Skip to main content

New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals

Abstract

In the article, we establish serval novel Hermite–Jensen–Mercer-type inequalities for convex functions in the framework of the k-fractional conformable integrals by use of our new approaches. Our obtained results are the generalizations, improvements, and extensions of some previously known results, and our ideas and methods may lead to a lot of follow-up research.

Introduction

Convex function [120] is an important concept that has come to the fore among many other function classes with its many features and areas of use. Giving the definition as an inequality containing linear combinations has helped in using convex functions for classical inequalities. Jensen inequality [21, 22] is one of these inequalities for convex functions, which can be stated as follows.

Let \((\mu _{1},\mu _{2},\dots ,\mu _{n} )\in [0, 1]^{n}\) with \(\sum_{i=1}^{n} \mu _{i}=1\) and τ be a convex function on the interval \([\theta ,\vartheta ]\). Then the inequality

$$ \tau \Biggl( \sum_{i=1}^{n}\mu _{i} x_{i} \Biggr) \leq \Biggl( \sum _{i=1}^{n}\mu _{i} \tau ( x_{i} ) \Biggr) $$
(1.1)

holds for all \(x_{i}\in [ \theta ,\vartheta ]\) (\(i=1, 2, \dots , n\)).

Another important inequality for convex functions is the Hermite–Hadamard inequality [23, 24], which has been proved by numerous ways and has many generalizations and extensions [2529]. This inequality can generate bounds on the average value of convex functions to reveal its functionality with applications to numerical analysis and error calculation formulas such as trapezoidal and midpoint quadrature formulas. Now, we recall the Hermite–Hadamard inequality as follows.

Let \(\tau :J\subseteq {R}\to {R}\) be a convex function. Then the Hermite–Hadamard inequality

$$ \tau \biggl(\frac{\theta +\vartheta }{2} \biggr) \le \frac{1}{\vartheta -\theta } \int _{\theta }^{\vartheta }\tau (\lambda ) \,d\lambda \le \frac{\tau (\theta )+\tau (\vartheta )}{2} $$

holds for all \(\theta , \vartheta \in J\) with \(\theta \neq \vartheta \). If τ is a concave function on J, then the above inequality is reversed.

There are many interesting studies in the literature for the Jensen inequality, for example, the Jensen–Mercer inequality is a new variant of the Jensen inequality given by Mercer in [30]. Later, Matković et al. [31] generalized the Jensen–Mercer inequality to operators and gave its many applications. Recently, the Jensen–Mercer inequality has been the subject of intensive research.

The following Theorem 1.1 for convex functions can be found in [32].

Theorem 1.1

([32])

Let τ be a convex function defined on \([\theta ,\vartheta ]\). Then the inequality

$$ \tau \Biggl(\theta +\vartheta -\sum _{i=1}^{n}\mu _{i}x_{i} \Biggr)\leq \tau (\theta ) + \tau ( \vartheta ) -\sum _{i=1}^{n}\mu _{i} \tau ( x_{i} ) $$
(1.2)

holds for all \(x_{i}\in [\theta ,\vartheta ]\) and \(\mu _{i}\in [ 0,1 ]\) with \(\sum_{i=1}^{n}x_{i}=1\).

Next, we recall the definitions of the Euler Gamma \(\Gamma (\cdot )\) and Beta \({B}(\cdot ,\cdot )\) functions, which will be used in the article:

$$\begin{aligned} &\Gamma ( \theta ) = \int _{0}^{\infty }e^{-\lambda } \lambda ^{\theta -1}\,d\lambda ,\qquad B ( r,s ) = \int _{0}^{1} \lambda ^{r-1} ( 1- \lambda ) ^{s-1}\,d\lambda . \end{aligned}$$

The concept of fractional order derivative and integral [3340] that will shed light on some unknown points about differential equations and solutions of some fractional order differential equations, which proved to be useful for their solution, is a novelty in applied sciences as well as in mathematics. New derivatives and integrals contribute to the solution of differential equations that are expressed and solved in classical analysis, as well as using fractional order derivatives and integrals. In addition, it has increased its contribution to the literature with applications in areas such as engineering, biostatistics, and mathematical biology. Fractional derivative and integral operators not only differ from each other in terms of singularity, locality, and kernels, but also brought innovations to fractional analysis in terms of their usage areas and spaces. The new integral operators put forward by the researchers working in the field of fractional analysis led to new approaches, results, and methods in applied mathematics, engineering, and many other fields, and they have found the expected response in inequality theory. Many new integral inequalities and bounds to known inequalities have been found by using new integral operators. The new trends, improvements, and advances on fractional calculus and real world applications can be found in the literature [4160]. Now let us remember some integral operators that are well known to be useful in fractional analysis.

