Skip to main content

Approximation of functions by a class of Durrmeyer–Stancu type operators which includes Euler’s beta function


In this work, we construct the genuine Durrmeyer–Stancu type operators depending on parameter α in \([0,1]\) as well as \(\rho >0\) and study some useful basic properties of the operators. We also obtain Grüss–Voronovskaja and quantitative Voronovskaja types approximation theorems for the aforesaid operators. Further, we present numerical and geometrical approaches to illustrate the significance of our new operators.


Let \(L_{B}[0,1]\) denote the space of bounded Lebesgue integrable functions on \([0,1]\) and \(\mathbb{N}\) the set of natural numbers. We use the symbol \(\Pi _{m}\) \((m\in \mathbb{N})\) to denote the space of polynomials of degree at most m. By taking Bernstein polynomials into account, Chen [14] and Goodman and Sharma [21] independently introduced the operators \(U_{m}\) (we can also call them genuine Bernstein–Durrmeyer operators) acting from \(L_{B}[0,1]\) into \(\Pi _{m}\), defined by

$$\begin{aligned} U_{m}(f,y) =&(m-1)\sum_{i=1}^{m-1} \biggl( \int _{0}^{1}f(t)p_{m-2,i-1}(t)\,dt \biggr)p_{m,i}(y)+y^{m}f(1) \\ &{}+(1-y)^{m}f(0) \end{aligned}$$

for all \(f\in L_{B}[0,1]\), where \(p_{m,i}(y)\) \((m,i\in \mathbb{N})\) is considered by

$$ p_{m,i}(y)=\binom{m}{i}y^{i}(1-y)^{m-i}\quad (0 \leq y\leq 1,0\leq i \leq m). $$

The above operators are limits of the Bernstein–Durrmeyer operators with Jacobi weights, \(M_{m}^{c,d}\) for \(c,d>-1\), which was studied by Păltănea [40], that is,

$$ U_{m}(f)=\lim_{c\to -1,d\to -1}M_{m}^{c,d}(f) \quad \bigl(f\in C[0,1]\bigr), $$

where \(C[0,1]\) denotes the space of functions which are continuous on \([0,1]\) and

$$ M_{m}^{c,d}(f,y)=\sum_{i=0}^{m} \frac{\int _{0}^{1}f(t)t^{c}(1-t)^{d}p_{m,i}(t)\,dt}{\int _{0}^{1}t^{c}(1-t)^{d}p_{m,i}(t)\,dt}p_{m,i}(y). $$

Păltănea [41] presented a generalization of the operators \(U_{m}\) with the help of \(\rho >0\), namely genuine ρ-Bernstein–Durrmeyer operators, and denoted them by \(U_{m}^{\rho }\). For any \(f\in C[0,1]\), in the same paper, he showed that the classical Bernstein operators are the limits of the operators \(U_{m}^{\rho }\) and also obtained a Voronovskaja-type result. Gonska and Păltănea [17] proved that the operators \(U_{m}^{\rho }\) preserve convexity of all orders and also obtained the degree of simultaneous approximation.

It is well known that Bernstein polynomials are one of the most widely-investigated polynomials in the theory of approximation, and so, to obtain another generalization of classical Bernstein operators, Cai et al. [13] considered the Bézier bases with shape parameter λ in \([-1,1]\) and introduced λ-Bernstein operators. Later, Kantorovich, Schurer, and Stancu variants of λ-Bernstein operators were discussed by Cai [11], Özger [3638], and Srivastava et al. [43]. By taking λ-Bernstein polynomials into account, in a very recent past, Acu et al. [4] defined a new family of modified \(U_{m}^{\rho }\) operators and denoted the new operators by \(U_{m,\lambda }^{\rho }\).

Chen et al. [15] recently presented a generalization of classical Bernstein operators with the help of any fixed α in \(\mathbb{R}\), which they called α-Bernstein operators (linear and positive for \(\alpha \in [0,1]\)), and discussed the rate of convergence, Voronovskaja-type formula, and shape preserving properties of these positive linear operators. Mohiuddine et al. [26] constructed the Kantorovich variant of α-Bernstein operators. The bivariate version of α-Bernstein–Durrmeyer operators was constructed and studied by Kajla and Miclăuş [23] (also see [25] for recent work), in which they also discussed GBS operator (or generalized boolean sum operators) of α-Bernstein–Durrmeyer, while the two interesting forms of α-Baskakov–Durrmeyer were introduced by Kajla et al. [24] and Mohiuddine et al. [31]. For the classical Bernstein–Durrmeyer operators, we refer the interested reader to [16]. We also refer to [2, 3, 7, 8, 10, 12, 18, 19, 22, 2730, 3235, 39, 42, 45, 46] for some recent work on various Bernstein, Durrmeyer, and genuine type operators as well as statistical approximation.

We will now recall the α-Bernstein operators due to Chen et al. [15] as follows: For \(g\in C[0,1]\), \(\alpha \in [0,1]\) is fixed, and \(m\in \mathbb{N}\), the α-Bernstein operators are defined by

$$ T_{m,\alpha } (g;y ) =\sum_{i=0}^{m}g ( i/m ) p_{m,i}^{ ( \alpha ) } ( y )\quad \bigl(y\in [0,1] \bigr), $$


$$ p_{1,0}^{ ( \alpha ) } ( y )=1-y,\qquad p_{1,1}^{( \alpha )}(y)=y $$


$$\begin{aligned} p_{m,i}^{(\alpha )}(y) =& \biggl[ ( 1-\alpha )y \binom{m-2}{i}+ (1-\alpha ) (1-y ) \binom{m-2}{i-2} \\ &{}+\alpha y ( 1-y )\binom{m}{i} \biggr] y^{i-1} ( 1-y ) ^{m-i-1}\quad (m\geq 2). \end{aligned}$$

Note that \(p_{m,i}^{ ( \alpha )}\) in relation (1.1) is called α-Bernstein polynomials of order m and the binomial coefficients

$$ \binom{a}{b}= \textstyle\begin{cases} \frac{a!}{b!(a-b)!}&(0\leq b\leq a), \\ \bar{0}&(\text{otherwise}). \end{cases} $$

For \(\alpha =1\), (1.1) is reduced to the classical Bernstein operators [9].

