom{v+\delta -1}{\delta -1}}{\binom{\delta +r}{r}} \frac{\sin (v+\frac{1}{2} )l}{\sin \frac{l}{2}}. \end{aligned}$$

Theorems

Theorem 2.1

If g is a 2π-periodic function belonging to the class \(X_{z}^{(\eta )}\), \(z\ge 1\), then the best error estimate of g by the \(TC^{\delta }\) method of its F.S. is given by

$$ \bigl\Vert t_{j}^{TC^{\delta }}-g \bigr\Vert _{z}^{(\xi )}= \mathit{O} \biggl( \frac{1+\log \pi (j+1)}{\log \pi (j+1)} \int _{\frac{1}{j+1}}^{\pi } \frac{\eta (l)}{l\xi (l)}\,dl \biggr), $$

where \(\eta (l)\) and \(\xi (l)\) are as defined in Remark 3, provided

$$ \sum_{r=0}^{j-1} \vert \Delta a_{j,r} \vert = \mathit{O} \biggl( \frac{1}{j+1} \biggr) \quad \textit{and} \quad (j+1) a_{j,j}=\mathit{O}(1). $$

Theorem 2.2

If \(g^{\prime }\) is a 2π-periodic function belonging to the class \(X_{z}^{(\eta )}\), then the best error estimate of \(g^{\prime }\) by the \(T C^{\delta }\) method of its D.F.S. is given by

$$ \bigl\Vert t_{j}^{TC^{\delta }}-g^{\prime } \bigr\Vert _{z}^{(\xi )}=\mathit{O} \biggl((j+1)\frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )}\int _{0}^{\pi }\,dh(l) \biggr), $$

where \(\eta (l)\) and \(\xi (l)\) are as defined in Remark 3, provided

$$ \sum_{r=0}^{j-1} \vert \Delta a_{j,r} \vert = \mathit{O} \biggl( \frac{1}{j+1} \biggr) \quad \textit{and} \quad (j+1) a_{j,j}=\mathit{O}(1). $$

Lemmas

Lemma 3.1

Under the conditions of regularity of matrix \(T\equiv (a_{j,r})\) for \(0< l<\frac{1}{j+1}\),

$$ K_{j}^{T C^{\delta }}(l)=\mathit{O}(j+1). $$

Proof

For \(0< l<\frac{1}{j+1}\), \(\sin \frac{l}{2}\ge \frac{l}{\pi }\), \(\sin (jl)\le jl\) and \(\delta >1\), we get

$$\begin{aligned} K_{j}^{T C^{\delta }}(l)&=\frac{1}{2\pi }\sum _{r=0}^{j}a_{j,j-r} \Biggl\{ \sum _{v=0}^{r} \frac{\binom{v+\delta -1}{\delta -1}}{\binom{\delta +r}{r}} \frac{\sin (v+\frac{1}{2} )l}{\sin \frac{l}{2}} \Biggr\} \\ &\leq \frac{1}{2\pi }\sum_{r=0}^{j}a_{j,j-r} \Biggl\{ \sum_{v=0}^{r} \frac{(v+\delta -1)!}{(\delta -1)! v!} \frac{\delta !r!}{(\delta +r)!} \frac{(2v+1)\frac{l}{2}}{\frac{l}{\pi }} \Biggr\} \\ &=\frac{1}{4}\sum_{r=0}^{j}a_{j,nj-r} \Biggl\{ \sum_{v=0}^{r} \frac{(v+\delta -1)!}{(\delta -1)!v!} \frac{\delta !r!}{(\delta +r)!}{(2v+1)} \Biggr\} \\ &=\frac{1}{4}\sum_{r=0}^{j}a_{j,j-r} \Biggl[ \frac{r!}{(\delta +1)\cdots (\delta +r)\delta !}\sum_{v=0}^{r} \frac{(2v+1)(v+\delta -1)!\delta !}{v!} \Biggr] \\ &=\frac{1}{4}\sum_{r=0}^{j}a_{j,j-r} \Biggl[ \frac{r!}{(\delta +1)\cdots (\delta +r)}\sum_{v=0}^{r} \frac{(2v+1)\delta (\delta +1)\cdots (\delta +v-1)}{v!} \Biggr] \\ &=\frac{1}{4}\sum_{r=0}^{j}a_{j,j-r} \biggl[ \frac{r!}{(\delta +1)\cdots (\delta +r)} \biggl\{ 1+3\delta +\cdots + \frac{(2r+1)\delta (\delta +1)\cdots (\delta +r-1)}{r!} \biggr\} \biggr] \\ &\le \frac{1}{4}\sum_{r=0}^{j}a_{j,j-r} \biggl[ \frac{r!}{(\delta +1)\cdots (\delta +r)} \biggl\{ (r+1) \frac{(2r+1)\delta (\delta +1)\cdots (\delta +r-1)}{r!} \biggr\} \biggr] \\ &=\frac{1}{4}\sum_{r=0}^{j}a_{j,j-r} \biggl[ \frac{(r+1)(2r+1)\delta }{(\delta +r)} \biggr] \\ &\le \frac{1}{4}\sum_{r=0}^{n}a_{j,j-r}(2r+1) \delta \\ &=\frac{1}{4}(2j+1)\delta \sum_{r=0}^{j}a_{j,j-r} \\ &=\mathit{O}(j+1)\quad \text{since } \sum_{r=0}^{j}a_{j,j-r}=1 \\ &=\mathit{O}(j+1). \end{aligned}$$

 □

Lemma 3.2

Under the conditions of regularity of matrix \(T\equiv (a_{j,r})\) for \(\frac{1}{j+1}\le l\le \pi \),

$$ K_{j}^{TC^{\delta }}=\mathit{O} \biggl(\frac{1}{l} \biggr). $$

Proof

For \(\frac{1}{j+1}\le l\le \pi \), by applying Jordan’s lemma and the facts that \(\sin \frac{l}{2}\ge \frac{l}{\pi }\), \(\sin jl\le 1\), we get

$$\begin{aligned} K_{j}^{T C^{\delta }}(l)&=\frac{1}{2\pi }\sum _{r=0}^{j}a_{j,j-r} \Biggl\{ \sum _{v=0}^{r} \frac{\binom{v+\delta -1}{\delta -1}}{\binom{r+\delta }{\delta }} \frac{\sin (v+\frac{1}{2} )l}{\sin \frac{l}{2}} \Biggr\} \\ &\le \frac{1}{2\pi }\sum_{r=0}^{j}a_{j,j-r} \Biggl\{ \sum_{v=0}^{r} \frac{\binom{v+\delta -1}{\delta -1}}{\binom{r+\delta }{\delta }} \frac{1}{\frac{l}{\pi }} \Biggr\} \\ &=\frac{1}{2l}\sum_{r=0}^{j}a_{j,j-r} \Biggl\{ \sum_{v=0}^{r} \frac{\binom{v+\delta -1}{\delta -1}}{\binom{r+\delta }{\delta }} \Biggr\} \\ &=\frac{1}{2l}\sum_{r=0}^{j}a_{j,j-r} \sum_{v=0}^{r} \frac{(v+\delta -1)!}{v!(\delta -1)!}\times \frac{\delta !r!}{(\delta +r)!} \\ &=\frac{1}{2l}\sum_{r=0}^{j}a_{j,j-r} \frac{r!}{(\delta +1)\cdots (\delta +r)\delta !}\sum_{v=0}^{r} \frac{(v+\delta -1)!\delta }{v!} \\ &=\frac{1}{2l}\sum_{r=0}^{j}a_{j,j-r} \frac{r!}{(\delta +1)\cdots (\delta +r)}\sum_{v=0}^{r} \frac{\delta (\delta +1)\cdots (\delta +v-1)}{v!} \\ &=\frac{1}{2l}\sum_{r=0}^{j}a_{j,j-r} \frac{r!}{(\delta +1)\cdots (\delta +r)} \biggl[1+\delta + \frac{\delta (\delta +1)}{2!}+\cdots + \frac{\delta (\delta +1)\cdots (\delta +r-1)}{r!} \biggr] \\ &\le \frac{1}{2l}\sum_{r=0}^{j}a_{j,j-r} \frac{r!}{(\delta +1)\cdots (\delta +r)} \biggl[(r+1)\times \frac{\delta (\delta +1)\cdots (\delta +r-1)}{r!} \biggr] \\ &=\frac{1}{2l}\sum_{r=0}^{j}a_{j,j-r} \frac{(r+1)\delta }{(\delta +r)} \\ &\le \mathit{O} \biggl(\frac{1}{l} \biggr)\sum _{r=0}^{j}a_{j,j-r} \\ &=\mathit{O} \biggl(\frac{1}{l} \biggr)\quad \text{since } \sum _{r=0}^{j}a_{j,nj-r}=1 \\ &=\mathit{O} \biggl(\frac{1}{l} \biggr). \end{aligned}$$

 □

Lemma 3.3

([2], p. 8)

If \(g\in X_{z}^{(\eta )} \) then for \(0< l\le \pi \),

  1. (i)

    \(\Vert \phi (\cdot ,l) \Vert _{z}=\mathit{O}(\eta (l))\).