Definition 1.2

([61])

Let \(\alpha >0\), \(0\leq \theta <\vartheta \), and \(\tau \in [\theta ,\vartheta ]\). Then the Riemann–Liouville integrals \(J^{\alpha }_{\theta +}\tau \) and \(J^{\alpha }_{\vartheta -}\tau \) of order α are defined by

$$ \bigl(J^{\alpha }_{\theta ^{+}} \bigr)\tau (y)= \frac{1}{\Gamma (\alpha )} \int ^{y}_{ \theta } (y-\lambda )^{\alpha -1}\tau (\lambda )\,d\lambda\quad (y> \theta ) $$
(1.3)

and

$$ \bigl(J^{\alpha }_{\vartheta ^{-}} \bigr)\tau (y)= \frac{1}{\Gamma (\alpha )} \int ^{\vartheta }_{y}(\lambda -y)^{\alpha -1}\tau ( \lambda )\,d\lambda \quad (y< \vartheta ), $$
(1.4)

respectively, where \((J^{0}_{\theta +})\tau (y)=(J^{0}_{\vartheta -})\tau (y)=\tau (y)\).

In [62], Jarad et al. defined the new fractional integral operators as follows:

$$ {}_{\theta }^{\beta }J^{\alpha } \tau ( y ) = \frac{1}{\Gamma ( \beta )} \int _{\theta }^{y} \biggl( \frac{ ( y-\theta ) ^{\alpha } - (\lambda -\theta ) ^{\alpha }}{\alpha } \biggr) ^{\beta -1} \frac{\tau ( \lambda ) }{ ( \lambda -\theta )^{1-\alpha }}\,d\lambda $$
(1.5)

and

$$ {}^{\beta }J_{\vartheta }^{\alpha } \tau ( y ) = \frac{1}{\Gamma (\beta )} \int _{y}^{\vartheta } \biggl( \frac{ ( \vartheta -y )^{\alpha } - (\vartheta -\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \beta -1} \frac{\tau ( \lambda ) }{ ( \vartheta -\lambda ) ^{1-\alpha }}\,d\lambda . $$
(1.6)

Remark 1.3

From (1.5) and (1.6) we clearly see that

  1. (i)

    If \(\theta =0\) and \(\alpha =1\), then (1.5) reduces to the Riemann–Liouville operator given in (1.3).

  2. (ii)

    If \(\theta =0\) and \(\alpha \rightarrow 0\), then the new conformable fractional integral coincides with the generalized fractional integral (see [63]).

  3. (iii)

    Furthermore, (1.6) becomes the Riemann–Liouville operator if we set \(\vartheta = 0\) and \(\alpha = 1\). It also corresponds the Hadamard fractional integral [63] once we take \(\vartheta =0\) and \(\alpha \rightarrow 0\) in the generalized fractional integral.

The generalized k-fractional conformable integrals [64] are defined by

$$ {}_{k}^{\beta }J_{\theta ^{+}}^{\alpha }\tau ( y ) = \frac{1}{k\Gamma _{k} ( \beta ) } \int _{\theta }^{y} \biggl( \frac{ ( y-\theta ) ^{\alpha }- ( \lambda -\theta ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} -1} \frac{\tau ( \lambda ) }{ ( \lambda -\theta ) ^{1-\alpha }}\,d\lambda $$
(1.7)

and

$$ {}_{k}^{\beta }J_{\vartheta ^{-}}^{\alpha }\tau ( y ) = \frac{1}{k\Gamma _{k} ( \beta ) } \int _{y}^{\vartheta } \biggl( \frac{ ( \vartheta -y ) ^{\alpha }- ( \vartheta -\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} -1} \frac{\tau ( \lambda ) }{ ( \vartheta -\lambda ) ^{1-\alpha }}\,d\lambda . $$
(1.8)

If \(k>0\), then the k-Gamma function \(\Gamma _{k}\) is defined as

$$ \Gamma _{k } ( \alpha ) = \lim_{m\rightarrow \infty } \frac{m! k^{m} ( mk ) ^{\frac{\alpha }{k}-1}}{ ( \alpha )_{m,k}}. $$
(1.9)

If \(\operatorname{Re}(\alpha ) > 0\), then the k-Gamma function in integral form is defined as

$$ \Gamma _{k} ( \alpha ) = \int _{0}^{\infty }e^{- \frac{\mu ^{k}}{k}} \mu ^{\alpha -1} \,d\mu $$
(1.10)

with \(\alpha \Gamma _{k} ( \alpha ) =\Gamma _{k} ( \alpha +k )\).

