Skip to main content

Trigonometric approximation of functions \(f(x,y)\) of generalized Lipschitz class by double Hausdorff matrix summability method

Abstract

In this paper, we establish a new estimate for the degree of approximation of functions \(f(x,y)\) belonging to the generalized Lipschitz class \(Lip ((\xi _{1}, \xi _{2} );r )\), \(r \geq 1\), by double Hausdorff matrix summability means of double Fourier series. We also deduce the degree of approximation of functions from \(Lip ((\alpha ,\beta );r )\) and \(Lip(\alpha ,\beta )\) in the form of corollary. We establish some auxiliary results on trigonometric approximation for almost Euler means and \((C, \gamma , \delta )\) means.

Introduction

The study of various summability means of double Fourier series have been done by several authors, for example, Chow [2], Sharma [11], Łenski [6], and Ustina [15]. Dealing with the first arithmetic means of double Fourier series, Hasegawa [4] obtained the following:

Theorem A

If a continuous function \(f(x, y)\) of period 2π with respect to both x and y belongs to \(Lip (\alpha , \beta )\), where \(0<\alpha <l\) and \(0<\beta <1\), then

$$ \bigl\vert \sigma _{m,n}(x,y) -f(x,y) \bigr\vert = O \bigl( m^{-\alpha }+n^{- \beta } \bigr) $$

uniformly in \((x, y)\) as m and n independently tend to infinity.

If \(\alpha =\beta =1 \), then

$$ \bigl\vert \sigma _{m,n}(x,y) -f(x,y) \bigr\vert = O \bigl( m^{-1} \log m +n^{-1} \log n \bigr) $$

uniformly in \((x, y)\) as m and n independently tend to infinity.

Siddiqui and Mohammadzadeh [12] investigated the approximation by Cesàro and B means of double Fourier series. Stepanets [13, 14] has established estimates of approximation for certain classes of periodic functions and differentiable periodic functions of two variables by linear methods of summation of their Fourier sums. Móricz and Shi [8] proved the following result for the approximation to continuous functions by Cesàro means of double Fourier series.

Theorem B

If \(f \in E(\alpha , \beta )\), \(0 < \alpha \), \(\beta \leq 1\), \(\gamma , \delta \geq 0\), then

$$\begin{aligned} \bigl\| \sigma _{mn}^{\gamma \delta } (f,x,y) - f(x,y\bigr\| =& O \biggl( \frac{1}{(m+1)^{\alpha }}+ \frac{1}{(n+1)^{\beta }} \biggr) \quad \textit{if } 0 < \alpha , \beta \leq 1, \\ =& O \biggl( \frac{1}{(m+1)^{\alpha }}+ \frac{\log (n+2)}{(n+1)} \biggr) \quad \textit{if } 0 < \alpha < \beta = 1, \\ =& O \biggl( \frac{\log (m+2)}{(m+1)}+ \frac{\log (n+2)}{(n+1)} \biggr) \quad \textit{if } \alpha = \beta = 1. \end{aligned}$$

The degree of approximation using Gauss–Weierstrass integrals was also investigated by Khan and Ram [5]. Recently, error and bounds of certain bivariate functions by almost Euler means of double Fourier series for the functions of Lipschitz and Zygmund classes was estimated by Rathor and Singh [9]. To find the approximation of functions of two-dimensional torus, in this paper, we obtain a new estimate for trigonometric approximation of functions \(f(x,y)\) of generalized Lipschitz class by double Hausdorff matrix summability method of double Fourier series. For other summability methods of approximation, see [1] and [7].

Definitions and preliminaries

Let \(\sum_{m=0}^{\infty }\sum_{n=0}^{\infty } g_{m,n}\) be double series with the sequence of \((m,n)\)th partial sums

$$ s_{m,n}=\sum_{j=0}^{m}\sum _{k=0}^{n} g_{j,k}. $$

A double Hausdorff matrix has the entries

$$ h_{m,n}^{j,k}= \binom{m }{j} \binom{n }{k} \Delta ^{m-j}_{1} \Delta ^{n-k}_{2} \mu _{j,k}, $$

where \(\{ \mu _{j,k} \} \) is any real or complex sequence, and

$$ \Delta ^{m-j}_{1} \Delta ^{n-k}_{2} \mu _{j,k} = \sum_{w=0}^{m-j} \sum _{z=0}^{n-k} (-1)^{j+k} \binom{m-j }{w} \binom{n-k }{z} \mu _{j+w,k+z} . $$

If \(t_{m,n}^{H} = \sum_{j=0}^{m}\sum_{k=0}^{n} h_{m,n}^{j,k} s_{j,k} \rightarrow g \) as \(m \rightarrow \infty \) and \(n \rightarrow \infty \), then \(\sum_{m=0}^{\infty }\sum_{n=0}^{\infty } g_{m,n}\) is said to be summable to the sum g by the double Hausdorff matrix summability method [15].

A necessary and sufficient condition for double Hausdorff matrix summability method to be regular is there exists a function \(\chi (s,t) \in BV[0,1]\times [0,1]\) such that

$$ \int _{0}^{1} \int _{0}^{1} \bigl\vert d \chi (s,t) \bigr\vert < \infty $$

and

$$ \mu _{m,n} = \int _{0}^{1} \int _{0}^{1} s^{m} t^{n} \,d \chi (s,t), $$

where \(\chi (s,0)=\chi (s,0^{+})=\chi (0^{+},t)=\chi (0,t) = 0\), \(0\leq s \), \(t \leq 1 \), and \(\chi (1,1)-\chi (1,0)-\chi (0,1)+\chi (0,0) = 1\) [10].