Generalized \(U_{m}^{\rho }\) operators and approximation properties

For \(m\in \mathbb{N}\) and \(\rho >0\), the functional (see [41])

$$ F_{m,i}^{\rho } : C[0,1 ] \rightarrow \mathbb{R} $$

is defined by

$$\begin{aligned}& F_{m,i }^{\rho } ( g )= \int _{0}^{1} \mu _{m,i}^{ \rho }(t)g ( t ) \,dt\quad (i=1,2,\dots ,m-1), \\& F_{m,0 }^{\rho } ( g )=g(0),\qquad F_{m,m }^{\rho } ( g ) =g(1), \end{aligned}$$

where \(\mu _{m,i}^{\rho }(t)\) in (2.1) is given by the formula

$$\begin{aligned} \mu _{m,i}^{\rho }(t)= \frac{t^{i\rho -1}(1-t)^{(m-i)\rho -1}}{B(i\rho ,(m-i)\rho )} \end{aligned}$$

and Euler’s beta function in the last equality is defined by

$$ B(a,b)= \int _{0}^{1} t^{a-1}(1-t)^{b-1} \,dt\quad (a,b>0). $$

Assume that θ and β are two real parameters satisfying \(0\leq \theta \leq \beta \). In view of α-Bernstein operators, for \(m\in \mathbb{N}\), \(\alpha \in \mathbb{R}\) is fixed, and given a function \(g\in C[0,1]\), we define the operators \(U_{m,\alpha }^{\beta ,\theta ,\rho }\) (or genuine \((\alpha ,\rho )\)-Durrmeyer–Stancu operators) by

$$\begin{aligned} U_{m,\alpha }^{\beta ,\theta ,\rho }(g;y) =&\sum _{i=0}^{m} F_{m,i }^{ \beta ,\theta ,\rho } ( g )p_{m,i}^{(\alpha )}(y), \end{aligned}$$


$$ F_{m,i }^{\beta ,\theta ,\rho } ( g )= \int _{0}^{1} \mu _{m,i}^{\rho }(t)g \biggl(\frac{mt+\theta }{m+\beta } \biggr)\,dt $$

for \(i=1,2,\dots ,m-1\), \(F_{m,0}^{\beta ,\theta ,\rho } (g )=g ( \frac{\theta }{m+\beta } )\) and \(F_{m,1}^{\beta ,\theta ,\rho } (g )=g ( \frac{m+\theta }{m+\beta } )\). Consequently, we can re-write our operators \(U_{m,\alpha }^{\beta ,\theta ,\rho }\) as follows:

$$\begin{aligned} U_{m,\alpha }^{\beta ,\theta ,\rho }(g;y) =& \sum _{i=1}^{m-1} \int _{0}^{1} \biggl[ \frac{t^{i\rho -1}(1-t)^{(m-i)\rho -1}}{B(i\rho ,(m-i)\rho )}g \biggl( \frac{mt+\theta }{m+\beta } \biggr) \,dt \biggr] p_{m,i}^{(\alpha )}(y) \\ &{}+ g \biggl( \frac{\theta }{m+\beta } \biggr) p_{m,0}^{(\alpha )}(y)+g \biggl( \frac{m+\theta }{m+\beta } \biggr) p_{m,m}^{(\alpha )}(y). \end{aligned}$$

For the choice of \(\theta =0\) and \(\beta =0\), the operators defined by (2.3) reduce to the operators \(U_{m,\alpha }^{\rho }(g;y)\) which were studied in [6]. In addition, if \(\rho =1\), then we get the genuine α-Bernstein–Durrmeyer operators \(U_{m,\alpha }\) defined in [1]. If we take \(\rho =1\), \(\alpha =1\), \(\theta =0\), and \(\beta =0\), then we obtain genuine Bernstein–Durrmeyer operators. Throughout the paper, we assume that \(\alpha \in [0,1]\) for which our new operators \(U_{m,\alpha }^{\beta ,\theta ,\rho }\) are linear and positive. For interested readers who want to see the details of Stancu operators, we refer to [44].

The moments of our newly constructed operators \(U_{m,\alpha }^{\beta ,\theta ,\rho }\) are given in the following lemma.

Lemma 1

Let \(e_{i} ( y )=y^{i}\), \((i=0,1,2,3,4)\). Then the operators \(U_{m,\alpha }^{\beta ,\theta ,\rho }\) satisfy

$$\begin{aligned}& U_{m,\alpha }^{\beta ,\theta ,\rho } ( e_{0};y ) =1, \\& U_{m,\alpha }^{\beta ,\theta ,\rho } ( e_{1};y ) =\frac{my+\theta }{m+\beta }, \\& U_{m,\alpha }^{\beta ,\theta ,\rho } ( e_{2};y ) =\frac{m^{2}y^{2}+2m\theta y+\theta ^{2}}{(m+\beta )^{2}}+ \frac{(y-y^{2})m(m(1+\rho )+2\rho (1-\alpha ))}{(m+\beta )^{2}(m\rho +1)}, \\& \begin{aligned} U_{m,\alpha }^{\beta ,\theta ,\rho } ( e_{3};y ) &=\frac{m^{3}y^{3}+3m\theta y(my+\theta )+\theta ^{3}}{(m+\beta )^{3}}+ \frac{3m (y^{2}-y)\theta (2\rho m^{2}+2m\rho (1-\alpha ))}{(m+\beta )^{3}(m\rho +1)} \\ &\quad {}+ \frac{6(y^{2}-y)\rho (1-\alpha )(1+\rho -2\rho y)}{(m+\beta )^{3}(m\rho +1)(m\rho +2)m} +\frac{(y^{2}-y) }{(m+\beta )^{3}(m\rho +1)(m\rho +2)} \bigl\lbrace 2y \\ &\quad {} -2\rho +3m\rho y(\rho +1)+4\rho ^{2}y+\rho ^{2}+3-6\rho ^{2} \alpha y \bigr\rbrace , \end{aligned} \\& \begin{aligned} U_{m,\alpha }^{\beta ,\theta ,\rho } ( e_{4};y ) &= \frac{m^{4} y^{4}+4m\theta y(m^{2}y^{2}+\theta ^{2})+\theta ^{2}(6m^{2}y^{2}+\theta ^{2})}{(m+\beta )^{4}} \\ &\quad {}+\frac{y-y^{2}}{(m+\beta )^{4}(m\rho +1)(m\rho +2)(m\rho +3)} \bigl\lbrace 6\rho ^{2}(\rho +1)y^{2}m^{6} \\ &\quad {}-\rho y\bigl(12\alpha \rho ^{2}-y-\rho ^{2}y-7\rho ^{2}-18\rho -11y-11\bigr)m^{5}+ \bigl( 60\alpha \rho ^{3}y^{2}-36\alpha \rho ^{3}y \\ &\quad {} -54\rho ^{3}y^{2}+6\rho ^{2}(4y-6 \alpha +1)+y+30\rho ^{3}y+ \rho ^{3}+6y^{2}+11 \rho +6y+6 \bigr) m^{4} \\ &\quad {} +2\rho (1-\alpha ) \bigl(36\rho ^{2} \bigl(y^{2}-y\bigr)+7\rho ^{2}-36\rho y+18 \rho +11 \bigr)m^{3} \bigr\rbrace \\ &\quad {}+\frac{y-y^{2}}{(m+\beta )^{4}(m\rho +1)(m\rho +2)} \bigl\lbrace 12 \theta \rho (\rho +1)ym^{4} +4\theta \bigl( \rho ^{2}(4y+1)+3\rho \\ &\quad {}+2y +2-6\alpha \rho ^{2} \bigr) m^{3}+24 \theta \rho (1- \alpha ) (1+\rho -2\rho y)m^{2} \bigr\rbrace \\ &\quad {}+ \frac{(y-y^{2})(6\theta ^{2}(\rho +1)m^{2} +12\theta ^{2}\rho (1-\alpha )m)}{(m+\beta )^{4}(m\rho +1)}. \end{aligned} \end{aligned}$$