The main purpose of the article is to reveal new and more general Hermite–Jensen–Mercer-type inequalities for convex functions with the help of k-fractional integral operator. For this purpose, Hölder inequality and its variants have been used in addition to various analysis processes. With the special versions of the main findings, many inequalities in the literature were obtained and the importance of the results was emphasized.

New Hermite–Jensen–Mercer type inequalities

Theorem 2.1

Let \(\alpha , \beta >0\) and \(\tau :[\theta ,\vartheta ]\rightarrow {R}\) be a convex mapping. Then the inequality

$$\begin{aligned} \tau \biggl( \theta +\vartheta - \frac{x+y}{2} \biggr) \leq& \frac{2^{\alpha \frac{\beta }{k} -1}\alpha ^{\frac{\beta }{k}} \Gamma _{k} ( \beta +k ) }{ ( y-x ) ^{\alpha \frac{\beta }{k} }} \\ &{} \times \bigl\{ {}_{k}^{\beta }J_{ ( \theta +\vartheta - \frac{x+y}{2} )^{+} }^{\alpha } \tau ( \theta +\vartheta -x ) + {}_{k}^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{-} }^{\alpha } \tau ( \theta +\vartheta -y ) \bigr\} \\ \leq& \tau ( \theta ) +\tau ( \vartheta ) - \biggl( \frac{\tau ( x ) + \tau ( y ) }{2} \biggr) \end{aligned}$$
(2.1)

holds for all \(x,y\in [\theta ,\vartheta ]\).

Proof

Since τ is convex, to prove the first inequality, we write

$$\begin{aligned} \tau \biggl( \theta +\vartheta -\frac{x_{1}+y_{1}}{2} \biggr) &= \tau \biggl( \frac{\theta +\vartheta -x_{1}+\theta +\vartheta -y_{1}}{2} \biggr) \\ & \leq \frac{\tau ( \theta +\vartheta -x_{1} ) + \tau ( \theta +\vartheta -y_{1} ) }{2} \end{aligned}$$

for all \(x_{1},y_{1} \in [ \theta ,\vartheta ]\).

Let \(x_{1}=\frac{\lambda }{2}x+\frac{2-\lambda }{2}y\) and \(y_{1}=\frac{2-\lambda }{2}x+\frac{\lambda }{2}y\). Then for \(x,y\in [ \theta ,\vartheta ]\) and \(\lambda \in [ 0,1 ]\), we have

$$\begin{aligned} 2\tau \biggl( \theta +\vartheta - \frac{x+y}{2} \biggr) \leq& \tau \biggl( \theta +\vartheta - \biggl( \frac{\lambda }{2}x+ \frac{2-\lambda }{2}y \biggr) \biggr) \\ &{} +\tau \biggl( \theta + \vartheta - \biggl( \frac{2-\lambda }{2}x+\frac{\lambda }{2}y \biggr) \biggr). \end{aligned}$$
(2.2)

Multiplying both sides of (2.2) by \(( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } ) ^{\frac{\beta }{k} -1} ( 1-\lambda ) ^{\alpha -1}\) and integrating the obtained inequality with respect to λ over \([0,1 ]\), and then combining the resulting inequality with the definition of the integral operator gives

$$\begin{aligned}& 2 \tau \biggl( \theta +\vartheta -\frac{x+y}{2} \biggr) \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} -1} ( 1-\lambda ) ^{\alpha -1}\,d\lambda \\& \quad \leq \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} -1} ( 1-\lambda ) ^{\alpha -1} \\& \qquad {} \times \biggl( \tau \biggl( \theta +\vartheta - \biggl( \frac{\lambda }{2}x+ \frac{2-\lambda }{2}y \biggr) \biggr) +\tau \biggl( \theta + \vartheta - \biggl( \frac{2-\lambda }{2}x+\frac{\lambda }{2}y \biggr) \biggr) \biggr) \,d\lambda \\& \quad = \int _{\theta +\vartheta -y}^{\theta +\vartheta -\frac{x+y}{2}} \biggl( \frac{1- ( \frac{ ( \theta +\vartheta -\frac{x+y}{2} ) -\lambda _{1}}{\frac{y-x}{2}} )^{\alpha } }{\alpha } \biggr) ^{\frac{\beta }{k} -1} \biggl( \frac{ ( \theta +\vartheta -\frac{x+y}{2} ) -\lambda _{1}}{\frac{y-x}{2}} \biggr) ^{\alpha -1} \tau ( \lambda _{1} ) \frac{2}{y-x}\,d\lambda _{1} \\& \qquad {} + \int _{\theta +\vartheta -x}^{\theta +\vartheta -\frac{x+y}{2}} \biggl( \frac{1- ( \frac{\lambda _{2}- ( \theta +\vartheta -\frac{x+y}{2} ) }{\frac{y-x}{2}} )^{\alpha } }{\alpha } \biggr) ^{\frac{\beta }{k} -1} \biggl( \frac{\lambda _{2}- ( \theta +\vartheta -\frac{x+y}{2} ) }{\frac{y-x}{2}} \biggr) ^{\alpha -1} \tau ( \lambda _{2} ) \frac{2}{y-x}\,d\lambda _{2} \\& \quad = \biggl( \frac{2}{y-x} \biggr) ^{\alpha \frac{\beta }{k} } \bigl\{ \Gamma _{k} ( \beta ) {}_{k}^{\beta }J_{ ( \theta + \vartheta -\frac{x+y}{2} )^{+} }^{\alpha } \tau ( \theta + \vartheta -y ) +\Gamma _{k} ( \beta ) {}_{k}^{ \beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{-}}^{ \alpha }\tau ( \theta +\vartheta -x ) \bigr\} . \end{aligned}$$