  2. (ii)

    If \(\eta (l)\) and \(\xi (l)\) are defined as in Remark 6, then \(\Vert \phi (\cdot +u,l)+\phi (\cdot -u,l)-2\phi (\cdot ,l) \Vert _{z}=\mathit{O} (\xi ( \vert u \vert )\frac{\eta (l)}{\xi (l)} )\).

Lemma 3.4

If \(g^{\prime }\in X_{z}^{\eta }\) then for \(0< l\le \pi \),

  1. (i)

    \(\Vert h(\cdot , l) \Vert _{z}=\mathit{O} (\eta (l) )\).

  2. (ii)

    If \(\eta (l)\) and \(\xi (l)\) are defined as in Remark 6, then \(\Vert h(\cdot +u,l)-h(\cdot -u,l)-2lh(\cdot ,l) \Vert _{z}= \mathit{O} (\xi ( \vert u \vert )\frac{\eta (l)}{\xi (l)} )\).

Proof

(i) We have

$$\begin{aligned} \bigl\vert h(y,l) \bigr\vert &= \bigl\vert g(y+l)-g(y-l)-2lh^{\prime }(y) \bigr\vert . \end{aligned}$$

Applying Minkowski’s inequality (Zygmund [28]), we have

$$\begin{aligned} \bigl\Vert h(\cdot ,l) \bigr\Vert _{z}&\le \bigl\Vert g(y+l)-g(y-l)-2lg^{\prime }(y) \bigr\Vert _{z} \\ &=\mathit{O} \bigl(\eta (l) \bigr). \end{aligned}$$

 □

Proof

(ii) We have

$$\begin{aligned} \bigl\vert h(y+u,l)-h(y-u,l)-2lh^{\prime }(y,l) \bigr\vert &\le \bigl\vert g(y+u+l)-h(y+u-l)-2lg^{ \prime }(y+u) \bigr\vert \\ &\quad{} + \bigl\vert g(y-u+l)-g(y-u-l)-2lg^{\prime }(y-u) \bigr\vert \\ &\quad{} +2l \bigl\vert g^{\prime }(y+l)-g^{\prime }(y-l)-2lg^{\prime \prime }(y) \bigr\vert . \end{aligned}$$

Applying Minkowski’s inequality (Zygmund [28]), we have

$$\begin{aligned} \bigl\Vert h(\cdot +u,l)-h(\cdot -u,l)-2lh^{\prime }(\cdot ,l) \bigr\Vert _{z}&\le \bigl\Vert g(\cdot +u+l)-g(\cdot +u-l)-2lg^{\prime }(\cdot +u) \bigr\Vert _{z} \\ &\quad{} + \bigl\Vert g(\cdot -u+l)-g(\cdot -u-l)-2lg^{\prime }(\cdot -u) \bigr\Vert _{z} \\ &\quad{} +2l \bigl\Vert g^{\prime }(\cdot +l)-g^{\prime }(\cdot -l)-2lg^{\prime \prime }(\cdot ) \bigr\Vert _{z} \\ &=\mathit{O} \bigl(\eta (l) \bigr). \end{aligned}$$

Also,

$$\begin{aligned} \bigl\Vert h(\cdot +u,l)-h(\cdot -u,l)-2lh^{\prime }(\cdot ,l) \bigr\Vert _{z}&\le \bigl\Vert g(\cdot +l+u)-g(\cdot +l-u)-2lg^{\prime }(\cdot +l) \bigr\Vert _{z} \\ &\quad{} + \bigl\Vert g(\cdot -l+u)-g(\cdot -l-u)-2lg^{\prime }(\cdot -l) \bigr\Vert _{z} \\ &\quad{} +2l \bigl\Vert g^{\prime }(\cdot +u)-g^{\prime }(\cdot -u)-2lg^{\prime \prime }(\cdot ) \bigr\Vert _{z} \\ &=\mathit{O} \bigl(\eta (u) \bigr). \end{aligned}$$

For a positive and nondecreasing function \(\xi (l)\) and for \(l\le \vert u \vert \), we obtain

$$\begin{aligned} \bigl\Vert h(\cdot +u,l)-h(\cdot -u,l)-2lh^{\prime }(\cdot ,l) \bigr\Vert _{z}&= \mathit{O} \bigl(\eta (l) \bigr) \\ &=\mathit{O} \biggl(\xi (l) \biggl(\frac{\eta (l)}{\xi (l)} \biggr) \biggr) \\ &=\mathit{O} \biggl(\xi \bigl( \vert u \vert \bigr) \biggl( \frac{\eta (l)}{\xi (l)} \biggr) \biggr). \end{aligned}$$

For a positive, nondecreasing function \(\frac{\eta (l)}{\xi (l)}\) and for \(l\ge \vert u \vert \), we have

$$ \frac{\eta (l)}{\xi (l)}\ge \frac{\eta ( \vert u \vert )}{\xi ( \vert u \vert )}. $$

Then

$$\begin{aligned} \bigl\Vert h(\cdot +u,l)-h(\cdot -u,l)-2lh^{\prime }(\cdot ,l) \bigr\Vert _{z}&= \mathit{O} \bigl(\eta \bigl( \vert u \vert \bigr) \bigr) \\ &=\mathit{O} \biggl(\eta \bigl( \vert u \vert \bigr) \biggl( \frac{\eta (l)}{\xi (l)} \biggr) \biggr). \end{aligned}$$

 □

Proofs of the main theorems

Proof of Theorem 2.1

Proof

Due to [39], \(s_{r}(g;y)\) of (1) is given by

$$ s_{r}(g;y)-g(y)=\frac{1}{2\pi } \int _{0}^{\pi }\phi (y,l) \frac{\sin (r+\frac{1}{2} )l}{\sin \frac{l}{2}}\,dl, \quad r=0,1,2,\ldots. $$

Then,

$$\begin{aligned}& \sum_{r=0}^{j} \frac{\binom{r+\delta -1}{\delta -1}}{\binom{\delta +j}{\delta }} \bigl[s_{r}(g;y)-g(y) \bigr]=\frac{1}{2\pi } \int _{0}^{\pi }\phi (y,l) \sum _{r=0}^{j} \frac{\binom{r+\delta -1}{\delta -1}}{\binom{\delta +j}{\delta }} \frac{\sin (r+\frac{1}{2} )l}{\sin \frac{l}{2}}\,dl, \\& C_{j}^{\delta }(y)-g(y)=\frac{1}{2\pi } \int _{0}^{\pi }\phi (y,l)\sum _{r=0}^{j} \frac{\binom{r+\delta -1}{\delta -1}}{\binom{\delta +j}{\delta }} \frac{\sin (r+\frac{1}{2} )l}{\sin \frac{l}{2}}\,dl. \end{aligned}$$

Now,

$$\begin{aligned} t_{j}^{TC^{\delta }}(y)-g(y)&=\sum_{r=0}^{j}a_{j,j-r} \bigl\{ C_{r}^{ \delta }(y)-g(y) \bigr\} \\ &=\frac{1}{2\pi } \int _{0}^{\pi }\phi (y,l)\sum _{r=0}^{j}a_{j,j-r} \sum _{v=0}^{r} \frac{\binom{v+\delta -1}{\delta -1}}{\binom{\delta +r}{\delta }} \frac{\sin (v+\frac{1}{2} )l}{\sin \frac{l}{2}}\,dl \\ &=\frac{1}{2\pi } \int _{0}^{\pi }\phi (y,l)\sum _{r=0}^{j}a_{j,j-r} \sum _{v=0}^{r} \frac{\binom{v+\delta -1}{\delta -1}}{\binom{\delta +r}{\delta }} \frac{\sin (v+\frac{1}{2} )l}{\sin \frac{l}{2}}\,dl \\ &= \int _{0}^{\pi }\phi (y,l) K_{j}^{TC^{\delta }}(l) \,dl. \end{aligned}$$