It is easy to see that the absolute value of the measure \(d \chi (s,t)\) can me majorized by \(K_{1} K_{2} \,ds \,dt\) for some constants \(K_{1}\) and \(K_{2}\) (see [16]).

The important particular cases of double Hausdorff matrix summability means are as follows:

  1. 1

    Almost Euler summability means (\((E,q_{1},q_{2})\) means) if \(\mu _{m,n} = \frac{1}{(1+q_{1})^{m}}\frac{1}{(1+q_{2})^{n}}\).

  2. 2

    \((E,1,1)\) means if \(q_{1}=1\) and \(q_{2}=1\) in \((E,q_{1},q_{2})\) means.

  3. 3

    \((C, \gamma , \delta )\) means if \(\mu _{m,n} = \frac{1}{A^{\gamma }_{m}}\frac{1}{A^{\delta }_{n}}\), where \(\gamma , \delta \geq -1\) and \(A^{\gamma }_{m} = \binom{{\gamma +m} }{m }\), \(A^{\delta }_{n} = \binom{{\delta +n} }{n }\).

  4. 4

    \((C,1,1)\) means if \(\gamma =\delta =1\) in \((C, \gamma , \delta )\) means.

Let \(f(x,y)\) be a Lebesgue-integrable function of period 2π with respect to both variables x and y and summable in the fundamental square \(Q:(-\pi ,\pi ) \times (-\pi ,\pi )\). The double Fourier series of \(f(x,y)\) is given by

$$ \begin{aligned} f(x,y)&=\sum_{m=0}^{\infty } \sum_{n=0}^{\infty } \lambda _{m,n} [ a_{m,n} \cos mx \cos ny +b_{m,n} \sin mx \cos ny \\ &\quad{} + c_{m,n} \cos mx \sin ny + d_{m,n} \sin mx \cos ny ] \end{aligned} $$
(1)

with \((m,n)\)th partial sums \(s_{m,n}(f;(x,y))\), where

$$\begin{aligned}& \lambda _{m,n}= \textstyle\begin{cases} 1/4 & \text{for } m=n=0, \\ 1/2 & \text{for } m>0, n=0 \mbox{ and } m=0, n>0, \\ 1 & \text{for } m>0, n>0 , \end{cases}\displaystyle \\& a_{m,n}=\pi ^{-2} \iint _{Q} f(x,y) \cos mx \cos ny \,dx \,dy, \end{aligned}$$

and similar expressions for \(b_{m,n}\), \(c_{m,n}\), and \(d_{m,n}\) [3].

We define the \(L^{r} \) norm by

$$ \Vert f \Vert _{r}= \textstyle\begin{cases} \{ \frac{1}{4\pi } \int _{0}^{2\pi } \int _{0}^{2\pi } \vert f(x,y) \vert ^{r} \,dx \,dy \} ^{1/r}, & r\geq 1, \\ \operatorname*{ess\,sup}_{0\leq x,y \leq 2\pi } \vert f(x,y) \vert , & r=\infty . \end{cases} $$

The degree of approximation of a function \(f :\mathbb{R}^{2} \rightarrow \mathbb{R}\) by a trigonometric polynomial [17]

$$ \begin{aligned} t_{m,n}(x,y)&=\sum _{j=0}^{m}\sum_{k=0}^{n} \lambda _{m,n} [ a_{j,k} \cos mx \cos ny +b_{j,k} \sin mx \cos ny \\ &\quad {}+ c_{j,k} \cos mx \sin ny + d_{j,k} \sin mx \cos ny ] \end{aligned} $$

of order \((m+n)\) is defined by

$$E_{m,n}\bigl(f,L^{r}\bigr) =\min_{0\leq x,y \leq2\pi} \Vert t_{m,n}-f \Vert _{r} . $$

A function \(f :\mathbb{R}^{2} \rightarrow \mathbb{R}\) of two variables x and y is said to belong to the class \(Lip(\alpha ,\beta )\) [4] if

$$ \bigl\vert f(x+u,y+v)-f(x,y) \bigr\vert =O\bigl( \vert u \vert ^{\alpha } + \vert v \vert ^{\beta }\bigr), \quad 0< \alpha \leq 1, 0< \beta \leq 1, $$

to the class \(Lip ((\alpha ,\beta );r )\) if

$$ \biggl\{ \frac{1}{4\pi } \int _{0}^{2\pi } \int _{0}^{2\pi } \bigl\vert f(x+u,y+v)-f(x,y) \bigr\vert ^{r} \,dx \,dy \biggr\} ^{1/r}= O \bigl( \vert u \vert ^{\alpha } + \vert v \vert ^{\beta } \bigr),\quad r\geq 1, $$

and to the class \(Lip ((\xi _{1},\xi _{2});r )\) if

$$ \biggl\{ \frac{1}{4\pi } \int _{0}^{2\pi } \int _{0}^{2\pi } \bigl\vert f(x+u,y+v)-f(x,y) \bigr\vert ^{r} \,dx \,dy \biggr\} ^{1/r}= O \bigl(\xi _{1}(u) + \xi _{2}(v) \bigr),\quad r\geq 1, $$

where \(\xi _{1}\) and \(\xi _{2}\) are moduli of continuity, that is, nonnegative nondecreasing continuous functions such that \(\xi _{1}(0) =\xi _{2}(0) = 0\), \(\xi _{1}(u_{1} + u_{2}) \le \xi _{1}(u_{1}) + \xi _{1}(u_{2})\), and \(\xi _{2}(v_{1} + v_{2}) \le \xi _{2}(v_{1}) + \xi _{2}(v_{2})\).