We give a short proof for the first three parts, one can prove the rest using the same idea.

$$\begin{aligned}& \begin{aligned} U_{m,\alpha }^{\beta ,\theta ,\rho } ( e_{0};y )&= \sum _{i=0}^{m} \frac{p_{m,i}^{(\alpha )}(y) }{B(i\rho ,(m-i)\rho )} \int _{0}^{1} t^{i\rho -1}(1-t)^{(m-i)\rho -1} \,dt \\ &=\sum_{i=0}^{m}p_{m,i}^{(\alpha )}(y)=1. \end{aligned} \\& \begin{aligned} U_{m,\alpha }^{\beta ,\theta ,\rho } ( e_{1};y )&= \sum _{i=0}^{m} p_{m,i}^{(\alpha )}(y) \int _{0}^{1} \frac{mt+\theta }{m+\beta } \mu _{m,i}^{\rho }(t)\,dt \\ &=\frac{m}{m+\beta }\sum_{i=0}^{m}p_{m,i}^{(\alpha )}(y) \frac{\Gamma (m\rho )}{\Gamma (i\rho )\Gamma ((m-i)\rho )} \frac{\Gamma (i\rho +1)\Gamma ((m-i)\rho )}{\Gamma (m\rho +1)} \\ &\quad {}+\frac{\theta }{m+\beta } \sum_{i=0}^{m} p_{m,i}^{(\alpha )}(y) \int _{0}^{1} \mu _{m,i}^{\rho }(t) \,dt \\ &=\frac{my+\theta }{m+\beta }. \end{aligned} \end{aligned}$$

Using the properties of Euler beta function, we have

$$\begin{aligned} U_{m,\alpha }^{\beta ,\theta ,\rho } ( e_{2};y ) =& \sum _{i=0}^{m} p_{m,i}^{(\alpha )}(y) \int _{0}^{1} \biggl( \frac{mt+\theta }{m+\beta } \biggr) ^{2} \mu _{m,i}^{\rho }(t)\,dt \\ =&\frac{m^{2} }{(m+\beta )^{2}}\sum_{i=0}^{m} p_{m,i}^{(\alpha )}(y) \int _{0}^{1} t^{2} \mu _{m,i}^{\rho }(t) \,dt+ \frac{2m\theta }{(m+\beta )^{2}}\sum _{i=0}^{m}p_{m,i}^{(\alpha )}(y) \int _{0}^{1} t\mu _{m,i}^{\rho }(t) \,dt \\ &{}+\frac{\theta ^{2} }{(m+\beta )^{2}} \sum_{i=0}^{m} p_{m,i}^{( \alpha )}(y) \int _{0}^{1} \mu _{m,i}^{\rho }(t) \,dt \\ =&\frac{m^{2}y^{2}+2m\theta y+\theta ^{2}}{(m+\beta )^{2}}+ \frac{(y-y^{2})m(m(1+\rho )+2\rho (1-\alpha ))}{(m+\beta )^{2}(m\rho +1)} . \end{aligned}$$


Corollary 1

The central moments of (2.3) are as follows:

$$\begin{aligned}& U_{m,\alpha }^{\beta ,\theta ,\rho } ( e_{1}-y;y ) =\frac{\theta -\beta y}{m+\beta }, \\& \begin{aligned}& U_{m,\alpha }^{\beta ,\theta ,\rho } \bigl( ( e_{1}-y ) ^{2};y \bigr) \\ &\quad = \frac{1}{(m+\beta )^{2}(m\rho +1)} \bigl\lbrace m^{2} \bigl(y-y^{2}\bigr) ( \rho +1) \\ &\qquad {}+ m\bigl(2(\rho -\alpha ) \bigl(y-y^{2}\bigr)+\rho \beta \theta y (\beta y-2 \theta )+\rho \theta ^{2}\bigr)+\theta ^{2}+\beta ^{2} y^{2}-2\beta \theta y \bigr\rbrace . \end{aligned} \end{aligned}$$

Theorem 1

If g is continuous on \([0,1]\) for any \(\alpha \in [0, 1]\), then \(U_{m,\alpha }^{\beta ,\theta ,\rho } (g)\) converge uniformly to g on \([0,1]\), that is,

$$ \lim_{m \to \infty } \bigl\Vert U_{m,\alpha }^{\beta ,\theta ,\rho } (g)-g \bigr\Vert =0. $$


We obtain by Lemma 1 that

$$ \lim_{m \to \infty } U_{m,\alpha }^{\beta ,\theta ,\rho } (e_{0})=e_{0}, \qquad \lim_{m \to \infty } U_{m,\alpha }^{\beta ,\theta ,\rho } (e_{1};y)=e_{1} $$

and similarly \(\lim_{m \to \infty } \Vert U_{m,\alpha }^{\beta ,\theta ,\rho } (e_{2})-e_{2} \Vert =0\). Consequently, the Korovkin theorem gives

$$ \lim_{m \to \infty } \bigl\Vert U_{m,\alpha }^{\beta ,\theta ,\rho } (g)-g \bigr\Vert =0. $$


Lemma 2

Let \(g\in C [ 0,1 ]\), and let \(\Vert \cdot \Vert \) be a uniform norm on \([0,1]\). Then

$$ \bigl\Vert U_{m,\alpha }^{\beta ,\theta ,\rho } ( g ) \bigr\Vert \leq \Vert g \Vert \quad (m\in \mathbb{N}). $$


With a view of last lemma, we have \(\vert U_{m,\alpha }^{\beta ,\theta ,\rho } ( g;y ) \vert \leq U_{m,\alpha }^{\beta ,\theta ,\rho } ( e_{0};y ) \Vert g \Vert = \Vert g \Vert \). □

Recall that the usual modulus of continuity for g is defined by

$$ \omega ( g;\sqrt{\varepsilon } ) =\sup_{0< \lambda \leq \varepsilon }\sup _{y,y+\lambda \in [ 0,1 ] } \bigl\vert g (y+\lambda ) -g (y ) \bigr\vert . $$

Theorem 2

Assume that \(g\in C [ 0,1 ]\) and \(\alpha \in [ 0,1 ] \). Then

$$ \bigl\vert U_{m,\alpha }^{\beta ,\theta ,\rho } (g;y ) -g ( y ) \bigr\vert \leq 2 \omega \Bigl(g;\sqrt{ \tau _{m, \alpha }^{\beta ,\theta ,\rho } } \Bigr)\quad \bigl(y\in [ 0,1 ]\bigr), $$

where \(\tau _{m,\alpha }^{\beta ,\theta ,\rho } = U_{m,\alpha }^{\beta , \theta ,\rho } ((e_{1}-y)^{2}; y)\).