Let

$$\begin{aligned} T_{j}(y)&=t_{j}^{TC^{\delta }}(y)-g(y) \\ &= \int _{0}^{\pi }\phi (y,l)K_{j}^{TC^{\delta }}(l) \,dl. \end{aligned}$$

Then,

$$ T_{j}(y+u)+T_{j}(y-u)-2T_{j}(y)= \int _{0}^{\pi } \bigl\{ \phi (y+u,l)+ \phi (y-u,l)-2 \phi (y,u) \bigr\} K_{j}^{TC^{\delta }}(l)\,dl. $$

Using the GMI [40], we get

$$\begin{aligned} \bigl\Vert T_{j}(\cdot +u)+T_{j}(\cdot -u)-2T_{j}(\cdot ) \bigr\Vert _{z}&\le \int _{0}^{\pi } \bigl\Vert \phi (\cdot +u,l)+\phi ( \cdot -u,l)-2\phi ( \cdot , l) \bigr\Vert _{z} \bigl\vert K_{j}^{T C^{\delta }}(l) \bigr\vert \,dl \\ &= \int _{0}^{\frac{1}{j+1}} \bigl\Vert \phi (\cdot +u, l)+\phi ( \cdot -u, l)-2 \phi (\cdot ,l) \bigr\Vert _{z} \bigl\vert K_{j}^{T C^{\delta }}(l) \bigr\vert \,dl \\ &\quad{} + \int _{\frac{1}{j+1}}^{\pi } \bigl\Vert \phi (\cdot +u, l) + \phi (\cdot -u, l)-2\phi (\cdot ,l) \bigr\Vert _{z} \bigl\vert K_{j}^{T C^{\delta }}(l) \bigr\vert \,dl \\ &=I_{1}+I_{2}. \end{aligned}$$
(7)

Using Lemmas 3.1 and 3.3 (ii), we obtain

$$\begin{aligned} I_{1}&= \int _{0}^{\frac{1}{j+1}} \bigl\Vert \phi (\cdot +u,l)+\phi ( \cdot -u,l)-2 \phi (\cdot ,l) \bigr\Vert _{z} \bigl\vert K_{j}^{T C^{\delta }}(l) \bigr\vert \,dl \\ &=\mathit{O} \biggl( \int _{0}^{\frac{1}{j+1}}\xi \bigl( \vert u \vert \bigr) \frac{\eta (l)}{\xi (l)}(j+1)\,dl \biggr) \\ &=\mathit{O} \biggl((j+1)\xi \bigl( \vert u \vert \bigr) \int _{0}^{\frac{1}{j+1}} \frac{\eta (l)}{\xi (l)}\,dl \biggr) \\ &=\mathit{O} \biggl((j+1)\xi \bigl( \vert u \vert \bigr) \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )} \int _{0}^{\frac{1}{j+1}}\,dl \biggr) \\ &=\mathit{O} \biggl(\xi \bigl( \vert u \vert \bigr) \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )} \biggr) . \end{aligned}$$
(8)

Using Lemmas 3.2 and 3.3 (ii), we obtain

$$\begin{aligned} I_{2}&= \int _{\frac{1}{j+1}}^{\pi } \bigl\Vert \phi (\cdot +u,l)+\phi ( \cdot -u,l)-2\phi (\cdot , l) \bigr\Vert _{z} \bigl\vert K_{j}^{T C^{\delta }}(l) \bigr\vert \,dl \\ &=\mathit{O} \biggl( \int _{\frac{1}{j+1}}^{\pi }\xi \bigl( \vert u \vert \bigr) \frac{\eta (l)}{\xi (l)}\frac{1}{l}\,dl \biggr) \\ &=\mathit{O} \biggl( \int _{\frac{1}{j+1}}^{\pi }\xi \bigl( \vert u \vert \bigr) \frac{\eta (l)}{l\xi (l)}\,dl \biggr) . \end{aligned}$$
(9)

By (7), (8), and (9), we have

$$\begin{aligned} \bigl\Vert T_{j}(\cdot +u)+T_{j}(\cdot -u)-2T_{j}(\cdot ) \bigr\Vert _{z}&= \mathit{O} \biggl(\xi \bigl( \vert u \vert \bigr) \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )} \biggr)+\mathit{O} \biggl( \int _{\frac{1}{j+1}}^{\pi }\xi \bigl( \vert u \vert \bigr) \frac{\eta (l)}{l\xi (l)}\,dl \biggr). \end{aligned}$$

Thus,

$$\begin{aligned} \sup_{u\ne 0} \frac{ \Vert T_{j}(\cdot +u) +T_{j}(\cdot -u)-2T_{j}(\cdot ) \Vert _{z}}{\xi ( \vert u \vert )} &= \mathit{O} \biggl( \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )} \biggr)+\mathit{O} \biggl( \int _{\frac{1}{j+1}}^{\pi } \frac{\eta (l)}{l\xi (l)}\,dl \biggr) . \end{aligned}$$
(10)

Using Lemmas 3.1, 3.2, and 3.3 (i), we obtain

$$\begin{aligned} \bigl\Vert T_{j}(\cdot ) \bigr\Vert _{z}&= \bigl\Vert t_{j}^{T C^{\delta }}-g \bigr\Vert _{z} \\ &\le \biggl( \int _{0}^{\frac{1}{j+1}}+ \int _{\frac{1}{j+1}}^{\pi } \biggr) \bigl\Vert \phi (\cdot ,l) \bigr\Vert _{z} \bigl\vert K_{j}^{T C^{\delta }}(l) \bigr\vert \,dl \\ &= \int _{0}^{\frac{1}{j+1}} \bigl\Vert \phi (\cdot ,l) \bigr\Vert _{z} \biggl\vert K_{j}^{T C^{\delta }}(l)\,dl + \int _{\frac{1}{j+1}}^{\pi } \bigl\Vert \phi (\cdot ,l) \bigr\Vert _{z} \biggr\vert K_{j}^{T C^{\delta }}(l)\,dl \\ &=\mathit{O} \biggl((j+1) \int _{0}^{\frac{1}{j+1}}\eta (l)\,dl \biggr)+ \mathit{O} \biggl( \int _{\frac{1}{j+1}}^{\pi }\frac{\eta (l)}{l}\,dl \biggr) \\ &=\mathit{O} \biggl(\eta \biggl(\frac{1}{j+1} \biggr) \biggr)+ \mathit{O} \biggl( \int _{\frac{1}{j+1}}^{\pi }\frac{\eta (l)}{l}\,dl \biggr) . \end{aligned}$$
(11)

We know that

$$ \bigl\Vert T_{j}(\cdot ) \bigr\Vert _{z}^{(\xi )}= \bigl\Vert T_{j}(\cdot ) \bigr\Vert _{z}+ \sup _{u\ne 0} \frac{ \Vert T_{j}(\cdot +u)+T_{j}(\cdot -u)-2T_{j}(\cdot ) \Vert _{z}}{\xi ( \vert u \vert )}. $$

Now, by (10) and (11), we have

$$ \bigl\Vert T_{j}(\cdot ) \bigr\Vert _{z}^{(\xi )} =\mathit{O} \biggl(\eta \biggl( \frac{1}{j+1} \biggr) \biggr)+\mathit{O} \biggl( \int _{\frac{1}{j+1}}^{ \pi }\frac{\eta (l)}{l}\,dl \biggr)+ \mathit{O} \biggl( \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )} \biggr)+\mathit{O} \biggl( \int _{\frac{1}{j+1}}^{\pi } \frac{\eta (l)}{l\xi (l)}\,dl \biggr). $$

Due to the monotonicity of the function \(\xi (l)\),

$$ \eta (l)=\frac{\eta (l)}{\xi (l)}\xi (l)\le \xi (\pi ) \frac{\eta (l)}{\xi (l)}=\mathit{O} \biggl(\frac{\eta (l)}{\xi (l)} \biggr)\quad \text{for } 0< l\le \pi . $$

Hence

$$ \mathit{O} \biggl(\eta \biggl(\frac{1}{j+1} \biggr) \biggr)=\mathit{O} \biggl( \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )} \biggr)\quad \text{for } l=\frac{1}{j+1}. $$