Note that

$$ \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda )^{\alpha }}{\alpha } \biggr)^{\frac{\beta }{k} -1} ( 1-\lambda )^{\alpha -1}\,d\lambda = \frac{1}{\frac{\beta }{k} \alpha ^{\frac{\beta }{k} }}. $$
(2.3)

Therefore,

$$\begin{aligned} &2\tau \biggl( \theta +\vartheta -\frac{x+y}{2} \biggr) \frac{1}{\frac{\beta }{k} \alpha ^{\frac{\beta }{k} }} \\ &\quad \leq \biggl( \frac{2}{y-x} \biggr) ^{\alpha \frac{\beta }{k} } \bigl\{ \Gamma _{k} ( \beta ) {}_{k}^{\beta }J_{ ( \theta + \vartheta -\frac{x+y}{2} )^{+}}^{\alpha } \tau ( \theta + \vartheta -y ) +\Gamma _{k} ( \beta ) {}_{k}^{ \beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{-} }^{ \alpha }\tau ( \theta +\vartheta -x ) \bigr\} . \end{aligned}$$

This completes the proof of the first inequality of (2.1).

To prove the second inequality, by a similar discussion, making use of the convexity of τ, for \(\lambda \in [ 0,1 ]\), we have

$$ \tau \biggl( \theta +\vartheta - \biggl( \frac{\lambda }{2}x+ \frac{2-\lambda }{2}y \biggr) \biggr) \leq \tau ( \theta ) +\tau ( \vartheta ) - \biggl( \frac{\lambda }{2}\tau ( x ) + \frac{2-\lambda }{2}\tau ( y ) \biggr) $$
(2.4)

and

$$ \tau \biggl( \theta +\vartheta - \biggl( \frac{2-\lambda }{2}x+ \frac{\lambda }{2}y \biggr) \biggr) \leq \tau ( \theta ) +\tau ( \vartheta ) - \biggl( \frac{2-\lambda }{2}\tau ( x ) + \frac{\lambda }{2}\tau ( y ) \biggr). $$
(2.5)

Adding (2.4) and (2.5) leads to

$$\begin{aligned} &\tau \biggl( \theta +\vartheta - \biggl( \frac{\lambda }{2}x+ \frac{2-\lambda }{2}y \biggr) \biggr) +\tau \biggl( \theta + \vartheta - \biggl( \frac{2-\lambda }{2}x+\frac{\lambda }{2}y \biggr) \biggr) \\ &\quad \leq 2 \bigl[ \tau ( \theta ) +\tau ( \vartheta ) \bigr] - \bigl[ \tau ( x ) + \tau ( y ) \bigr]. \end{aligned}$$
(2.6)