If \(\xi _{1}(u)=u^{\alpha }\) and \(\xi _{2}(v)=v^{\beta }\), \(0<\alpha \leq 1\), \(0 < \beta \leq 1\), then the class \(Lip ((\xi _{1},\xi _{2});r )\) coincides with \(Lip ((\alpha ,\beta );r )\). As \(r \rightarrow \infty \), \(Lip ((\alpha ,\beta );r )\) reduces to \(Lip(\alpha ,\beta )\). Clearly, \(Lip(\alpha ,\beta ) \subseteq Lip ((\alpha ,\beta );r ) \subseteq Lip ((\xi _{1},\xi _{2});r ) \).

We define the forward difference operator Δ as \(\Delta \mu _{k} = \mu _{k} - \mu _{k+1} \); also, \(\Delta ^{n+1}\mu _{k}=\Delta (\Delta ^{n} \mu _{k} )\), \(k\geq 0\). We denote

$$\begin{aligned}& \begin{aligned} \phi (u,v)&=(1/4) \bigl[f(x+u,y+v)+f(x+u,y-v) +f(x-u,y+v)+ f(x-u,y-v) \\ &\quad{} -4f(x,y) \bigr], \end{aligned} \\& M_{m}^{H}(u)= \frac{K_{1}}{2\pi }\sum _{j=0}^{m} \int _{0}^{1} \binom{m }{j} s^{j} (1-s)^{m-j} \,ds \frac{\sin (j+\frac{1}{2} )u}{\sin \frac{u}{2}}, \\& K_{n}^{H}(v) = \frac{K_{2}}{2\pi }\sum _{k=0}^{n} \int _{0}^{1} \binom{N }{K} t^{k} (1-t)^{n-k} \,dt \frac{\sin (k+\frac{1}{2} )v}{\sin \frac{v}{2}}. \end{aligned}$$

Result

The object of this paper is obtaining the degree of approximation of functions \(f(x,y)\) of generalized Lipschitz class by double Hausdorff matrix summability means of its double Fourier series:

Theorem 1

If \(f(x,y)\) is a 2π periodic function with respect to both variables x and y, Lebesgue integrable in \((-\pi ,\pi )\times (-\pi ,\pi )\) and belonging to the class \(Lip ((\xi _{1}, \xi _{2});r )\) (\(r \geq 1\)), then the degree of approximation of \(f(x,y)\) by double Hausdorff matrix summability means

$$ t_{m,n}^{H}= \sum_{j=0}^{m} \sum_{k=0}^{n} \int _{0}^{1} \int _{0}^{1} \binom{m }{j} \binom{n }{k} s^{j}(1-s)^{m-j} t^{k}(1-t)^{n-k} \,d \chi (s,t) s_{j,k} $$

of double Fourier series (1) satisfies

$$ \begin{gathered} \bigl\Vert t_{m,n}^{H} - f \bigr\Vert _{r} = O \biggl(\frac{1}{(m+1)} \int _{\frac{1}{m+1}}^{\pi } \frac{ \xi _{1}(u)}{u^{2}} \,du + \frac{1}{(n+1)} \int ^{\pi }_{\frac{1}{n+1}} \frac{\xi _{2}(v)}{v^{2}} \,dv \biggr) \\ \quad \textit{for } m,n=0,1,2,\dots . \end{gathered} $$
(2)

Lemmas

For the proof of our theorems, we need the following lemmas.

Lemma 1

\(\vert M_{m}^{H}(u) \vert = O (m+1 )\) for \(0< u \leq \frac{1}{m+1}\), and \(\vert K_{n}^{H}(v) \vert = O (n+1 )\) for \(0< v \leq \frac{1}{n+1}\).

Proof

Since \(\vert \sin mu \vert \leq mu\) for \(0< u\leq \frac{1}{m+1}\) and \(\sin (u/2)\geq (u/\pi )\), we have

$$\begin{aligned} \bigl\vert M_{m}^{H}(u) \bigr\vert =& \Biggl\vert \frac{K_{1}}{2\pi }\sum_{j=0}^{m} \int _{0}^{1} \binom{m }{j} s^{j} (1-s)^{m-j} \,ds \frac{\sin (j+\frac{1}{2} )u}{\sin \frac{u}{2}} \Biggr\vert \\ =& \frac{K_{1}}{2\pi }\sum_{j=0}^{m} \int _{0}^{1} \binom{m }{j} s^{j} (1-s)^{m-j} \,ds \frac{ \vert \sin (j+\frac{1}{2} )u \vert }{ \vert \sin \frac{u}{2} \vert } \\ \leq & \frac{K_{1}}{2\pi }\sum_{j=0}^{m} \int _{0}^{1} \binom{m }{j} s^{j} (1-s)^{m-j} \,ds \frac{ (j+ \frac{1}{2} )u }{ \vert \frac{u}{\pi } \vert } \\ =& K_{1} \pi \biggl(m+ \frac{1}{2} \biggr) \int _{0}^{1} \sum_{j=0}^{m} \binom{m }{j} s^{j} (1-s)^{m-j} \,ds \\ =& K_{1} \pi \biggl(m+ \frac{1}{2} \biggr) \int _{0}^{1} ( s+1-s)^{m} \,ds \\ =& O ( m+1 ). \end{aligned}$$