Again, due to the monotonicity of the function \(\xi (l)\),

$$ \int _{\frac{1}{j+1}}^{\pi }\frac{\eta (l)}{l\xi (l)}\xi (l)\,dl \le \xi ( \pi ) \int _{\frac{1}{j+1}}^{\pi }\frac{\eta (l)}{l\xi (l)}\,dl= \mathit{O} \biggl( \int _{\frac{1}{j+1}}^{\pi }\frac{\eta (l)}{l\xi (l)}\,dl \biggr). $$

Thus

$$ \bigl\Vert T_{j}(\cdot ) \bigr\Vert _{z}^{(\xi )}= \mathit{O} \biggl( \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )} \biggr)+\mathit{O} \biggl( \int _{\frac{1}{j+1}}^{\pi } \frac{\eta (l)}{l\xi (l)}\,dl \biggr) . $$
(12)

Using Remark 3, we have

$$ \int _{\frac{1}{j+1}}^{\pi }\frac{\eta (l)}{l\xi (l)}\,dl\ge \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )} \int _{\frac{1}{j+1}}^{\pi }\frac{dl}{l}\ge \log \pi (j+1) \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )}, $$

which gives

$$ \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )}= \mathit{O} \biggl[ \frac{\int _{\frac{1}{j+1}}^{\pi }\frac{\eta (l)}{l\xi (l)}\,dl}{\log \pi (j+1)} \biggr]. $$
(13)

By (12) and (13), we have

$$ \bigl\Vert T_{j}(\cdot ) \bigr\Vert _{z}^{(\xi )}= \mathit{O} \biggl[ \frac{\int _{\frac{1}{j+1}}^{\pi }\frac{\eta (l)}{l\xi (l)}\,dl}{\log \pi (j+1)} \biggr]+\mathit{O} \biggl( \int _{\frac{1}{j+1}}^{\pi } \frac{\eta (l)}{l\xi (l)}\,dl \biggr). $$

Thus,

$$ \bigl\Vert t_{j}^{T C^{\delta }}-g \bigr\Vert _{z}^{(\xi )}=\mathit{O} \biggl[ \frac{1+\log \pi (j+1)}{\log \pi (j+1)} \biggl\{ \int _{\frac{1}{j+1}}^{ \pi }\frac{\eta (l)}{l\xi (l)}\,dl \biggr\} \biggr]. $$
(14)

 □

Proof of Theorem 2.2

Proof

Let \(s_{r}(y)\) denote the rth partial sum of the Fourier series (1) given by

$$ s_{r}(g;y)=\frac{1}{2}a_{0}+\sum _{m=1}^{\infty }(a_{m}\cos my+b_{m} \sin my). $$

This partial sum can be represented as a definite integral. We have

$$\begin{aligned} s_{r}(g;y)&=\frac{1}{2\pi } \int _{0}^{2\pi }g(u)\,d u \\ &\quad{} +\frac{1}{\pi }\sum _{m=1}^{r} \biggl\{ \cos my \int _{0}^{2\pi }g(u)\cos mu \,du +\sin my \int _{0}^{2 \pi }g(u)\sin mu \,du \biggr\} \\ &=\frac{1}{2\pi } \int _{0}^{2\pi } \Biggl\{ \frac{1}{2}+\sum _{m=1}^{r} \cos m(y-u) \Biggr\} g(u)\,du \\ &=\frac{1}{2\pi } \int _{0}^{2\pi } \frac{\sin (r+\frac{1}{2} )(y-u)}{\sin \frac{1}{2}(y-u)}g(u)\,du. \end{aligned}$$

Putting \(u=y+l\), this becomes

$$ s_{r}(g;y)=\frac{1}{2\pi } \int _{-y}^{2\pi -y} \frac{\sin (r+\frac{1}{2} )l}{\sin \frac{l}{2}}f(y+l)\,dl, $$

since the integrand has the period 2π, and so takes the same values in \((2\pi -y, 2\pi )\) as in \((-y,0)\).

$$ s_{r}(g;y)=\frac{1}{2\pi } \int _{0}^{2\pi } \frac{\sin (r+\frac{1}{2} )l}{\sin \frac{l}{2}}f(y+l)\,dl, $$

which may also be written in the form

$$ s_{r}(g; y)=\frac{1}{2\pi } \int _{0}^{\pi } \frac{\sin (r+\frac{1}{2} )l}{\sin \frac{l}{2}} \bigl\{ g(y+l)+g(y-l) \bigr\} \,dl. $$

Denoting by \(s_{r}(y)\) the sum of first r-terms of the derived Fourier series (3), we get

$$\begin{aligned}& s^{\prime }_{r}(g;y)=\frac{1}{2\pi } \int _{0}^{\pi } \bigl\{ g(y+l)+g(y-l) \bigr\} \biggl\{ \frac{d}{dl} \frac{\sin (r+\frac{1}{2} )l}{\sin \frac{l}{2}} \biggr\} \\& \begin{aligned} \quad \implies s^{\prime }_{r}(g;y)&=\frac{1}{2\pi } \int _{0}^{\pi } \frac{\sin (r+\frac{1}{2} )l}{\sin \frac{l}{2}} \,d \bigl\{ g(y+l)-g(y-l) \bigr\} \\ &=\frac{1}{2\pi } \int _{0}^{\pi } \frac{\sin (r+\frac{1}{2} )l}{\sin \frac{l}{2}} \,dh(l)+g^{ \prime }(y). \end{aligned} \end{aligned}$$
(15)

Hence

$$ s^{\prime }_{r}(y)-g^{\prime }(y)= \frac{1}{2\pi } \int _{0}^{\pi } \frac{\sin (r+\frac{1}{2} )l}{\sin \frac{l}{2}}\,dh(l). $$
(16)

Then

$$\begin{aligned}& \sum_{r=0}^{j} \frac{\binom{r+\delta -1}{\delta -1}}{\binom{\delta +j}{\delta }} \bigl[s^{\prime }_{r}(g;y)-g^{\prime }(y) \bigr]= \frac{1}{2\pi } \int _{0}^{ \pi }h(y,l)\sum _{r=0}^{j} \frac{\binom{r+\delta -1}{\delta -1}}{\binom{\delta +j}{\delta }} \frac{\sin (r+\frac{1}{2} )l}{\sin \frac{l}{2}} \,dh(l), \\& C_{j}^{\delta }(y)-g^{\prime }(y)=\frac{1}{2\pi } \int _{0}^{\pi }h(y,l) \sum _{r=0}^{j} \frac{\binom{r+\delta -1}{\delta -1}}{\binom{\delta +j}{\delta }} \frac{\sin (r+\frac{1}{2} )l}{\sin \frac{l}{2}} \,dh(l). \end{aligned}$$

Now,

$$\begin{aligned} t_{j}^{T C^{\delta }}(y)-g^{\prime }(y)&=\sum _{r=0}^{j}a_{j,j-r} \bigl\{ C_{r}^{\delta }(y)-g^{\prime }(y) \bigr\} \\ &=\frac{1}{2\pi } \int _{0}^{\pi }h(y,l)\sum _{r=0}^{j}a_{j,j-r}\sum _{v=0}^{r} \frac{\binom{v+\delta -1}{\delta -1}}{\binom{r+\delta }{\delta }} \frac{\sin (v+\frac{1}{2} )l}{\sin \frac{l}{2}} \,dh(l). \end{aligned}$$

Let

$$ T^{\prime }_{j}(y)=t_{j}^{T C^{\delta }}(y)-g^{\prime }(y). $$

Then

$$ T_{j}^{\prime }(y+u)+T_{j}^{\prime }(y-u)-2lT_{j}^{\prime }(y)= \int _{0}^{ \pi } \bigl(h(y+u,l)+h(y-u,l)-2lh^{\prime }(y,l) \bigr)K_{j}^{T C^{ \delta }}(l)\,dh(l). $$

Using the GMI [40],

$$\begin{aligned} & \bigl\Vert T_{j}^{\prime }(\cdot + u)+T^{\prime }_{j}( \cdot - u)-2lT^{\prime }_{j}(\cdot ) \bigr\Vert _{z} \\ &\quad \le \int _{0}^{\pi } \bigl\Vert h(\cdot + u,l)+h(\cdot - u,l)-2lh( \cdot , l) \bigr\Vert _{z} \bigl\vert K_{j}^{T C^{\delta }}(l) \bigr\vert \,dh(l) \\ &\quad = \int _{0}^{\frac{1}{j+1}} \bigl( \bigl\Vert h(\cdot + u,l)+h( \cdot - u,l)-2lh( \cdot ,l) \bigr\Vert _{z} \bigl\vert K_{j}^{T C^{\delta }}(l) \bigr\vert \bigr)\,dh(l) \\ &\quad \quad {} + \int _{\frac{1}{j+1}}^{\pi } \bigl( \bigl\Vert h(\cdot + u,l)+h( \cdot - u,l)-2lh( \cdot ,l) \bigr\Vert _{z} \bigl\vert K_{j}^{T C^{\delta }}(l) \bigr\vert \bigr)\,dh(l) \\ &\quad =I_{3}+I_{4} . \end{aligned}$$
(17)