Multiplying (2.6) by \(( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } ) ^{\frac{\beta }{k} -1} ( 1-\lambda ) ^{\alpha -1}\) and integrating the obtained inequality with respect to λ over \([ 0,1 ]\) gives

$$\begin{aligned} & \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} -1} ( 1-\lambda ) ^{\alpha -1} \\ &\qquad {} \times \biggl\{ \tau \biggl( \theta +\vartheta - \biggl( \frac{\lambda }{2}x+ \frac{2-\lambda }{2}y \biggr) \biggr) +\tau \biggl( \theta +\vartheta - \biggl( \frac{2-\lambda }{2}x+\frac{\lambda }{2}y \biggr) \biggr) \biggr\} \,d\lambda \\ &\quad \leq \bigl\{ 2 \bigl[ \tau ( \theta ) +\tau ( \vartheta ) \bigr] - \bigl[ \tau ( x ) +\tau ( y ) \bigr] \,d\lambda \bigr\} \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} -1} ( 1-\lambda ) ^{\alpha -1}\,d\lambda \\ &\qquad {} \times \biggl( \frac{2}{y-x} \biggr) ^{\alpha \frac{\beta }{k} } \bigl\{ \Gamma _{k} (\beta ) {}_{k} ^{\beta }J_{ ( \theta + \vartheta -\frac{x+y}{2} )^{+} }^{\alpha } \tau ( \theta + \vartheta -y ) +\Gamma _{k} (\beta ) {}_{k} ^{ \beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{-} }^{ \alpha }\tau ( \theta +\vartheta -x ) \bigr\} \\ &\quad \leq \frac{1}{\frac{\beta }{k} \alpha ^{\frac{\beta }{k} }} \bigl\{ 2 \bigl[ \tau ( \theta ) +\tau ( \vartheta ) \bigr] - \bigl[ \tau ( x ) +\tau ( y ) \bigr] \bigr\} , \end{aligned}$$

which completes the proof of the desired inequality. □

Remark 2.2

From Theorem 2.1, we clearly see that:

  1. (i)

    If we take \(k=1\), \(x=\theta \), and \(y=\vartheta \) in Theorem 2.1, then we get Theorem 2.1 of [65].

  2. (ii)

    If we take \(\alpha =k=1\), \(x=\theta \), and \(y=\vartheta \) in Theorem 2.1, then we get Theorem 2 of [66].

Theorem 2.3

Let \(\alpha , \beta >0\) and \(\tau :[\theta ,\vartheta ]\rightarrow {R}\) be a convex function. Then the inequalities

$$\begin{aligned} \tau \biggl( \theta +\vartheta - \frac{x+y}{2} \biggr) \leq& \tau ( \theta ) +\tau ( \vartheta ) - \frac{\alpha ^{\frac{\beta }{k} }\Gamma _{k} (\beta +k ) }{2 ( y-x ) ^{\alpha \frac{\beta }{k} }} \bigl\{ {}_{k} ^{ \beta }J_{x^{+}}^{\alpha } \tau ( y ) + {}_{k} ^{\beta }J_{y^{-}}^{ \alpha } \tau ( x ) \bigr\} \\ \leq& \tau ( \theta ) +\tau ( \vartheta ) - \tau \biggl( \frac{x+y}{2} \biggr) \end{aligned}$$
(2.7)

and

$$\begin{aligned} \tau \biggl( \theta +\vartheta - \frac{x+y}{2} \biggr) \leq& \frac{\alpha ^{\frac{\beta }{k} }\Gamma _{k} ( \beta +k ) }{2 ( y-x ) ^{\alpha \frac{\beta }{k} }} \bigl\{ {}_{k} ^{\beta }J_{(\theta +\vartheta -x)^{+}}^{\alpha } \tau ( \theta +\vartheta -y ) + {}_{k} ^{\beta }J_{( \theta +\vartheta -y)^{-}}^{\alpha } \tau ( \theta + \vartheta -x ) \bigr\} \\ \leq& \frac{\tau ( \theta +\vartheta -x ) +\tau ( \theta +\vartheta -y ) }{2}\leq \tau ( \theta ) +\tau ( \vartheta ) - \frac{\tau ( x ) +\tau ( y ) }{2} \end{aligned}$$
(2.8)

hold for all \(x,y\in [ \theta ,\vartheta ]\).

Proof

It follows from the Jensen–Mercer inequality that

$$ \tau \biggl( \theta +\vartheta -\frac{x_{1}+y_{1}}{2} \biggr) \leq \tau ( \theta ) +\tau ( \vartheta ) - \frac{\tau ( x_{1} ) +\tau ( y_{1} ) }{2} $$
(2.9)

for all \(x_{1},y_{1 }\in [ \theta ,\vartheta ]\).