Similarly, for \(0< v \leq \frac{1}{n+1}\),

$$\big\vert K_{n}^{H}(v) \big\vert = O ( n+1 ).$$

 □

Lemma 2

\(\vert M_{m}^{H}(u) \vert = O (\frac{1}{(j+1)u^{2}} )\) for \(\frac{1}{m+1} < u \leq \pi \), and \(\vert K_{n}^{H}(v) \vert = O (\frac{1}{(k+1)v^{2}} )\) for \(\frac{1}{n+1} < v \leq \pi \).

Proof

Since \(\sin (m+1) u \leq 1\) for \(\frac{1}{m+1} < u \leq \pi \) and \(\sin (u/2)\geq (u/\pi )\), we get

$$\begin{aligned} \Biggl\vert \sum_{j=0}^{m} \int _{0}^{1} \binom{m }{j} s^{j} (1-s)^{m-j} e^{i (j+\frac{1}{2} )u} \,ds \Biggr\vert =& \int _{0}^{1} e^{iu/2} \sum _{j=0}^{m} \binom{m }{j} s^{j} (1-s)^{m-j} e^{iju} \,ds \\ =& \int _{0}^{1} e^{iu/2} \bigl(1-s+s e^{iu} \bigr)^{m} \,ds \\ =& O \biggl(\frac{ 1}{(m+1)} \biggr) \biggl( \frac{e^{iu/2} (e^{i(m+1)u}-1 )}{e^{iu}-1} \biggr). \end{aligned}$$

Equating the imaginary parts of both sides, we get

$$ \Biggl\vert \sum_{j=0}^{m} \int _{0}^{1} \binom{m }{j} s^{k} (1-s)^{m-j} \sin \biggl(k+\frac{1}{2} \biggr) \,ds \Biggr\vert = O \biggl( \frac{1}{(m+1)u} \biggr). $$

Therefore

$$\begin{aligned} \bigl\vert M_{m}^{H}(u) \bigr\vert =& \Biggl\vert \frac{K_{1}}{2\pi } \sum_{j=0}^{m} \int _{0}^{1} \binom{ m }{j } s^{j} (1-s)^{m-j} \frac{\sin (j+\frac{1}{2} )u}{\sin \frac{u}{2}} \,ds \Biggr\vert \\ \leq & \frac{K_{1}}{2 u} \Biggl\vert \sum_{j=0}^{m} \int _{0}^{1} \binom{ m }{j } s^{j} (1-s)^{m-j} \sin \biggl(j+\frac{1}{2} \biggr)u \,ds \Biggr\vert \\ =& O \biggl(\frac{1}{(m+1) u^{2}} \biggr). \end{aligned}$$

Similarly, for \(\frac{1}{n+1} < v \leq \pi \),

$$\big\vert K_{n}^{H}(v) \big\vert = O \biggl(\frac{1}{(n+1)v^{2}} \biggr).$$

 □

Lemma 3

If \(f(x,y)\in Lip ((\xi _{1},\xi _{2});r )\) (\(r\geq 1\)), then \(\Vert \phi (u,v)) \Vert _{r} = O ( \xi _{1}(u) + \xi _{2}(v) )\).

Proof

Clearly,

$$\begin{aligned}& \begin{aligned} \bigl\vert \phi (u,v) \bigr\vert &= \frac{1}{4} \bigl\vert f(x+u,y+v)+ f(x+u,y-v) +f(x-u,y+v) +f(x-u,y-v)-4f(x,y) \bigr\vert \\ &\leq \frac{1}{4} \bigl[ \bigl\vert f(x+u,y+v)-f(x,y) \bigr\vert + \bigl\vert f(x+u,y-v)-f(x,y) \bigr\vert \\ &\quad {} + \bigl\vert f(x-u,y+v)-f(x,y) \bigr\vert + \bigl\vert f(x-u,y-v)-f(x,y) \bigr\vert \bigr], \end{aligned} \\& \begin{aligned} \bigl\Vert \phi (u,v) \bigr\Vert _{r} &\leq \frac{1}{4} \bigl[ \bigl\Vert f(x+u,y+v)-f(x,y) \bigr\Vert _{r} + \bigl\Vert f(x+u,y-v)-f(x,y) \bigr\Vert _{r} \\ &\quad {} + \bigl\Vert f(x-u,y+v)-f(x,y) \bigr\Vert _{r} + \bigl\Vert f(x-u,y-v)-f(x,y) \bigr\Vert _{r} \bigr] \\ &= O \bigl( \xi _{1}(u)+\xi _{2}(v) \bigr). \end{aligned} \end{aligned}$$