From the monotonicity of the operators \(U_{m,\alpha }^{\beta ,\theta ,\rho } \) and taking Lemma 1 into our account, we write

$$ \bigl\vert U_{m,\alpha }^{\beta ,\theta ,\rho } (g;y ) -g ( y ) \bigr\vert = \bigl\vert U_{m,\alpha }^{\beta , \theta ,\rho } \bigl( g ( t ) -g ( y ) ;y \bigr) \bigr\vert \leq U_{m,\alpha }^{\beta ,\theta ,\rho } \bigl( \bigl\vert g ( t ) -g ( y ) \bigr\vert ;y \bigr) . $$


$$ \bigl\vert g ( t ) -g ( y ) \bigr\vert \leq \biggl( 1+ \biggl( \frac{ t-y}{\varepsilon } \biggr) ^{2} \biggr) \omega (g;\varepsilon )\quad \bigl(y,t\in [ 0,1 ],\varepsilon >0\bigr), $$

we fairly obtain

$$ \bigl\vert U_{m,\alpha }^{\beta ,\theta ,\rho } (g;y ) -g ( y ) \bigr\vert \leq \biggl( 1+ \frac{U_{m,\alpha }^{\beta ,\theta ,\rho } ( ( e_{1}-y ) ^{2};y )}{\varepsilon ^{2}} \biggr) \omega (g;\varepsilon ) . $$

Here, the assertion of Theorem 2 is acquired by taking into account \(\varepsilon = [4]\sqrt{ U_{m,\alpha }^{\beta ,\theta ,\rho } ( ( e_{1}-y ) ^{2};y )}\). □

Theorem 3

Let \(g \in C^{1}[0 ,1]\). For any \(y\in [0 ,1]\), the following inequality holds:

$$\begin{aligned} \bigl\vert U_{m,\alpha }^{\beta ,\theta ,\rho } (g;y)-g(y) \bigr\vert &\leq 2\sqrt{ \tau _{m, \alpha }^{\beta ,\theta ,\rho } } w \Bigl( g', \sqrt{ \tau _{m,\alpha }^{ \beta ,\theta ,\rho } } \Bigr)+ \bigl\vert g'(y) \bigr\vert \bigl\vert \nu _{m }^{\beta ,\theta } \bigr\vert , \end{aligned}$$

where \(\nu _{m }^{\beta ,\theta } = U_{m,\alpha }^{\beta ,\theta ,\rho } (e_{1}-y;y)\) and \(\tau _{m,\alpha }^{\beta ,\theta ,\rho } = U_{m,\alpha }^{\beta , \theta ,\rho } ((e_{1}-y)^{2};y)\).


One writes

$$\begin{aligned} g(t)-g(y)=(t-y)g'(y)+ \int _{y}^{t}\bigl(g'(u)-g'(y) \bigr)\,du \end{aligned}$$

for any \(t \in [0 ,1]\) and \(y\in [0 ,1]\). Operating \(U_{m,\alpha }^{\beta ,\theta ,\rho }(g;y)\) on both sides of the above relation, we obtain

$$\begin{aligned} U_{m,\alpha }^{\beta ,\theta ,\rho } \bigl(g(t)-g(y);y\bigr)=g'(y) U_{m,\alpha }^{ \beta ,\theta ,\rho } (t-y;y)+ U_{m,\alpha }^{\beta ,\theta ,\rho } \biggl( \int _{y}^{t}\bigl(g'(u)-g'(y) \bigr)\,du;y \biggr). \end{aligned}$$

We know that

$$ \bigl\vert g(u)-g(y) \bigr\vert \leq w(g, \varepsilon ) \biggl(\frac{ \vert u-y \vert }{\varepsilon }+1 \biggr)\quad \bigl(g \in C[0 ,1]\bigr) $$

for any \(\varepsilon >0\) and each \(u \in [0 ,1]\). By taking (2.5) into our consideration, we obtain

$$ \biggl\vert \int _{y}^{t}\bigl(g'(u)-g'(y) \bigr)\,du \biggr\vert \leq w\bigl(g', \varepsilon \bigr) \biggl( \frac{(t-y)^{2}}{\varepsilon }+ \vert t-y \vert \biggr). $$


$$\begin{aligned} \bigl\vert U_{m,\alpha }^{\beta ,\theta ,\rho } (g;y)-g(y) \bigr\vert \leq & \bigl\vert g'(y) \bigr\vert \bigl\vert U_{m, \alpha }^{\beta ,\theta ,\rho } (t-y;y) \bigr\vert \\ &{}+w\bigl(g', \varepsilon \bigr) \biggl\{ \frac{1}{\varepsilon } U_{m,\alpha }^{ \beta ,\theta ,\rho } \bigl((t-y)^{2};y\bigr)+U_{m,\alpha }^{\beta ,\theta ,\rho } (t-y;y) \biggr\} . \end{aligned}$$

Consequently, (2.4) follows by choosing \(\varepsilon =U_{m,\alpha }^{\beta ,\theta ,\rho }((t-y)^{2};y)=\sqrt{ \tau _{m,\alpha }^{\beta ,\theta ,\rho } }\), which proves our result. □

Voronovskaja-type theorems

We obtain some Voronovskaja-type theorems including a Grüss–Voronovskaja-type theorem and a quantitative Voronovskaja-type theorem for \(U_{m,\alpha }^{\beta ,\theta ,\rho } \). We first obtain a quantitative Voronovskaja-type theorem for our operators \(U_{m,\alpha }^{\beta ,\theta ,\rho } \) using the Ditzian–Totik modulus of smoothness. To do this, we need the following definitions.