By changing the variables \(x_{1}=\lambda x +(1-\lambda )y\) and \(y_{1}=(1-\lambda )x+\lambda y \) for \(x,y \in [\theta ,\vartheta ]\) and \(\lambda \in [0,1]\) in (2.9), we get

$$ \tau \biggl( \theta +\vartheta - \frac{x+y}{2} \biggr) \leq \tau ( \theta ) +\tau ( \vartheta ) - \frac{\tau ( \lambda x+ ( 1-\lambda ) y ) +\tau ( ( 1-\lambda ) x+\lambda y ) }{2}. $$
(2.10)

Multiplying (2.10) by \(( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } ) ^{\frac{\beta }{k} -1} ( 1-\lambda ) ^{\alpha -1}\) and integrating the obtained inequality with respect to λ over \([ 0,1 ]\) leads to the conclusion that

$$\begin{aligned} &\tau \biggl( \theta +\vartheta -\frac{x+y}{2} \biggr) \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} } ( 1-\lambda ) ^{\alpha -1}\,d\lambda \\ &\quad \leq \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} } ( 1-\lambda ) ^{\alpha -1} \\ &\qquad {} \times \biggl\{ \tau ( \theta ) +\tau ( \vartheta ) -\frac{\tau ( \lambda x+ ( 1-\lambda ) y ) +\tau ( ( 1-\lambda ) x+\lambda y ) }{2} \biggr\} \,d\lambda , \end{aligned}$$

that is,

$$ \tau \biggl( \theta +\vartheta -\frac{x+y}{2} \biggr) \leq \tau ( \theta ) +\tau ( \vartheta ) - \frac{\alpha ^{\frac{\beta }{k} }\Gamma _{k} (\beta +k ) }{2 ( y-x ) ^{\alpha \frac{\beta }{k} }} \bigl\{ {}_{k} ^{ \beta }J_{x^{+}}^{\alpha }\tau ( y ) + {}_{k} ^{\beta }J_{y^{-}}^{ \alpha }\tau ( x ) \bigr\} , $$
(2.11)

which completes the proof of the first inequality of (2.7).

To prove the second inequality of (2.7), from the convexity of τ, for \(\lambda \in [ 0,1 ]\) we obtain

$$\begin{aligned} \tau \biggl( \frac{x+y}{2} \biggr) =&\tau \biggl( \frac{\lambda x+ ( 1-\lambda ) y+ ( 1-\lambda ) x+\lambda y}{2} \biggr) \\ \leq& \frac{\tau ( \lambda x+ ( 1-\lambda ) y ) +\tau ( ( 1-\lambda ) x+\lambda y ) }{2}. \end{aligned}$$
(2.12)

Multiplying (2.12) by \(( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } ) ^{\frac{\beta }{k} -1} ( 1-\lambda ) ^{\alpha -1}\) and then by using integration with respect to λ over \([ 0,1 ]\), we have

$$\begin{aligned} &\tau \biggl( \frac{x+y}{2} \biggr) \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} } ( 1-\lambda ) ^{\alpha -1}\,d\lambda \\ &\quad \leq \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} } ( 1-\lambda ) ^{\alpha -1} \biggl\{ \frac{\tau ( \lambda x+ ( 1-\lambda ) y ) +\tau ( ( 1-\lambda ) x+\lambda y ) }{2} \biggr\} \,d\lambda , \end{aligned}$$

that is,

$$\begin{aligned}& \tau \biggl( \frac{x+y}{2} \biggr) \leq \frac{\alpha ^{\frac{\beta }{k} }\Gamma _{k} ( \beta +k ) }{2 ( y-x ) ^{\alpha \frac{\beta }{k} }} \bigl\{ {}_{k} ^{\beta }J_{x^{+}}^{\alpha }\tau ( y ) + {}_{k} ^{\beta }J_{y^{-}}^{\alpha }\tau ( x ) \bigr\} , \\& -\tau \biggl( \frac{x+y}{2} \biggr) \geq - \frac{\alpha ^{\frac{\beta }{k} }\Gamma _{k} ( \beta +k ) }{2 ( y-x ) ^{\alpha \frac{\beta }{k} }} \bigl\{ {}_{k} ^{\beta }J_{x^{+}}^{\alpha } \tau ( y ) + {}_{k} ^{\beta }J_{y^{-}}^{\alpha } \tau ( x ) \bigr\} . \end{aligned}$$
(2.13)

Adding \(\tau ( \theta ) +\tau ( \vartheta ) \) to both sides of (2.13), we obtain

$$ \tau ( \theta ) +\tau ( \vartheta ) -\tau \biggl( \frac{x+y}{2} \biggr) \geq \tau ( \theta ) + \tau ( \vartheta ) - \frac{\alpha ^{\frac{\beta }{k} }\Gamma _{k} ( \beta +k ) }{2 ( y-x ) ^{\alpha \frac{\beta }{k} }} \bigl\{ {}_{k} ^{\beta }J_{x^{+}}^{\alpha } \tau ( y ) + {}_{k} ^{\beta }J_{y^{-}}^{\alpha } \tau ( x ) \bigr\} . $$
(2.14)

Combining (2.11) and (2.14), we get (2.7). To prove inequality (2.8), we use the convexity of τ to get

$$\begin{aligned} \tau \biggl( \theta +\vartheta -\frac{x_{1}+y_{1}}{2} \biggr) &= \tau \biggl( \frac{\theta +\vartheta -x_{1}+\theta +\vartheta -y_{1}}{2} \biggr) \\ &\leq \frac{\tau ( \theta +\vartheta -x_{1} ) + \tau ( \theta +\vartheta -y_{1} )}{2} \end{aligned}$$
(2.15)

for all \(x_{1},y_{1} \in [ \theta ,\vartheta ]\).