 □

Proof of Theorem 1

The \((m,n)\)th partial sum of the double Fourier series (1) is given by

$$ s_{m,n}\bigl(f;(x,y)\bigr)-f(x,y)=\frac{1}{4\pi ^{2}} \int _{0}^{\pi } \int _{0}^{\pi } \phi (u,v) \frac{\sin (m+\frac{1}{2})u \sin (n+\frac{1}{2})v }{\sin \frac{u}{2} \sin \frac{v}{2}} \,du \,dv. $$

Denoting the double Hausdorff matrix sums of \(s_{m,n} \) by \(t_{m,n}^{H}\), we have

$$\begin{aligned}& \begin{aligned}[b] t_{m,n}^{H} (x,y) -f(x,y) &= \sum _{j=0}^{m} \sum_{k=0}^{n} h_{m,n}^{j,k} \bigl\{ s_{j,k}\bigl(f;(x,y) \bigr)-f(x,y) \bigr\} \\ &= \int _{0}^{\pi } \int _{0}^{\pi } \phi (u,v) \sum _{j=0}^{m} \sum_{k=0}^{n} h_{m,n}^{j,k} \frac{\sin (j+\frac{1}{2})u \sin (k+\frac{1}{2})v }{\sin \frac{u}{2} \sin \frac{v}{2}} \,du \,dv \\ &= \int _{0}^{\pi } \int _{0}^{\pi } \phi (u,v) M_{m}^{H}(u) K_{n}^{H}(v) \,du \,dv, \end{aligned} \end{aligned}$$
(3)
$$\begin{aligned}& \bigl\Vert t_{m,n}^{H} - f \bigr\Vert _{r} = \int _{0}^{\pi } \int _{0}^{\pi } \bigl\Vert \phi (u,v) \bigr\Vert _{r} M_{m}^{H}(u) K_{n}^{H}(v) \,du \,dv \\& \hphantom{\bigl\Vert t_{m,n}^{H} - f \bigr\Vert _{r}}= \biggl( \int _{0}^{\frac{1}{m+1}} \int _{0}^{ \frac{1}{n+1}} + \int _{0}^{\frac{1}{m+1}} \int ^{\pi }_{ \frac{1}{n+1}}+ \int ^{\pi }_{\frac{1}{m+1}} \int _{0}^{ \frac{1}{n+1}} + \int ^{\pi }_{\frac{1}{m+1}} \int ^{ \pi }_{\frac{1}{n+1}} \biggr) \\ \end{aligned}$$
(4)
$$\begin{aligned}& \hphantom{\bigl\Vert t_{m,n}^{H} - f \bigr\Vert _{r}} \quad \bigl\Vert \phi (u,v) \bigr\Vert _{r} M_{m}^{H}(u) K_{n}^{H}(v) \,du \,dv \\& \hphantom{\bigl\Vert t_{m,n}^{H} - f \bigr\Vert _{r}}= I_{1}+I_{2}+I_{3}+I_{4}, \quad \text{say}. \end{aligned}$$
(5)

Using Lemmas 1 and 3, we obtain

$$\begin{aligned} \vert I_{1} \vert =& \int _{0}^{\frac{1}{m+1}} \int _{0}^{ \frac{1}{n+1}} \bigl\Vert \phi (u,v) \bigr\Vert _{r} M_{m}^{H}(u) K_{n}^{H}(v) \,du \,dv \\ =& O \biggl( \int _{0}^{\frac{1}{m+1}} \int _{0}^{ \frac{1}{n+1}} \bigl(\xi _{1}(u)+\xi _{2}(v)\bigr) (m+1) (n+1) \,du \,dv \biggr) \\ =& O \biggl( (m+1) (n+1) \int _{0}^{\frac{1}{m+1}} \int _{0}^{\frac{1}{n+1}} \bigl(\xi _{1}(u)+\xi _{2}(v)\bigr) \,du \,dv \biggr) \\ =&O \biggl[(m+1) (n+1) \biggl( \int _{0}^{\frac{1}{m+1}} \int _{0}^{\frac{1}{n+1}} \xi _{1}(u)\,du \,dv + \int _{0}^{ \frac{1}{m+1}} \int _{0}^{\frac{1}{n+1}} \xi _{2}(v)\,du \,dv \biggr) \biggr] \\ =&O \biggl[(m+1) (n+1) \biggl( \int _{0}^{\frac{1}{m+1}} \frac{\xi _{1}(u)}{n+1} \,du + \int _{0}^{\frac{1}{m+1}} \frac{\xi _{2} (\frac{1}{(n+1)} )}{n+1} \,dv \biggr) \biggr] \\ =& O \biggl[(m+1) (n+1) \biggl( \frac{\xi _{1} (\frac{1}{(m+1)} )}{(m+1)(n+1)} + \frac{\xi _{2} (\frac{1}{(n+1)} )}{(m+1)(n+1)} \biggr) \biggr] \\ =& O \biggl( \xi _{1} \biggl(\frac{1}{m+1} \biggr) +\xi _{2} \biggl( \frac{1}{n+1} \biggr) \biggr). \end{aligned}$$