We first recall the Ditzian–Totik modulus of smoothness defined as follows:

$$\begin{aligned} \omega _{\phi }(g, \delta ):=\sup_{0< \vert \lambda \vert \leq \delta } \biggl\{ \biggl\vert g \biggl(y+\frac{\lambda \phi (y)}{2} \biggr)-g \biggl(y- \frac{\lambda \phi (y)}{2} \biggr) \biggr\vert ,y\pm \frac{\lambda \phi (y)}{2}\in [0 ,1] \biggr\} , \end{aligned}$$

where \(g \in C[0 ,1]\) and \(\phi (y)=\sqrt{y(1-y)}\). The corresponding Peetre’s K-functional is defined by

$$\begin{aligned} K_{\phi }(g,\delta )=\inf_{h \in W_{\phi }[0,1]} \bigl\{ \Vert g-h \Vert +\delta \bigl\Vert \phi h' \bigr\Vert :h\in C^{1}[0 ,1], \delta >0 \bigr\} , \end{aligned}$$


$$ W_{\phi }[0,1]=\bigl\{ h: h \in AC_{loc}[0, 1], \bigl\Vert \phi h' \bigr\Vert < \infty \bigr\} , $$

and \(AC_{loc}[0 ,1]\) in the last equality denotes the class of all absolutely continuous functions defined on the closed interval \([a, b] \subset [0 ,1]\). Then a constant \(M>0\) such that

$$\begin{aligned} K_{\phi }(g,\delta )\leq M\omega _{\phi }(g, \delta ). \end{aligned}$$

Theorem 4

Suppose that \(g,g',g'' \in C[0,1]\) and \(y\in [0 ,1]\). Suppose also that ρ is a positive number. Then we have

$$\begin{aligned} \bigl\vert U_{m,\alpha }^{\beta ,\theta ,\rho } (g;y)-g''(y) \chi _{m, \beta ,\theta }^{\rho ,\alpha }-g(y) \bigr\vert \leq \frac{M}{m}\phi ^{2}(y) \omega _{\phi } \biggl(g'', \frac{1}{m^{1/2}} \biggr) \end{aligned}$$

for sufficiently large m, where

$$ \chi _{m,\beta ,\theta }^{\rho ,\alpha }= \frac{m^{2}y^{2}+2m\theta y+\theta ^{2}}{2(m+\beta )^{2}}+ \frac{(y-y^{2})m(m(1+\rho )+2\rho (1-\alpha ))}{2(m+\beta )^{2}(m\rho +1)}. $$


The following equality

$$ g(t)-g(y)-(t-y)g'(y)= \int _{y}^{t} (t-u)g''(u) \,du $$

is satisfied for \(g\in C[0, 1]\). This equality implies

$$\begin{aligned} g(t)-g(y)-(t-y)g'(y)-\frac{g''(y)}{2}(t-y)^{2} \leq \int _{y}^{t} (t-u)\bigl[g''(u)-g''(y) \bigr]\,du. \end{aligned}$$

If we apply the operators \(U_{m,\alpha }^{\beta ,\theta ,\rho } \) to each side of (3.1), we get

$$\begin{aligned} & \biggl\vert U_{m,\alpha }^{\beta ,\theta ,\rho } (g;y)-g(y)-U_{m,\alpha }^{ \beta ,\theta ,\rho } \bigl((t-y);y\bigr) g'(y)-\frac{g''(y)}{2} U_{m,\alpha }^{ \beta ,\theta ,\rho } \bigl((t-y)^{2};y\bigr) \biggr\vert \\ &\quad \leq U_{m,\alpha }^{\beta ,\theta ,\rho } \biggl( \biggl\vert \int _{y}^{t}|t-u| \bigl\vert g''(u)-g''(y) \bigr\vert \,du \biggr\vert ;y \biggr). \end{aligned}$$

Let us estimate the right-hand side of (3.2) as follows:

$$\begin{aligned} \biggl\vert \int _{y}^{t}|t-u| \bigl\vert g''(u)-g''(y) \bigr\vert \,du \biggr\vert \leq 2 \bigl\Vert g''-g \bigr\Vert (t-y)^{2}+2 \bigl\Vert \phi g' \bigr\Vert \phi ^{-1}(y) \vert t-y \vert ^{3} \end{aligned}$$

for \(g \in W_{\phi }[0,1]\). Then there is a constant \(M>0\) such that

$$ \left .\textstyle\begin{array}{l} U_{m,\alpha }^{\beta ,\theta ,\rho } ((t-y)^{2};y)\leq \frac{(\rho +1)My^{2}(1-y)^{2}}{\rho m}\quad \text{and} \\ U_{m,\alpha }^{\beta ,\theta ,\rho } ((t-y)^{4};y)\leq \frac{(\rho +1)^{2}My^{4}(1-y)^{4}}{\rho ^{2}m^{2}} \end{array}\displaystyle \right \} $$

hold for sufficiently large m. Using the Cauchy–Schwarz inequality, one obtains

$$\begin{aligned} & \biggl\vert U_{m,\alpha }^{\beta ,\theta ,\rho } (g;y)-g(y)-U_{m,\alpha }^{ \beta ,\theta ,\rho } \bigl((t-y);y\bigr) g'(y)-\frac{g''(y)}{2} \bigl( U_{m, \alpha }^{\beta ,\theta ,\rho } \bigl((t-y)^{2};y\bigr)+ U_{m,\alpha }^{\beta , \theta ,\rho } (1;y) \bigr) \biggr\vert \\ &\quad \leq 2 \bigl\Vert g''-g \bigr\Vert U_{m,\alpha }^{\beta ,\theta ,\rho } \bigl((t-y)^{2};y\bigr)+2 \bigl\Vert \phi g' \bigr\Vert \phi ^{-1}(y)U_{m,\alpha }^{\beta ,\theta ,\rho } \bigl( \vert t-y \vert ^{3};y\bigr) \\ &\quad \leq \frac{M}{m}y(1-y) \bigl\Vert g''-g \bigr\Vert +2 \bigl\Vert \phi g' \bigr\Vert \phi ^{-1}(y)\bigl\{ U_{m, \alpha }^{\beta ,\theta ,\rho } \bigl((t-y)^{2};y \bigr)\bigr\} ^{1/2}\bigl\{ U_{m,\alpha }^{ \beta ,\theta ,\rho } \bigl((t-y)^{4};y\bigr)\bigr\} ^{1/2} \\ &\quad \leq \frac{M}{m}\phi ^{2}(y) \bigl\{ \bigl\Vert g''-g \bigr\Vert +m^{-1/2} \bigl\Vert \phi g' \bigr\Vert \bigr\} \end{aligned}$$

by (3.2)–(3.3). Considering \(\inf_{g \in W_{\phi }[0,1]}\) on the right-hand side of the last inequality, we deduce the desired result. □

The following corollary can be obtained from Theorem 4.

Corollary 2

Let \(g,g', g'' \in C[0,1]\), then

$$\begin{aligned} \lim_{m \to \infty }m \bigl\{ U_{m,\alpha }^{\beta ,\theta ,\rho } (g;y)-g(y)-g''(y) \chi _{m,\beta ,\theta }^{\rho ,\alpha } \bigr\} =0. \end{aligned}$$

The Grüss-type inequalities were defined and studied by Acu et al. [5], and Gonska and Tachev [20] for a class of sequences of positive linear operators. To obtain a Grüss–Voronovskaja-type theorem for our operators \(U_{m,\alpha }^{\beta ,\theta ,\rho } \), we write

$$ M _{m,\alpha }^{\rho } (g,h;y)= U_{m,\alpha }^{\beta ,\theta ,\rho } (gh;y)- U_{m,\alpha }^{\beta ,\theta ,\rho } (h;y) U_{m,\alpha }^{\beta , \theta ,\rho } (g;y). $$

Theorem 5

Assume that \(\rho >0 \) and \(g,h\in C^{2}[0, 1]\). Then we have

$$\begin{aligned} \lim_{m \to \infty } m M_{m,\alpha }^{\rho } (g,h;y) = \frac{(\rho +1) y(1-y)}{\rho }g'(y)h'(y) \end{aligned}$$

for each \(y\in [0, 1]\).