Let \(x_{1}=\lambda x+(1-\lambda )y\) and \(y_{1}=(1-\lambda )x+\lambda y\). Then (2.15) leads to

$$\begin{aligned}& \tau \biggl( \theta +\vartheta -\frac{x+y}{2} \biggr) \\& \quad \leq \biggl\{ \frac{\tau ( \theta +\vartheta - ( \lambda x+ ( 1-\lambda ) y ) ) +\tau ( \theta +\vartheta - ( ( 1-\lambda ) x+\lambda y ) ) }{2} \biggr\} . \end{aligned}$$
(2.16)

Multiplying (2.16) by \(( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } ) ^{\frac{\beta }{k}-1} ( 1-\lambda ) ^{\alpha -1}\) and then by integrating the resulting inequality with respect to λ over \([ 0,1 ]\), we have

$$\begin{aligned} &\tau \biggl( \theta +\vartheta -\frac{x+y}{2} \biggr) \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} } ( 1-\lambda ) ^{\alpha -1}\,d\lambda \\ &\quad \leq \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} } ( 1-\lambda ) ^{\alpha -1} \\ &\qquad {} \times \biggl\{ \frac{\tau ( \theta +\vartheta - ( \lambda x+ ( 1-\lambda ) y ) ) +\tau ( \theta +\vartheta - ( ( 1-\lambda ) x+\lambda y ) ) }{2} \biggr\} \,d\lambda , \end{aligned}$$

which can be rewritten as

$$\begin{aligned}& \tau \biggl( \theta +\vartheta -\frac{x+y}{2} \biggr) \\& \quad \leq \frac{\alpha ^{\frac{\beta }{k} }\Gamma _{k} ( \beta +k ) }{2 ( y-x ) ^{\alpha \frac{\beta }{k} }} \bigl\{ {}_{k} ^{\beta }J_{(\theta +\vartheta -x)^{+}}^{\alpha } \tau ( \theta +\vartheta -y ) + {}_{k} ^{\beta }J_{(\theta +\vartheta -y)^{-}}^{\alpha } \tau ( \theta +\vartheta -x ) \bigr\} . \end{aligned}$$
(2.17)

It follows from the convexity of τ that

$$ \tau \bigl( \lambda ( \theta +\vartheta -x ) + ( 1- \lambda ) ( \theta + \vartheta -y ) \bigr) \leq \lambda \tau ( \theta +\vartheta -x ) + ( 1-\lambda ) \tau ( \theta +\vartheta -y ) $$

and

$$ \tau \bigl( ( 1-\lambda ) ( \theta +\vartheta -x ) +\lambda ( \theta +\vartheta -y ) \bigr) \leq ( 1-\lambda ) \tau ( \theta +\vartheta -x ) + \lambda \tau ( \theta +\vartheta -y ). $$

Adding the above two inequalities and using the Jensen–Mercer inequality gives

$$\begin{aligned} & \tau \bigl( \lambda ( \theta +\vartheta -x ) + ( 1- \lambda ) ( \theta + \vartheta -y ) \bigr) + \tau \bigl( ( 1-\lambda ) ( \theta +\vartheta -x ) + \lambda ( \theta +\vartheta -y ) \bigr) \\ &\quad \leq \tau ( \theta +\vartheta -x ) + \tau ( \theta + \vartheta -y ) \leq 2 \bigl( \tau ( \theta ) + \tau ( \vartheta ) \bigr) - \bigl( \tau ( x ) +\tau ( y ) \bigr). \end{aligned}$$
(2.18)