Using Lemmas 3.1 and 3.4 (ii), we obtain

$$\begin{aligned} I_{3}&= \int _{0}^{\frac{1}{j+1}} \bigl\Vert h(\cdot +u,l)+h(\cdot -u,l)-2lh( \cdot ,l) \bigr\Vert _{z} \bigl\vert K_{j}^{T C^{\delta }}(l) \bigr\vert \,dh(l) \\ &=\mathit{O} \biggl( \int _{0}^{\frac{1}{j+1}}\xi \bigl( \vert u \vert \bigr) \frac{\eta (l)}{\xi (l)}(j+1)\,dh(l) \biggr) \\ &=\mathit{O} \biggl((j+1)\xi \bigl( \vert u \vert \bigr) \int _{0}^{\frac{1}{j+1}} \frac{\eta (l)}{\xi (l)}\,dh(l) \biggr) \\ &=\mathit{O} \biggl((j+1)\xi \bigl( \vert u \vert \bigr) \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )} \int _{0}^{\frac{1}{j+1}}\,dh(l) \biggr) . \end{aligned}$$
(18)

Now, using Lemmas 3.2 and 3.4 (ii), we get

$$\begin{aligned} I_{4}&= \int _{\frac{1}{j+1}}^{\pi } \bigl\Vert h(\cdot +u,l)+h(\cdot -u,l)-2lh( \cdot , l) \bigr\Vert _{z} \bigl\vert K_{j}^{T C^{\delta }}(l) \bigr\vert \,dh(l) \\ &=\mathit{O} \biggl( \int _{\frac{1}{j+1}}^{\pi }\xi \bigl( \vert u \vert \bigr) \frac{\eta (l)}{\xi (l)}\frac{1}{l}\,dh(l) \biggr) \\ &=\mathit{O} \biggl( \int _{\frac{1}{j+1}}^{\pi }\xi \bigl( \vert u \vert \bigr) \frac{\eta (l)}{l\xi (l)}\,dh(l) \biggr) . \end{aligned}$$
(19)

By (17), (18), and (19), we have

$$ \begin{aligned}[b] & \bigl\Vert T^{\prime }_{j}(\cdot + u)+T^{\prime }_{j}( \cdot - u)-2lT^{\prime }_{j}( \cdot ) \bigr\Vert _{z} \\ &\quad = \mathit{O} \biggl((j+1)\xi \bigl( \vert u \vert \bigr) \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )} \biggr) \int _{0}^{\frac{1}{j+1}}\,dh(l)+\mathit{O} \biggl( \int _{ \frac{1}{j+1}}^{\pi }\xi \bigl( \vert u \vert \bigr) \frac{\eta (l)}{l\xi (l)}\,dh(l) \biggr) . \end{aligned} $$
(20)

Thus,

$$ \begin{aligned}[b] & \sup_{u\ne 0} \frac{ \Vert T^{\prime }_{j}(\cdot +u)+T^{\prime }_{j}(\cdot -u)-2lT^{\prime }_{j}(\cdot ) \Vert _{z}}{\xi ( \vert u \vert )} \\ &\quad = \mathit{O} \biggl((j+1) \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )} \biggr) \int _{0}^{\frac{1}{j+1}}\,dh(l)+\mathit{O} \biggl( \int _{ \frac{1}{j+1}}^{\pi }\frac{\eta (l)}{l\xi (l)}\,dh(l) \biggr) . \end{aligned} $$
(21)

Using Lemmas 3.1, 3.2, and 3.4 (i), we obtain

$$\begin{aligned} \bigl\Vert T^{\prime }_{j}(\cdot ) \bigr\Vert _{z}&= \bigl\Vert t_{j}^{T C^{\delta }}-g^{ \prime } \bigr\Vert _{z} \\ &\le \biggl( \int _{0}^{\frac{1}{j+1}}+ \int _{\frac{1}{j+1}}^{\pi } \biggr) \bigl\Vert h(\cdot ,l) \bigr\Vert _{z} \bigl\vert K_{j}^{T C^{\delta }}(l) \bigr\vert \,dh(l) \\ &= \int _{0}^{\frac{1}{j+1}} \bigl\Vert h(\cdot ,l) \bigr\Vert _{z} \biggl\vert K_{j}^{T C^{ \delta }}(l)\,dh(l) + \int _{\frac{1}{j+1}}^{\pi } \bigl\Vert h(\cdot ,l) \bigr\Vert _{z} \biggr\vert K_{j}^{T C^{\delta }}(l)\,dh(l) \\ &=\mathit{O} \biggl((j+1) \int _{0}^{\frac{1}{j+1}}\eta (l)\,dh(l) \biggr)+\mathit{O} \biggl( \int _{\frac{1}{j+1}}^{\pi } \frac{\eta (l)}{l}\,dh(l) \biggr) \\ &=\mathit{O} \biggl((j+1)\eta \biggl(\frac{1}{j+1} \biggr) \int _{0}^{ \frac{1}{j+1}}\,dh(l) \biggr)+\mathit{O} \biggl( \int _{\frac{1}{j+1}}^{ \pi }\frac{\eta (l)}{l}\,dh(l) \biggr) . \end{aligned}$$
(22)

By (21) and (22), we know that

$$\begin{aligned}& \bigl\Vert T^{\prime }_{j}(\cdot ) \bigr\Vert _{z}^{(\xi )}= \bigl\Vert T^{\prime }_{j}( \cdot ) \bigr\Vert _{z}+\sup_{u\ne 0} \frac{ \Vert T^{\prime }_{j}(\cdot +u)+T^{\prime }_{j}(\cdot -u)-2lT^{\prime }_{j}(\cdot ) \Vert _{z}}{\xi ( \vert u \vert )}, \\& \begin{aligned} \bigl\Vert T^{\prime }_{j}(\cdot ) \bigr\Vert _{z}^{(\xi )}&=\mathit{O} \biggl((j+1) \eta \biggl( \frac{1}{j+1} \biggr) \int _{0}^{\frac{1}{j+1}}\,dh(l) \biggr)+\mathit{O} \biggl( \int _{\frac{1}{j+1}}^{\pi } \frac{\eta (l)}{l}\,dh(l) \biggr) \\ &\quad{} +\mathit{O} \biggl((j+1) \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )} \int _{0}^{\frac{1}{j+1}}\,dh(l) \biggr)+\mathit{O} \biggl( \int _{ \frac{1}{j+1}}^{\pi }\frac{\eta (l)}{l\xi (l)}\,dh(l) \biggr). \end{aligned} \end{aligned}$$

Due to the monotonicity of the function \(\xi (l)\),

$$ \eta (l)=\frac{\eta (l)}{\xi (l)}\xi (l)\le \xi (\pi ) \frac{\eta (l)}{\xi (l)}=\mathit{O} \biggl(\frac{\eta (l)}{\xi (l)} \biggr),\quad 0< l\le \pi . $$

Hence for \(l=\frac{1}{j+1}\),

$$ \eta \biggl(\frac{1}{j+1} \biggr)=\mathit{O} \biggl( \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )} \biggr). $$

Again, due to the monotonicity of the function \(\xi (l)\),

$$ \int _{\frac{1}{j+1}}^{\pi }\frac{\eta (l)}{l\xi (l)}\xi (l)\,dh(l)\le \xi (\pi ) \int _{\frac{1}{j+1}}^{\pi }\frac{\eta (l)}{l\xi (l)}\,dh(l)= \mathit{O} \biggl( \int _{\frac{1}{j+1}}^{\pi }\frac{\eta (l)}{l\xi (l)}\,dh(l) \biggr). $$

Thus,

$$ \bigl\Vert T_{j}^{\prime }(\cdot ) \bigr\Vert _{z}^{(\xi )}=\mathit{O} \biggl((j+1) \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )} \int _{0}^{\frac{1}{j+1}}\,dh(l) \biggr)+\mathit{O} \biggl( \int _{ \frac{1}{j+1}}^{\pi }\frac{\eta (l)}{l\xi (l)}\,dh(l) \biggr). $$
(23)