We write

$$\begin{aligned} M_{m,\alpha }^{\rho } (g,h;y) =& U_{m,\alpha }^{\beta ,\theta ,\rho } (gh;y)-g(y)h(y)-\bigl(g(y)h(y)\bigr)'U_{m, \alpha }^{\beta ,\theta ,\rho } (e_{1}-y;y) \\ &{}-\frac{(g(y)h(y))''}{2!} U_{m,\alpha }^{\beta ,\theta ,\rho } \bigl((e_{1}-y)^{2};y \bigr)-h(y) \biggl\{ U_{m,\alpha }^{\beta ,\theta ,\rho } (g;y)-g(y) \\ &{}-g'(y)U_{m,\alpha }^{\beta ,\theta ,\rho } (e_{1}-y;y)- \frac{g''(y)}{2!} U_{m,\alpha }^{\beta ,\theta ,\rho } \bigl((e_{1}-y)^{2};y \bigr) \biggr\} \\ &{}- U_{m,\alpha }^{\beta ,\theta ,\rho } (g;y) \biggl\{ U_{m,\alpha }^{ \beta ,\theta ,\rho } (h;y)-h(y)-h'(y)U_{m,\alpha }^{\beta ,\theta , \rho } (e_{1}-y;y) \\ &{}-\frac{h''(y)}{2!} U_{m,\alpha }^{\beta ,\theta ,\rho } \bigl((e_{1}-y)^{2};y \bigr) \biggr\} \\ &{}+\frac{1}{2!} U_{m,\alpha }^{\beta ,\theta ,\rho } \bigl((e_{1}-y)^{2};y \bigr) \bigl\lbrace g(y) h''(y)+2g'(y)h'(y)-h''(y)U_{m,\alpha }^{\beta , \theta ,\rho } (g;y) \bigr\rbrace \\ &{}+ U_{m,\alpha }^{\beta ,\theta ,\rho } (e_{1}-y;y) \bigl\lbrace g(y)h'(y)-h'(y)U_{m, \alpha }^{\beta ,\theta ,\rho } (g;y) \bigr\rbrace . \end{aligned}$$

Since the operators \(U_{m,\alpha }^{\beta ,\theta ,\rho }\) converge uniformly to the function \(g(y)\), we have

$$\begin{aligned} m M_{m,\alpha }^{\rho } (g,h;y) =& m \bigl\lbrace U_{m,\alpha }^{ \beta ,\theta ,\rho } (gh;y)-U_{m,\alpha }^{\beta ,\theta ,\rho } (g;y) U_{m, \alpha }^{\beta ,\theta ,\rho } (h;y) \bigr\rbrace \\ =&m g'(y)h'(y) U_{m,\alpha }^{\beta ,\theta ,\rho } \bigl((e_{1}-y)^{2};y\bigr)+ \frac{m}{2!}h''(y) \bigl\lbrace g(y)-U_{m,\alpha }^{\beta ,\theta , \rho } (g;y) \bigr\rbrace \\ &\times U_{m,\alpha }^{\beta ,\theta ,\rho } \bigl((e_{1}-y)^{2};y \bigr)+mh'(y) \bigl\lbrace g(y)-U_{m,\alpha }^{\beta ,\theta ,\rho } (g;y) \bigr\rbrace U_{m,\alpha }^{\beta ,\theta ,\rho } (e_{1}-y;y) \end{aligned}$$

by Theorem 1. We immediately prove the theorem if we pass to the limit because limits of \(m U_{m,\alpha }^{\beta ,\theta ,\rho } (e_{1}-y;y) \) and \(m U_{m,\alpha }^{\beta ,\theta ,\rho } ((e_{1}-y)^{2};y) \) are finite by Corollary 1. □

Theorem 6

For every g in \(C_{B}[0,1]\) (the set of all real-valued bounded and continuous functions defined on \([0,1]\)) such that \(g', g'' \in C_{B}[0,1]\). Then, for each \(y\in [0 ,1]\) and \(\rho >0 \), we have

$$\begin{aligned} \lim_{m \to \infty } m \bigl\{ U_{m,\alpha }^{\beta ,\theta ,\rho } (g;y)-g(y) \bigr\} =(\theta -\beta y)g^{\prime }(y)+\frac{\rho +1}{2\rho }y(1-y)g^{\prime \prime }(y) \end{aligned}$$

uniformly on \([0 ,1]\).


Let \(y\in [0 ,1]\) and \(\rho >0 \). For any g in \(C_{B}[0, 1]\), it follows from Taylor’s theorem that

$$\begin{aligned} g(t)=g(y)+(t-y)g^{\prime }(y)+\frac{1}{2}(t-y)^{2}g^{\prime \prime }(y)+(t-y)^{2} r_{y}(t). \end{aligned}$$

Here, \(r_{y}(t)\) stands for the Peano form of the remainder. Note that \(r_{y}\in C[0, 1]\) and \(r_{y}(t)\to 0\) as \(t\to y\). By applying \(U_{m,\alpha }^{\beta ,\theta ,\rho } (g;y)\) to identity (3.4), we get

$$\begin{aligned} \begin{aligned}[b] &U_{m,\alpha }^{\beta ,\theta ,\rho } (g;y)-g(y)\\ &\quad =g^{\prime }(y) U_{m,\alpha }^{ \beta ,\theta ,\rho } (t-y;y)+\frac{g^{\prime \prime }(y)}{2} U_{m,\alpha }^{ \beta ,\theta ,\rho } \bigl((t-y)^{2};y\bigr)+U_{m,\alpha }^{\beta ,\theta ,\rho } \bigl((t-y)^{2} r_{y}(t);y\bigr). \end{aligned} \end{aligned}$$