Again by Lemmas 13, we have

$$\begin{aligned} \vert I_{2} \vert =&O \biggl[ \int _{0}^{\frac{1}{m+1}} \int ^{ \pi }_{\frac{1}{n+1}} \bigl(\xi _{1}(u)+\xi _{2}(v)\bigr) \frac{(m+1)}{(n+1)v^{2}} \,du \,dv \biggr] \\ =& O \biggl[ \frac{(m+1)}{(n+1)} \biggl( \int _{0}^{ \frac{1}{m+1}} \xi _{1}(u) \,du \int ^{\pi }_{\frac{1}{n+1}} \frac{dv}{v^{2}} + \int _{0}^{\frac{1}{m+1}} \,du \int ^{ \pi }_{\frac{1}{n+1}} \frac{\xi _{2}(v)}{v^{2}} \,dv \biggr) \biggr] \\ =& O \biggl[ \frac{(m+1)}{(n+1)} \biggl(\xi _{1} \biggl( \frac{1}{m+1} \biggr)\frac{1}{(m+1)} \biggl((n+1)-\frac{1}{\pi } \biggr) + \frac{1}{(m+1)} \int ^{\pi }_{\frac{1}{n+1}} \frac{\xi _{2}(v)}{v^{2}} \,dv \biggr) \biggr] \\ =& O \biggl( \xi _{1} \biggl(\frac{1}{m+1} \biggr) + \frac{1}{(n+1)} \int ^{\pi }_{\frac{1}{n+1}} \frac{\xi _{2}(v)}{v^{2}} \,dv \biggr). \end{aligned}$$
(6)

Similarly,

$$\begin{aligned} \vert I_{3} \vert =&O \biggl[ \int _{\frac{1}{m+1}}^{\pi } \int ^{ \frac{1}{n+1}}_{0} \bigl(\xi _{1}(u)+\xi _{2}(v)\bigr) \frac{(n+1)}{(m+1)u^{2}} \,du \,dv \biggr] \\ =& O \biggl[ \frac{(n+1)}{(m+1)} \biggl( \int _{\frac{1}{m+1}}^{ \pi } \frac{ \xi _{1}(u)}{u^{2}} \,du \int ^{\frac{1}{n+1}}_{0} \,dv + \int _{\frac{1}{m+1}}^{\pi } \frac{du}{u^{2}} \int ^{ \frac{1}{n+1}}_{0} \xi _{2}(v) \,dv \biggr) \biggr] \\ =& O \biggl(\frac{1}{(m+1)} \int _{\frac{1}{m+1}}^{\pi } \frac{ \xi _{1}(u)}{u^{2}} \,du + \xi _{2} \biggl(\frac{1}{n+1} \biggr) \biggr). \end{aligned}$$
(7)

Also, using Lemmas 2 and 3, we get

$$\begin{aligned} \vert I_{4} \vert =& O \biggl[ \int _{\frac{1}{m+1}}^{\pi } \int ^{ \pi }_{\frac{1}{n+1}} \bigl(\xi _{1}(u)+\xi _{2}(v)\bigr) \frac{1}{(m+1)u^{2}} \frac{1}{(n+1)v^{2}}\,du \,dv \biggr] \\ =& O \biggl[ \frac{1}{(m+1)(n+1)} \biggl( \int ^{\pi }_{ \frac{1}{m+1}} \frac{\xi _{1}}{u^{2}} \,du \int _{\frac{1}{n+1}}^{ \pi } \frac{1}{v^{2}} \,dv+ \int ^{\pi }_{\frac{1}{m+1}} \frac{1}{u^{2}} \,du \int ^{\pi }_{\frac{1}{n+1}} \frac{\xi _{2}}{v^{2}} \,dv \biggr) \biggr] \\ =& O \biggl(\frac{1}{(m+1)} \int _{\frac{1}{m+1}}^{\pi } \frac{ \xi _{1}(u)}{u^{2}} \,du + \frac{1}{(n+1)} \int ^{\pi }_{ \frac{1}{n+1}} \frac{\xi _{2}(v)}{v^{2}} \,dv \biggr). \end{aligned}$$
(8)

Next,

$$\begin{aligned}& \begin{aligned} \frac{1}{(m+1)} \int ^{\pi }_{\frac{1}{m+1}} \frac{\xi _{1}(u)}{u^{2}} \,du &\geq \frac{1}{(m+1)} \xi _{1} \biggl(\frac{1}{m+1} \biggr) \int ^{ \pi }_{\frac{1}{m+1}} \frac{1}{u^{2}} \,dt \\ &=\frac{1}{(m+1)} \xi _{1} \biggl(\frac{1}{m+1} \biggr) \biggl\{ - \frac{1}{u} \biggr\} ^{\pi }_{\frac{1}{m+1}} \\ &=\xi _{1} \biggl(\frac{1}{m+1} \biggr) \biggl\{ 1- \frac{1}{(m+1)\pi } \biggr\} \\ &\geq \frac{1}{2} \xi _{1} \biggl(\frac{1}{m+1} \biggr), \end{aligned} \\& \text{or}\quad \xi _{1} \biggl(\frac{1}{m+1} \biggr) = O \biggl( \frac{1}{(m+1)} \int ^{\pi }_{\frac{1}{m+1}} \frac{\xi _{1}(u)}{u^{2}} \,dt \biggr) . \end{aligned}$$
(9)

Similarly,

$$ \xi _{2} \biggl(\frac{1}{(n+1)} \biggr) = O \biggl( \frac{1}{(n+1)} \int ^{\pi }_{\frac{1}{n+1}} \frac{\xi _{2}(v)}{v^{2}} \,dt \biggr). $$
(10)

Combining equations (5)–(10), we have

$$ \bigl\Vert t_{m,n}^{H} - f \bigr\Vert _{r} = O \biggl(\frac{1}{(m+1)} \int _{\frac{1}{m+1}}^{\pi } \frac{ \xi _{1}(u)}{u^{2}} \,du + \frac{1}{(n+1)} \int ^{\pi }_{\frac{1}{n+1}} \frac{\xi _{2}(v)}{v^{2}} \,dv \biggr) . $$

This completes the proof of Theorem 1.