Using Remark 3 and the second mean value theorem,

$$ \int _{\frac{1}{j+1}}^{\pi }\frac{\eta (l)}{l\xi (l)}\,dh(l)\ge (j+1) \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )} \int _{\frac{1}{j+1}}^{\pi }\,dh(l). $$
(24)

By (23) and (24), we have

$$\begin{aligned} \bigl\Vert t_{j}^{T C^{\delta }}\cdot -g^{\prime } \bigr\Vert _{z}^{(\xi )}&= \mathit{O} \biggl((j+1) \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )} \int _{0}^{\frac{1}{j+1}}\,dh(l) \biggr)+\mathit{O} \biggl((j+1) \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )} \int _{\frac{1}{j+1}}^{\pi }\,dh(l) \biggr) \\ &=\mathit{O} \biggl((j+1) \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )} \int _{0}^{\pi }\,dh(l) \biggr). \end{aligned}$$
(25)

 □

Corollaries

Corollary 6.1

Let \(g\in X_{\alpha ,z}\), \(z\ge 1\), and \(0\le \beta < \alpha \le 1\). Then

$$ E_{j}(g)= \bigl\Vert t_{j}^{T C^{\delta }}-g \bigr\Vert _{z}^{(\xi )}\Vert _{( \beta ),z}=\textstyle\begin{cases} \mathit{O} [ \frac{(1+\log \pi (j+1))(j+1)^{\beta -\alpha }}{\log \pi (j+1)} ], & 0\le \beta < \alpha < 1, \\ \mathit{O} [\frac{1+\log \pi (j+1)}{(j+1)\log \pi (j+1)} ], & \beta =0, \alpha =1.\end{cases}$$

Proof

Taking \(\eta (l)=l^{\alpha }\), \(\xi (l)=l^{\beta }\), \(0\le \beta <\alpha <1\) in (14) gives

$$ \bigl\Vert t_{j}^{T C^{\delta }}-g \bigr\Vert _{(\beta ),z}= \mathit{O} \biggl( \frac{1+\log \pi (j+1)}{\log \pi (j+1)} \int _{\frac{1}{j+1}}^{\pi }l^{ \alpha -\beta -1}\,dl \biggr). $$

Now,

$$ \bigl\Vert t_{j}^{T C^{\delta }}-g \bigr\Vert _{(\beta ),z}= \textstyle\begin{cases} \mathit{O} (\frac{1+\log \pi (j+1)}{\log \pi (j+1)}\int _{ \frac{1}{j+1}}^{\pi }l^{\alpha -\beta -1}\,dl ), & 0\le \beta < \alpha < 1, \\ \mathit{O} (\frac{1+\pi \log (j+1)}{\log \pi (j+1)}\int _{ \frac{1}{j+1}}^{\pi }\,dl ), & \beta =0, \alpha =1. \end{cases} $$

Therefore,

$$ \bigl\Vert t_{j}^{T C^{\delta }}-g \bigr\Vert _{z}^{(\xi )} \Vert _{(\beta ),z}= \textstyle\begin{cases} \mathit{O} [ \frac{(1+\log \pi (j+1))(j+1)^{\beta -\alpha }}{\log \pi (j+1)} ],& 0\le \beta < \alpha < 1, \\ \mathit{O} [\frac{1+\log \pi (j+1)}{(j+1)\log \pi (j+1)} ],& \beta =0, \alpha =1. \end{cases} $$

 □

Corollary 6.2

Following Remark 1 (i), we obtain

$$ \bigl\Vert t_{j}^{H C^{\delta }}-g \bigr\Vert _{z}^{(\xi )}= \mathit{O} \biggl( \frac{1+\log \pi (j+1)}{\log \pi (j+1)} \int _{\frac{1}{j+1}}^{\pi } \frac{\eta (l)}{l\xi (l)}\,dl \biggr). $$

Corollary 6.3

Following Remark 1 (ii), we obtain

$$ \bigl\Vert t_{j}^{N_{p,q} C^{\delta }}-g \bigr\Vert _{z}^{(\xi )}= \mathit{O} \biggl(\frac{1+\log \pi (j+1)}{\log \pi (j+1)} \int _{\frac{1}{j+1}}^{\pi } \frac{\eta (l)}{l\xi (l)}\,dl \biggr). $$

Corollary 6.4

Following Remark 1 (iii), we obtain

$$ \bigl\Vert t_{j}^{N_{p} C^{\delta }}-g \bigr\Vert _{z}^{(\xi )}= \mathit{O} \biggl( \frac{1+\log \pi (j+1)}{\log \pi (j+1)} \int _{\frac{1}{j+1}}^{\pi } \frac{\eta (l)}{l\xi (l)}\,dl \biggr). $$

Corollary 6.5

Following Remark 1 (iv), we obtain

$$ \bigl\Vert t_{j}^{\tilde{N}_{p} C^{\delta }}-g \bigr\Vert _{z}^{(\xi )}= \mathit{O} \biggl(\frac{1+\log \pi (j+1)}{\log \pi (j+1)} \int _{\frac{1}{j+1}}^{\pi } \frac{\eta (l)}{l\xi (l)}\,dl \biggr). $$

Corollary 6.6

Following Remark 1 (v), we obtain

$$ \bigl\Vert t_{j}^{E_{q} C^{\delta }}-g \bigr\Vert _{z}^{(\xi )}= \mathit{O} \biggl( \frac{1+\log \pi (j+1)}{\log \pi (j+1)} \int _{\frac{1}{j+1}}^{\pi } \frac{\eta (l)}{l\xi (l)}\,dl \biggr). $$

Corollary 6.7

Following Remark 1 (vi), we obtain

$$ \bigl\Vert t_{j}^{E_{1} C^{\delta }}-g \bigr\Vert _{z}^{(\xi )}= \mathit{O} \biggl( \frac{1+\log \pi (j+1)}{\log \pi (j+1)} \int _{\frac{1}{j+1}}^{\pi } \frac{\eta (l)}{l\xi (l)}\,dl \biggr). $$

Corollary 6.8

Following Remark 2, we obtain

$$ \bigl\Vert t_{j}^{T C^{1}}-g \bigr\Vert _{z}^{(\xi )}= \mathit{O} \biggl( \frac{1+\log \pi (j+1)}{\log \pi (j+1)} \int _{\frac{1}{j+1}}^{\pi }\frac{\eta (l)}{l\xi (l)}\,dl \biggr). $$

Corollary 6.9

Let \(g^{\prime }\in X_{\alpha ,z}\), \(z\ge 1\), and \(0\le \beta <\alpha \le 1\). Then

$$ \bigl\Vert t_{j}^{TC^{\delta }}-g^{\prime } \bigr\Vert _{(\beta ),z}=\textstyle\begin{cases} \mathit{O} ((j+1)^{\beta -\alpha +1}\int _{0}^{\pi } ), & 0 \le \beta < \alpha < 1, \\ \mathit{O} (\int _{0}^{\pi }\,dh(l) ), & \beta =0, \alpha =1.\end{cases}$$

Proof

Taking \(\eta (l)=l^{\alpha }\), \(\xi (l)=l^{\beta }\), \(0\le \beta <\alpha <1\) in (25) yields

$$ \bigl\Vert t_{j}^{TC^{\delta }}-g^{\prime } \bigr\Vert _{(\beta ),z}=\mathit{O} \biggl((j+1)^{\beta -\alpha +1} \int _{0}^{\pi }\,dh(l) \biggr). $$

Now,

$$ \bigl\Vert t_{j}^{TC^{\delta }}-g^{\prime } \bigr\Vert _{(\beta ),z}= \textstyle\begin{cases} \mathit{O} ((j+1)^{\beta -\alpha +1}\int _{0}^{\pi } ),& 0 \le \beta < \alpha < 1, \\ \mathit{O} (\int _{0}^{\pi }\,dh(l) ),& \beta =0, \alpha =1. \end{cases} $$

 □

Corollary 6.10

Following Remark 1 (i), we obtain

$$ \bigl\Vert t_{j}^{H C^{\delta }}-g^{\prime } \bigr\Vert _{z}^{(\xi )}=\mathit{O} \biggl((j+1)\frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )}\int _{0}^{\pi }\,dh(l ) \biggr). $$