Using the Cauchy–Schwarz inequality, we have

$$\begin{aligned} U_{m,\alpha }^{\beta ,\theta ,\rho } \bigl((t-y)^{2} r_{y}(t);y\bigr)\leq \sqrt{ U_{m, \alpha }^{\beta ,\theta ,\rho } \bigl((t-y)^{4};y\bigr)}\sqrt{ U_{m,\alpha }^{ \beta ,\theta ,\rho } \bigl(r^{2}_{y}(t);y\bigr)}. \end{aligned}$$


$$ \lim_{m \to \infty }m \bigl\{ U_{m,\alpha }^{\beta ,\theta ,\rho } \bigl((t-y)^{4};y\bigr) \bigr\} =\frac{6(\rho +1)}{\rho } \bigl[ \bigl(y^{2}-y\bigr) \bigl(2\theta -y^{3}\bigr) \bigr] +4 \theta \bigl(y^{3}-y^{2}\bigr)-12\beta y^{4}+4y $$

from Lemma 1 and \(\lim_{m \to \infty } U_{m,\alpha }^{\beta ,\theta ,\rho } (r^{2}_{y}(t);y)=0\), it means

$$ \lim_{m \to \infty }m\bigl\{ U_{m,\alpha }^{\beta ,\theta ,\rho } \bigl((t-y)^{2} r_{y}(t);y\bigr)\bigr\} =0. $$

Thus we immediately obtain the desired result by applying limit to (3.5) and by considering Corollary 1. □

Numerical analysis

With the help of MATHEMATICA, we numerically examine our theoretical results with a view of convergence and error of approximation of our newly constructed operators (2.3). We first choose the parameters β, θ, ρ, α as \(\beta =0.2\), \(\theta =0.1\), \(\rho =1.5\), \(\alpha =0.9\) and the function

$$ g(y)=cos(2\pi y). $$

In Fig. 1, we examine the convergence of (2.3) for different m values, and in Fig. 2, we compare the convergence of our operators with \(U_{m,\alpha }^{\rho }\).

Figure 1

Convergence of operators for some m values

Figure 2

Comparison of operators

We also study the approximation properties of (2.3) by considering the following function:

$$ g(y)=\frac{y \vert y-\frac{y}{3} \vert }{y^{3}+\frac{1}{2}} \quad \bigl(y \in [0,1]\bigr). $$

We take \(m=20\), \(\alpha =0.9 \), \(\beta =1\), \(\theta =1\) \(\rho =2\) to obtain Fig. 3 to see the approximation of our operators. In Fig. 4, we give the approximations of our operators for \(\alpha =0.9 \), \(\beta =\theta =1\), \(\rho =2\) and for different values of m. We give a table to compare the approximations.

Figure 3

Approximation of operators

Figure 4

Convergence of operators for some m values

It is clear from the Tables 12 and Figures 14 that our new operators are the generalization of the operators presented in the literature. They have fewer errors of approximation if we change the parameters α, β, θ, and ρ. Finally they have better approximations if we increase the values of m.

Table 1 Comparison of operators with maximum errors
Table 2 Maximum error of approximation: \(\Vert g- U_{m,\alpha }^{\beta ,\theta ,\rho } (g;y) \Vert _{\infty }\)

Availability of data and materials

Not applicable.


  1. 1.

    Acar, T., Acu, A.M., Manav, N.: Approximation of functions by genuine Bernstein-Durrmeyer type operators. J. Math. Inequal. 12(4), 975–987 (2018)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Acar, T., Aral, A., Mohiuddine, S.A.: Approximation by bivariate \((p,q)\)-Bernstein-Kantorovich operators. Iran. J. Sci. Technol. Trans. A, Sci. 42, 655–662 (2018)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Acar, T., Mohiuddine, S.A., Mursaleen, M.: Approximation by \((p,q)\)-Baskakov-Durrmeyer-Stancu operators. Complex Anal. Oper. Theory 12, 1453–1468 (2018)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Acu, A.M., Acar, T., Radu, V.A.: Approximation by modified \(U_{n}^{\rho }\) operators. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113, 2715–2729 (2019)

    Article  Google Scholar 

  5. 5.

    Acu, A.M., Gonska, H.H., Rasa, I.: Grüss-type and Ostrowski-type inequalities in approximation theory. Ukr. Math. J. 63(6), 843–864 (2011)

    Article  Google Scholar 

  6. 6.

    Acu, A.M., Radu, V.A.: Approximation by certain operators linking the α-Bernstein and the genuine α-Bernstein-Durrmeyer operators. In: N. Deo, V. Gupta, A.M. Acu, P.N. Agrawal (eds.) Mathematical Analysis I: Approximation Theory, ICRAPAM 2018. Springer Proceedings in Mathematics & Statistics, vol. 306. Springer, Singapore (2020)

    Google Scholar 

  7. 7.

    Aral, A., Erbay, H.: Parametric generalization of Baskakov operators. Math. Commun. 24, 119–131 (2019)

    MathSciNet  Google Scholar 

  8. 8.

    Belen, C., Mohiuddine, S.A.: Generalized weighted statistical convergence and application. Appl. Math. Comput. 219, 9821–9826 (2013)

    MathSciNet  Google Scholar 

  9. 9.

    Bernstein, S.N.: Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités. Commun. Kharkov Math. Soc. 13, 1–2 (1912/1913)

    Google Scholar 

  10. 10.

    Braha, N.L., Srivastava, H.M., Mohiuddine, S.A.: A Korovkin’s type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallée Poussin mean. Appl. Math. Comput. 228, 162–169 (2014)

    MathSciNet  Google Scholar 

  11. 11.

    Cai, Q.-B.: The Bézier variant of Kantorovich type λ-Bernstein operators. J. Inequal. Appl. 2018, Article 90 (2018)

    Article  Google Scholar 

  12. 12.

    Cai, Q.-B., Cheng, W.-T., Çekim, B.: Bivariatea α, q-Bernstein-Kantorovich operators and GBS operators of bivariate α, q-Bernstein-Kantorovich type. Mathematics 7(12), Article ID 1161 (2019)

    Article  Google Scholar 

  13. 13.

    Cai, Q.-B., Lian, B.Y., Zhou, G.: Approximation properties of λ-Bernstein operators. J. Inequal. Appl. 2018, Article 61 (2018)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Chen, W.: On the modified Bernstein-Durrmeyer operator, Report of the Fifth Chinese Conference on Approximation Theory, Zhen Zhou, China (1987)

  15. 15.

    Chen, X., Tan, J., Liu, Z., Xie, J.: Approximation of functions by a new family of generalized Bernstein operators. J. Math. Anal. Appl. 450, 244–261 (2017)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Durrmeyer, J.L.: Une formule dinversion de la transformée de Laplace: applications á la théorie des moments, Thése de 3e cycle Paris (1967)

  17. 17.

    Gonska, H.H., Păltănea, R.: Simultaneous approximation by a class of Bernstein-Durrmeyer operators preserving linear functions. Czechoslov. Math. J. 60(135), 783–799 (2010)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Gonska, H.H., Păltănea, R.: Quantitative convergence theorems for a class of Bernstein-Durrmeyer operators preserving linear functions. Ukr. Math. J. 62, 913–922 (2010)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Gonska, H.H., Raşa, I., Stănilă, E.D.: The eigenstructure of operators linking the Bernstein and the genuine Bernstein-Durrmeyer operators. Mediterr. J. Math. 11(2), 561–576 (2014)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Gonska, H.H., Tachev, G.: Grüss-type inequalities for positive linear operators with second order moduli. Mat. Vesn. 63(4), 247–252 (2011)

    Google Scholar 

  21. 21.