Corollaries

From the main theorem we derive the following corollaries.

Corollary 1

If \(f(x,y)\) is a 2π periodic function with respect to both variables x and y, Lebesgue integrable in \((-\pi ,\pi )\times (-\pi ,\pi )\) and belonging to the class \(Lip ((\alpha , \beta );r )\) (\(r \geq 1 \)), then the degree of approximation of \(f(x,y)\) by means \(t_{m,n}^{H}\) of double Fourier series (1) satisfies

$$\begin{aligned}& \bigl\Vert t_{m,n}^{H}-f \bigr\Vert _{r}= \textstyle\begin{cases} O ( (m+1)^{-\alpha }+(n+1)^{-\beta } ), & 0< \alpha < 1, 0< \beta < 1, \\ O ( (m+1)^{-\alpha }+ \frac{\log (n+1)\pi }{(n+1)} ), & 0< \alpha < 1, \beta =1, \\ O ( \frac{\log (m+1)\pi }{(m+1)} +(n+1)^{-\beta } ), & \alpha =1, 0< \beta < 1, \\ O ( \frac{\log (m+1)\pi }{(m+1)} + \frac{\log (n+1)\pi }{(n+1)} ), & \alpha =\beta =1, \end{cases}\displaystyle \end{aligned}$$

for \(m,n=0,1,2,\dots \).

Corollary 2

If \(f(x,y)\) is a 2π periodic function with respect to both variables x and y, Lebesgue integrable in \((-\pi ,\pi )\times (-\pi ,\pi )\) and belonging to the class \(Lip(\alpha ,\beta )\), then the degree of approximation of \(f(x,y)\) by double Hausdorff matrix summability means \(t_{m,n}^{H} \) of double Fourier series (1) satisfies

$$\begin{aligned}& \bigl\Vert t_{m,n}^{H}-f \bigr\Vert _{\infty }= \textstyle\begin{cases} O ( (m+1)^{-\alpha }+(n+1)^{-\beta } ), & 0< \alpha < 1, 0< \beta < 1, \\ O ( (m+1)^{-\alpha }+ \frac{\log (n+1)\pi }{(n+1)} ), & 0< \alpha < 1, \beta =1, \\ O ( \frac{\log (m+1)\pi }{(m+1)} +(n+1)^{-\beta } ), & \alpha =1, 0< \beta < 1, \\ O ( \frac{\log (m+1)\pi }{(m+1)} + \frac{\log (n+1)\pi }{(n+1)} ), & \alpha =\beta =1, \end{cases}\displaystyle \end{aligned}$$

for \(m,n=0,1,2,\dots \).

Corollary 3

If \(f(x,y)\) is a 2π periodic function with respect to both variables x and y, Lebesgue integrable in \((-\pi ,\pi )\times (-\pi ,\pi )\) and belonging to the class \(Lip ((\xi _{1}, \xi _{2});r )\), then the degree of approximation of \(f(x,y)\) by almost Euler summability means

$$ t_{m,n}^{E}= \frac{1}{(1+q_{1})^{m}} \frac{1}{(1+q_{2})^{n}}\sum _{j=0}^{m}\sum_{k=0}^{n} \binom{m }{j} \binom{n }{k} q_{1}^{m-j} q_{2}^{n-k} s_{j,k} $$

of double Fourier series (1) satisfies

$$ \bigl\Vert t_{m,n}^{E} - f \bigr\Vert _{r} = O \biggl(\frac{1}{(m+1)} \int _{\frac{1}{m+1}}^{\pi } \frac{ \xi _{1}(u)}{u^{2}} \,du + \frac{1}{(n+1)} \int ^{\pi }_{\frac{1}{n+1}} \frac{\xi _{2}(v)}{v^{2}} \,dv \biggr) $$

for \(m,n=0,1,2,\dots \).

Corollary 4

For \(\gamma , \delta \geq -1\), the Cesàro means \(\sigma _{m,n}^{\gamma , \delta }\) of order γ and δ, that is, \((C, \gamma , \delta )\) means of double Fourier series, are given by

$$ \sigma _{m,n}^{\gamma ,\delta }= \frac{1}{A^{\gamma }_{m}}\frac{1}{A^{\delta }_{n}}\sum _{j=0}^{m}\sum_{k=0}^{n} A_{m-j}^{\gamma -1} A_{n-k}^{\delta -1} s_{j,k}, $$

where \(A^{\gamma }_{m} = \binom{{\gamma +m} }{m }\) and \(A^{\delta }_{n} = \binom{{\delta +n} }{n }\).