Corollary 6.11

Following Remark 1 (ii), we obtain

$$ \bigl\Vert t_{j}^{N_{p,q} C^{\delta }}-g^{\prime } \bigr\Vert _{z}^{(v\xi )}= \mathit{O} \biggl((j+1) \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )} \int _{0}^{\pi }\,dh(l ) \biggr). $$

Corollary 6.12

Following Remark 1 (iii), we obtain

$$ \bigl\Vert t_{j}^{N_{p} C^{\delta }}-g^{\prime } \bigr\Vert _{z}^{(\xi )}= \mathit{O} \biggl((j+1) \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )} \int _{0}^{\pi }\,dh(l ) \biggr). $$

Corollary 6.13

Following Remark 1 (iv), we obtain

$$ \bigl\Vert t_{j}^{\tilde{N}_{p} C^{\delta }}-g^{\prime } \bigr\Vert _{z}^{(v\xi )}= \mathit{O} \biggl((j+1) \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )} \int _{0}^{\pi }\,dh(l ) \biggr). $$

Corollary 6.14

Following Remark 1 (v), we obtain

$$ \bigl\Vert t_{j}^{E_{q} C^{\delta }}-g^{\prime } \bigr\Vert _{z}^{(\xi )}= \mathit{O} \biggl((j+1) \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )} \int _{0}^{\pi }\,dh(l ) \biggr). $$

Corollary 6.15

Following Remark 1 (vi), we obtain

$$ \bigl\Vert t_{j}^{E_{1} C^{\delta }}-g^{\prime } \bigr\Vert _{z}^{(\xi )}= \mathit{O} \biggl((j+1) \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )} \int _{0}^{\pi }\,dh(l ) \biggr). $$

Corollary 6.16

Following Remark 2, we obtain

$$ \bigl\Vert t_{j}^{TC^{1}}-g^{\prime } \bigr\Vert _{z}^{(\xi )}=\mathit{O} \biggl((j+1) \frac{\eta (\frac{1}{j+1} )}{\xi (\frac{1}{j+1} )}\int _{0}^{\pi }\,dh(l) \biggr). $$

Remark 7

  1. (i)

    Corollary 6.1 can be further reduced using \(TC^{1}\) means in view of Remark 2.

  2. (ii)

    Corollaries 6.2, 6.3, 6.4, 6.5, 6.66.7 can be further reduced using \(HC^{1}\), \(N_{p,q}C^{1}\), \(N_{p}C^{1}\), \(\tilde{N}C^{1}\), \(E_{q}C^{1}\), and \(E_{1}C^{1}\) means, respectively, in view of Remark 2.

  3. (iii)

    Corollaries 6.10, 6.11, 6.12, 6.13, 6.146.15 can be further reduced using \(HC^{1}\), \(N_{p,q}C^{1}\), \(N_{p}C^{1}\), \(\tilde{N}_{p}C^{1}\), \(E_{q}C^{1}\), and \(E_{1}C^{1}\) means, respectively, in view of Remark 2.

Remark 8

  1. (i)

    In our Theorem 2.1, if \(z\to \infty \), then the \(X_{z}^{(\eta )}\) class becomes the \(X^{(\eta )}\) class. Also putting \(\eta (l)=l^{\alpha }\) and \(\zeta (l)=l^{\beta }\) in our Theorem 2.1, the \(X^{(\eta )}\) class turns into the \(X_{\alpha }\) class. Then for \(\beta =0 \), the \(X_{\alpha }\) class turns into the \(\operatorname{Lip}(\alpha )\) class.

  2. (ii)

    In our Theorem 2.1, by putting \(\eta (l)=l^{\alpha }\), \(\zeta (l)=l^{\beta }\) in the \(X_{z}^{(\eta )}\) class, the \(X_{z}^{(\eta )}\) class turns into the \(X_{\alpha ,z}\) class. Then for \(\beta =0\), the \(X_{\alpha ,z}\) class turns into the \(\operatorname{Lip}(\alpha ,z)\) class.

Remark 9

  1. (i)

    If \(\zeta (l)=l^{\alpha }\) and \(z\to \infty \), then the \(\operatorname{Lip}(\zeta (l),z)\) class turns into the \(\operatorname{Lip}(\alpha )\) class and thus, the results of [6, 8], and [10] reduce to those for the \(\operatorname{Lip}(\alpha )\) class.

  2. (ii)

    If \(\beta =0\), \(\zeta (l)=l^{\alpha }\) and \(z\to \infty \), then the \(W(L_{z},\zeta (l))\) class turns into the \(\operatorname{Lip}(\alpha )\) class. Thus, the results of [5] and [7] reduce to those for the \(\operatorname{Lip}(\alpha )\) class.

Particular cases

  1. (i)

    Using Remark 8 (i), putting \(\delta =1\) in our Theorem 2.1 yields the result of Dhakal [3].

  2. (ii)

    Using Remark 8 (i), putting \(a_{j,r}=\frac{p_{j-r}q_{r}}{R_{j}}\) where \(R_{j}=\sum_{r=0}^{j}p_{r}q_{j-r}\ne 0\) and \(\delta =1\) in our Theorem 2.1 gives the result of Dhakal [4].

  3. (iii)

    Using Remark 8 (i) and (ii), putting \(a_{j,r}=\frac{1}{2^{j}}\binom{ j}{ r}\) and \(\delta =1\) in our Theorem 2.1, in view of Remark 9 (ii), the result of Nigam [5] follows.

  4. (iv)

    Using Remark 8 (i), putting \(a_{j,r}=\frac{1}{(1+q)^{j}}\binom{ j}{ r} q^{j-r}\) and \(\delta =1\) in our Theorem 2.1, in view of Remark 9 (i), the result of Nigam [6] follows.

  5. (v)

    Using Remark 8 (i) and (ii), putting \(a_{j,r}=\frac{p_{j-r}}{P_{j}}\) where \(P_{j}=\sum_{r=0}^{j}p_{r}\ne 0\) and \(\delta =1\) in our Theorem 2.1, in view of Remark 9 (ii), the result of Nigam and Sharma [7] follows.

  6. (vi)

    Using Remark 8 (i), putting \(a_{j,r}=\frac{1}{2^{j}}\binom{ j}{ r} \) and \(\delta =1\) in our Theorem 2.1, in view of Remark 9 (i), the result of Nigam and Sharma [8] follows.

  7. (vii)

    Using Remark 8 (ii), putting \(a_{j,r}=\frac{p_{j-r}q_{r}}{R_{j}}\) where \(R_{j}=\sum_{r=0}^{j}p_{r}q_{j-r}\ne 0\) and \(\delta =1\) in our Theorem 2.1, the result of Kushwaha and Dhakal [9] follows.

  8. (viii)

    Using Remark 8 (i), putting \(\delta =1\) in our Theorem 2.1, in view of Remark 9 (i), the result of Shrivastava, Rathore, and Shukla [10] follows.

Conclusion

In this paper, we have determined the best error approximation of the functions g and \(g^{\prime }\), where \(g^{\prime }\) is a derived function of a 2π-periodic function g in the generalized Zygmund class \(X_{z}^{(\eta )}\), \(z\geq 1\), using matrix-Cesàro \((TC^{\delta })\) means of its Fourier series and its derived Fourier series, respectively. We have proved Theorem 2.1 which generalizes several earlier results, and the results of [310] become particular cases of our Theorem 2.1. Several corollaries are also deduced from our Theorem 2.1.

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. 1.

    Singh, M.V., Mittal, M.L., Rhoades, B.E.: Approximation of functions in the generalized Zygmund class using Hausdorff means. J. Inequal. Appl. 2017, 101 (2017)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Lal, S., Shireen: Best approximation of function of generalized Zygmund class matrix-Euler summability means of Fourier series. Bull. Math. Anal. Appl. 5(4), 1–13 (2013)

    MathSciNet  Google Scholar 

  3. 3.

    Dhakal, B.P.: Approximation of functions belonging to the Lipα class by matrix-Cesáro summability method. Int. Math. Forum 5(35), 1729–1735 (2010)

    MathSciNet  Google Scholar 

  4. 4.

    Dhakal, B.P.: Approximation of a function f belonging to Lip class by \((N,p,q)C_{1}\) means of its Fourier series. Int. J. Eng. Technol. 2(3), 1–15 (2013)

    MathSciNet  Google Scholar 

  5. 5.