    Goodman, T.N.T., Sharma, A.: A modified Bernstein-Schoenberg operator. In: Sendov, B., et al. (eds.) Proc. Conf. Constructive Theory of Functions, Varna, 1987, pp. 166–173. Publ. House Bulg. Acad. Sci, Sofia (1988)

    Google Scholar 

  22. 22.

    Kadak, U., Mohiuddine, S.A.: Generalized statistically almost convergence based on the difference operator which includes the \((p,q)\)-gamma function and related approximation theorems. Results Math. 73, 9 (2018)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Kajla, A., Miclăuş, D.: Blending type approximation by GBS operators of generalized Bernstein-Durrmeyer type. Results Math. 73, 1 (2018)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Kajla, A., Mohiuddine, S.A., Alotaibi, A., Goyal, M., Singh, K.K.: Approximation by ϑ-Baskakov-Durrmeyer-type hybrid operators. Iran. J. Sci. Technol. Trans. A, Sci. 44, 1111–1118 (2020)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Mohiuddine, S.A.: Approximation by bivariate generalized Bernstein-Schurer operators and associated GBS operators. Adv. Differ. Equ. 2020, 676 (2020)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Mohiuddine, S.A., Acar, T., Alotaibi, A.: Construction of a new family of Bernstein-Kantorovich operators. Math. Methods Appl. Sci. 40, 7749–7759 (2017)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Mohiuddine, S.A., Ahmad, N., Özger, F., Alotaibi, A., Hazarika, B.: Approximation by the parametric generalization of Baskakov-Kantorovich operators linking with Stancu operators. Iran. J. Sci. Technol. Trans. A, Sci. (2020).

    Article  Google Scholar 

  28. 28.

    Mohiuddine, S.A., Alamri, B.A.S.: Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 1955–1973 (2019)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Mohiuddine, S.A., Asiri, A., Hazarika, B.: Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems. Int. J. Gen. Syst. 48(5), 492–506 (2019)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Mohiuddine, S.A., Hazarika, B., Alghamdi, M.A.: Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems. Filomat 33(14), 4549–4560 (2019)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Mohiuddine, S.A., Kajla, A., Mursaleen, M., Alghamdi, M.A.: Blending type approximation by τ-Baskakov-Durrmeyer type hybrid operators. Adv. Differ. Equ. 2020, 467 (2020)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Mohiuddine, S.A., Özger, F.: Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter α. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114, 70 (2020)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Mursaleen, M., Ansari, K.J., Khan, A.: Approximation by a Kantorovich type q-Bernstein-Stancu operators. Complex Anal. Oper. Theory 11(1), 85–107 (2017)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Mursaleen, M., Rahman, S., Ansari, K.J.: Approximation by Jakimoski-Leviatan-Stancu-Durrmeyer type operators. Filomat 33(6), 1517–1530 (2019)

    MathSciNet  Article  Google Scholar 

  35. 35.

    Nasiruzzaman, M., Rao, N., Wazir, S., Kumar, R.: Approximation on parametric extension of Baskakov-Durrmeyer operators on weighted spaces. J. Inequal. Appl. 2019, Article ID 103 (2019)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Özger, F.: Weighted statistical approximation properties of univariate and bivariate λ-Kantorovich operators. Filomat 33(11), 1–15 (2019)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Özger, F.: On new Bézier bases with Schurer polynomials and corresponding results in approximation theory. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 69(1), 376–393 (2020)

    MathSciNet  Google Scholar 

  38. 38.

    Özger, F., Demirci, K., Yıldız, S.: Approximation by Kantorovich variant of λ-Schurer operators and related numerical results. In: Topics in Contemporary Mathematical Analysis and Applications, pp. 77–94. CRC Press, Boca Raton (2020). ISBN 9780367532666

    Google Scholar 

  39. 39.

    Özger, F., Srivastava, H.M., Mohiuddine, S.A.: Approximation of functions by a new class of generalized Bernstein-Schurer operators. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114, 173 (2020)

    MathSciNet  Article  Google Scholar 

  40. 40.

    Păltănea, R.: Sur un operateur polynômial défini sur l’ensemble des fonctions intégrables. Babeş Bolyai Univ., Fac. Math., Res. Semin. 2, 101–106 (1983)

    Google Scholar 

  41. 41.

    Păltănea, R.: A class of Durrmeyer type operators preserving linear functions. Ann. Tiberiu Popoviciu Sem. Funct. Equat. Approxim. Convex., Cluj-Napoca 5, 109–117 (2007)

    Google Scholar 

  42. 42.

    Rao, N., Nasiruzamman, M.: A generalized Dunkl type modifications of Phillips operators. J. Inequal. Appl. 2018, 323 (2018)

    MathSciNet  Article  Google Scholar 

  43. 43.

    Srivastava, H.M., Özger, F., Mohiuddine, S.A.: Construction of Stancu-type Bernstein operators based on Bézier bases with shape parameter λ. Symmetry 11(3), Article ID 316 (2019)

    Article  Google Scholar 

  44. 44.

    Stancu, D.D.: Approximation of functions by a new class of linear polynomial operators. Rev. Roum. Math. Pures Appl. 13(8), 1173–1194 (1968)

    MathSciNet  Google Scholar 

  45. 45.

    Wafi, A., Rao, N.: Szász-gamma operators based on Dunkl analogue. Iran. J. Sci. Technol. Trans. A, Sci. 43, 213–223 (2019)

    MathSciNet  Article  Google Scholar 

  46. 46.

    Wafi, A., Rao, N., Deepmala: Approximation properties of \((p,q)\)-variant of Stancu-Schurer operators. Bol. Soc. Parana. Mat. 37(4), 137–151 (2019)

    MathSciNet  Article  Google Scholar 

Download references


This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (RG-84-130-38). The authors, therefore, acknowledge with thanks DSR for technical and financial support.


This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (RG-84-130-38).

Author information




The authors contributed equally and significantly in writing this paper. The authors read and approved the final manuscript.

Corresponding author

Correspondence to S. A. Mohiuddine.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alotaibi, A., Özger, F., Mohiuddine, S.A. et al. Approximation of functions by a class of Durrmeyer–Stancu type operators which includes Euler’s beta function. Adv Differ Equ 2021, 13 (2021).

Download citation


  • 41A35
  • 41A36
  • 41A10


  • Beta function
  • Jacobi weights
  • α-Bernstein operators
  • Durrmeyer operators
  • Voronovskaja-type result
  • Modulus of continuity