If \(f(x,y)\) is a 2π periodic function with respect to both variables x and y, Lebesgue integrable in \((-\pi ,\pi )\times (-\pi ,\pi )\) and belonging to the class \(Lip ((\xi _{1}, \xi _{2});r )\), then the degree of approximation of \(f(x,y)\) by \((C, \gamma , \delta )\) means of double Fourier series (1), satisfies

$$ \bigl\Vert \sigma _{m,n}^{\gamma ,\delta } - f \bigr\Vert _{r} = O \biggl( \frac{1}{(m+1)} \int _{\frac{1}{m+1}}^{\pi } \frac{ \xi _{1}(u)}{u^{2}} \,du + \frac{1}{(n+1)} \int ^{\pi }_{ \frac{1}{n+1}} \frac{\xi _{2}(v)}{v^{2}} \,dv \biggr) $$

for \(m,n=0,1,2,\dots \).

Conclusion

We established the degree of approximation of a function \(f(x,y)\) belonging to the generalized Lipschitz class by double Hausdorff matrix summability means of its double Fourier series in the form of equation (2). If \(\xi _{1}=u^{\alpha }\) and \(\xi _{2}=v^{\beta }\), then Theorem 1 reduces to Corollary 1, and as \(r \rightarrow \infty \), Corollary 1 reduces to Corollary 2. Independent proofs of Corollaries 14 can be developed along the same lines as that of Theorem 1. Results similar to Corollaries 3 and 4 can be derived for \((E,1,1)\) means and \((C,1,1)\) means of its double Fourier series. In this way, we can obtain some more different results by changing \(\xi _{1}\), \(\xi _{2}\), and \(\mu _{m,n}\) under given conditions. For functions \(f(x,y)\) belonging to the Zygmund classes \(Zyg(\alpha ,\beta )\) and \(Zyg(\alpha ,\beta ;p)\) discussed in [9], the degree of approximation using double Hausdorff matrix summability means and hence almost Euler means of its double Fourier series can be obtained similarly to Theorem 1.

Availability of data and materials

Not applicable.

References

  1. 1.

    Acar, T., Mohiuddine, S.A.: Statistical \((C,1)(E,1)\) summability and Korovkin’s theorem. Filomat 30(2), 387–393 (2016)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Chow, Y.S.: On the Cesàro summability of double Fourier series. Tohoku Math. J. 5, 277–283 (1935)

    Article  Google Scholar 

  3. 3.

    Gergen, J.J.: Convergence criteria for double Fourier series. Transl. Am. Math. Soc. 35(1), 29–63 (1933)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Hasegawa, Y.: On summabilities of double Fourier series. Kodai Math. Semin. Rep. 15, 226–238 (1963)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Khan, H.H., Ram, G.: On the degree of approximation by Gauss Weierstrass integrals. Int. J. Math. Math. Sci. 23(9), 645–649 (2000)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Łenski, W., Topolewska, M.: On the rate of strong summability of double Fourier series. Math. Bohem. 123(4), 337–363 (1998)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Mohiuddine, S.A., Acar, T.: Advances in Summability and Approximation Theory. Springer, Berlin (2018)

    Book  Google Scholar 

  8. 8.

    Móricz, F., Shi, X.: Approximation to continuous functions by Cesàro means of double Fourier series and conjugate series. J. Approx. Theory 49, 346–377 (1987)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Rathore, A., Singh, U.: Approximation of certain bivariate functions by almost Euler means of double Fourier series. J. Inequal. Appl. 2018, 89 (2018)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Savaş, E., Rhoades, B.E.: Every conservative double Hausdorff matrix is a kth absolutely summable operator. Anal. Math. 35, 249–256 (2009)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Sharma, P.L.: On the harmonic summability of double Fourier series. Proc. Am. Math. Soc. 91, 979–986 (1958)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Siddiqui, A.H., Mohammadzadeh, M.: Approximation by Cesàro and B means of double Fourier series. Math. Jpn. 21(4), 343–349 (1976)

    MATH  Google Scholar 

  13. 13.

    Stepanets, A.I.: The approximation of certain classes of differentiable periodic functions of two variables by Fourier sums. Ukr. Math. J. 25(5), 599–609 (1973)

    MathSciNet  Google Scholar 

  14. 14.

    Stepanets, A.I.: Approximation of certain classes of periodic functions of two variables by linear methods of summation of their Fourier series. Ukr. Math. J. 26(2), 205–215 (1974)

    Google Scholar 

  15. 15.

    Ustina, F.: The Hausdorff means for double sequences. Can. Math. Bull. 10(3), 347–352 (1967)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Ustina, F.: The Hausdorff means of double Fourier series and the principle of localization. Pac. J. Math. 37(1), 238–251 (1971)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Zygmund, A.: Trigonometric Series, 2nd rev. ed., I. Cambridge University Press, Cambridge (1968)

    MATH  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Affiliations

Authors

Contributions

The authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. Mursaleen.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Mishra, V.N. & Mursaleen, M. Trigonometric approximation of functions \(f(x,y)\) of generalized Lipschitz class by double Hausdorff matrix summability method. Adv Differ Equ 2020, 681 (2020). https://doi.org/10.1186/s13662-020-03124-8

Download citation

Keywords

  • Double Hausdorff matrix summability
  • Double Fourier series
  • Generalized Lipschitz class
  • Modulus of continuity
  • Cesàro summability
  • Almost Euler summability means
  • Degree of approximation