    Nigam, H.K.: Degree of approximation of functions belonging to Lipα class and weighted \((L_{r}, \xi (t))\) class by product summability method. Surv. Math. Appl. 5, 113–122 (2010)

    MathSciNet  Google Scholar 

  6. 6.

    Nigam, H.K.: On degree of approximation of a function belonging to \(\operatorname{Lip}(\xi (t),r)\) class by \((E,q)(C,1)\) product means of Fourier series. Commun. Appl. Anal. 14(4), 607–614 (2010)

    MathSciNet  Google Scholar 

  7. 7.

    Nigam, H.K., Sharma, A.: On approximation of functions belonging to \(\operatorname{Lip}(\alpha , r)\) class and to weighted \(W(L_{r}, \xi (t))\) class by product means. Kyungpook Math. J. 50, 545–556 (2010)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Nigam, H.K., Sharma, K.: Degree of approximation of a function belonging to \(\operatorname{Lip}(\xi (t), r)\) class by \((E,1)(C,1)\) product means. Int. J. Pure Appl. Math. 70(6), 775–784 (2011)

    Google Scholar 

  9. 9.

    Kushwaha, J.K., Dhakal, B.P.: Approximation of a function belonging to \(\operatorname{Lip}(\alpha , r)\) class by \(N_{p,q}\). \(C_{1}\) summability method of its Fourier series. Nepal J. Sci. Technol. 14(2), 117–122 (2013)

    Article  Google Scholar 

  10. 10.

    Shrivastava, U.K., Rathore, C.S., Shukla, S.: Approximation of function belonging to the \(\operatorname{Lip}(\psi (t), p)\) class by matrix-Cesáro summability method. IOSR J. Math. 10(1 Ver. I), 39–41 (2014)

    Article  Google Scholar 

  11. 11.

    Rhaodes, B.E.: On the degree of approximation of functions belonging to Lipschitz class by Hausdorff means of its Fourier series. Tamkang J. Math. 34(3), 245–247 (2003)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Sahney, B.N., Goel, D.S.: On the degree of continuous functions. Ranchi Univ. Math. J. 4, 50–53 (1973)

    MathSciNet  Google Scholar 

  13. 13.

    Alexits, G.: Convergence Problems of Orthogonal Series. International Series of Monograms in Pure and Applied Mathematics, vol. 20 (1961). Translated from German by I. Folder

    Google Scholar 

  14. 14.

    Khan, H.H.: On degree of approximation of function belonging to the class \(\operatorname{Lip}(\alpha , p)\). Indian J. Pure Appl. Math. 5(3), 132–136 (1971)

    MathSciNet  Google Scholar 

  15. 15.

    Tiwari, K.S., Bariwal, C.S.: The degree of approximation of functions in the Hólder metric by triangular matrix method of Fourier series. Int. J. Pure Appl. Math. 76(2), 227–232 (2012)

    Google Scholar 

  16. 16.

    Qureshi, K.: On the degree of approximation of a function belonging to the class Lipα. Indian J. Pure Appl. Math. 13(8), 898–903 (1982)

    MathSciNet  Google Scholar 

  17. 17.

    Qureshi, K.: On the degree of approximation of a periodic function f by almost Nórlund means. Tamkang J. Math. 12(1), 35–38 (1981)

    MathSciNet  Google Scholar 

  18. 18.

    Qureshi, K., Neha, H.K.: A class of functions and their degree of approximation. Ganita 41(1), 37–42 (1990)

    MathSciNet  Google Scholar 

  19. 19.

    Leindler, L.: Trigonometric approximation of functions in \(L_{p}\) norm. J. Math. Anal. Appl. 302, 129–136 (2005)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Chandra, P.: Trigonometric approximation of functions in \(L_{p}\) norm. J. Math. Anal. Appl. 275(1), 13–26 (2002)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Lal, S., Mishra, A.: The method of summation \((E, 1)(N, p_{n})\) and trigonometric approximation of function in generalized Hölder metric. J. Indian Math. Soc. 80(1–2), 87–98 (2013)

    MathSciNet  Google Scholar 

  22. 22.

    Nigam, H.K.: Degree of approximation of a function belonging to weighted \((L_{r}, \xi (t))\) class by \((C,1)(E,q)\) means. Tamkang J. Math. 42(1), 31–37 (2011)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Lal, S.: Approximation of functions belonging to the generalized Lipschitz class by \(C^{1}.N_{p}\) summability method of Fourier series. Appl. Math. Comput. 209, 346–350 (2009)

    MathSciNet  Google Scholar 

  24. 24.

    Lal, S., Kushwaha, J.K.: Degree of approximation of Lipschitz function by product summability method. Int. Math. Forum 4(43), 2101–2107 (2009)

    MathSciNet  Google Scholar 

  25. 25.

    Chandra, P., Dikshit, G.D.: On the \(\vert B \vert \) and \(\vert E,q \vert \) summability of a Fourier series, its conjugate series and their derived series. Indian J. Pure Appl. Math. 12(11), 1350–1360 (1981)

    MathSciNet  Google Scholar 

  26. 26.

    Lal, S., Nigam, H.K.: On \(K^{\lambda }\)-summability of derived Fourier series. Ultra Sci. Phys. Sci. 12(2), 198–203 (2000)

    MathSciNet  Google Scholar 

  27. 27.

    Lal, S., Yadav, P.: \((N,p,q)(C,1)\) summability of derived series of a Fourier series. Bull. Col. Math. Soc. 93(2), 85–92 (2001)

    Google Scholar 

  28. 28.

    Zygmund, A.: Trigonometric Series, 3rd rev. edn. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  29. 29.

    Toeplitz, O.: Überallgemeine lineare Mittelbildungen. Pr. Mat.-Fiz. 22, 113–119 (1913)

    Google Scholar 

  30. 30.

    Hardy, G.H.: Divergent Series. Oxford University Press, London (1949)

    Google Scholar 

  31. 31.

    Nigam, H.K., Mursaleen, M., Rani, S.: Approximation of functions in generalized Zygmund class by double Hausdorff matrix. Adv. Differ. Equ. 2020, 317 (2020)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Jiang, Z.-J.: On Stević–Sharma operator from the Zygmund space to the Bloch–Orlicz space. Adv. Differ. Equ. 2015, 228 (2015)

    Article  Google Scholar 

  33. 33.

    Lebesgue, H.: Sur la représentation trigonometric approchée des fonctions satisfaisant à une condition de Lipschitz. Bull. Soc. Math. Fr. 38, 184–210 (1910)

    Article  Google Scholar 

  34. 34.

    Nikol’skii, S.M.: Fourier series of functions with a given modulus of continuity. Dokl. Akad. Nauk SSSR 52(3), 191–194 (1946)

    MathSciNet  Google Scholar 

  35. 35.

    Geit, V.É.: On functions which are the second modulus of continuity. Izv. Vysš. Učebn. Zaved., Mat. 9, 38–41 (1998) [Russ. Math. 42(9), 36–38 (1998)]

    Google Scholar 

  36. 36.

    Konyagin, S.V.: On the second moduli of continuity. Proc. Steklov Inst. Math. 269, 143–145 (2010)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Weiss, M., Zygmund, A.: A note on smooth functions. Indag. Math. 21, 52–58 (1959)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Zygmund, A.: A remark on the integral modulus of continuity. Rev. Univ. Nac. Tucumán 7, 259–269 (1950)

    MathSciNet  Google Scholar 

  39. 39.

    Titchmarsh, E.C.: The Theory of Functions, 2nd edn. Oxford University Press, London (1939). p. 403

    Google Scholar 

  40. 40.

    Chui, C.K.: An Introduction to Wavelets. Wavelet Analysis and Its Applications, vol. 1. Academic Press, San Diego (1992)

    Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

No funding available.

Author information

Affiliations

Authors

Contributions

The authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohammad Mursaleen.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nigam, H.K., Mursaleen, M. & Rani, S. Approximation of function using generalized Zygmund class. Adv Differ Equ 2021, 34 (2021). https://doi.org/10.1186/s13662-020-03197-5

Download citation

MSC

  • 42A10
  • 41A10
  • 42B05
  • 42B08

Keywords

  • Generalized Minkowski inequality (GMI)
  • Best approximation
  • Generalized Zygmund class
  • Matrix \((T)\) means
  • \(C^{\delta }\) means
  • Matrix-Cesàro (δ order) \((TC^{\delta })\)
  • Fourier series (F.S.)
  • Derived Fourier series (D.F.S.)
\