Multiplying (2.18) by \(( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } ) ^{\frac{\beta }{k} -1} ( 1-\lambda ) ^{\alpha -1} \) and then by using integration with respect to λ over \([ 0,1 ]\), we have

$$\begin{aligned} & \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} } ( 1-\lambda ) ^{ \alpha -1} \\ &\qquad {} \times \bigl\{ \tau \bigl( \lambda ( \theta +\vartheta -x ) + ( 1-\lambda ) ( \theta +\vartheta -y ) \bigr) +\tau \bigl( ( 1-\lambda ) ( \theta +\vartheta -x ) +\lambda ( \theta +\vartheta -y ) \bigr) \bigr\} \,d\lambda \\ &\quad \leq 2 \bigl( \tau ( \theta ) +\tau ( \vartheta ) \bigr) - \bigl( \tau ( x ) + \tau ( y ) \bigr) \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} } ( 1-\lambda ) ^{\alpha -1}\,d\lambda , \end{aligned}$$

that is,

$$\begin{aligned}& \frac{\alpha ^{\frac{\beta }{k} }\Gamma _{k} ( \beta +k ) }{2 ( y-x ) ^{\alpha \frac{\beta }{k} }} \bigl\{ {}_{k} ^{\beta }J_{( \theta +\vartheta -x)^{+}}^{\alpha } \tau ( \theta +\vartheta -y ) + {}_{k} ^{\beta }J_{(\theta +\vartheta -y)^{-}}^{\alpha } \tau ( \theta +\vartheta -x ) \bigr\} \\& \quad \leq \bigl( \tau ( \theta ) +\tau ( \vartheta ) \bigr) - \biggl( \frac{\tau ( x ) +\tau ( y ) }{2} \biggr). \end{aligned}$$
(2.19)

Combining (2.17) and (2.19) leads to (2.8). □

Remark 2.4

Let \(\alpha =\beta ={k}=1\). Then Theorem 2.3 leads to the conclusion that

$$\begin{aligned} (\mathrm{i})\quad \tau \biggl( \theta +\vartheta -\frac{x+y}{2} \biggr) &\leq \tau ( \theta ) +\tau ( \vartheta ) - \int _{0}^{1}\tau \bigl( \lambda x+ ( 1-\lambda ) y \bigr) \,d\lambda \\ & \leq \tau ( \theta ) +\tau ( \vartheta ) - \tau \biggl( \frac{x+y}{2} \biggr) \end{aligned}$$

and

$$\begin{aligned} (\mathrm{ii})\quad \tau \biggl( \theta +\vartheta -\frac{x+y}{2} \biggr) &\leq \frac{1}{y-x}\int _{x}^{y}\tau ( \theta +\vartheta -\lambda ) \,d\lambda \\ &\leq \tau ( \theta ) +\tau ( \vartheta ) - \frac{\tau ( x ) +\tau ( y ) }{2} , \end{aligned}$$

which was also proved in Theorem 2.1 of [67].

Lemma 2.5

Let \(\alpha , \beta >0\), \(\theta <\vartheta \) and \(\tau :[\theta ,\vartheta ]\rightarrow {R}\) be a differentiable mapping such that \(\tau ^{{\prime }}\in L[\theta ,\vartheta ]\). Then the inequality

$$\begin{aligned}& \frac{2^{\alpha \frac{\beta }{k} -1} \alpha ^{\frac{\beta }{k} } \Gamma _{k} ( \beta +k ) }{ ( y-x ) ^{\alpha \frac{\beta }{k} }} \bigl\{ {}_{k} ^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{+} }^{\alpha } \tau ( \theta +\vartheta -x ) + {}_{k} ^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{-} }^{\alpha } \tau ( \theta +\vartheta -y ) \bigr\} \\& \qquad {} - \tau \biggl(\theta +\vartheta -\frac{x+y}{2} \biggr) \\& \quad = \frac{ ( y-x ) \alpha ^{\frac{\beta }{k} }}{4}\int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} } \\& \qquad {} \times \biggl\{ \tau {^{\prime }} \biggl( \theta +\vartheta - \biggl( \frac{2-\lambda }{2}x+\frac{\lambda }{2}y \biggr) \biggr) - \tau {^{ \prime }} \biggl( \theta +\vartheta - \biggl( \frac{\lambda }{2}x+ \frac{2-\lambda }{2}y \biggr) \biggr) \biggr\} \,d\lambda \end{aligned}$$
(2.20)

holds for all \(x,y\in [ \theta ,\vartheta ]\).

Proof

Let

$$ I=\frac{y-x}{4}\alpha ^{\frac{\beta }{k} } \{ I_{1}-I_{2} \} , $$
(2.21)

where

$$ I_{1}= \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} }\tau ^{{\prime }} \biggl( \theta + \vartheta - \biggl( \frac{2-\lambda }{2}x+\frac{\lambda }{2}y \biggr) \biggr) \,d\lambda $$

and

$$ I_{2}= \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} }\tau ^{{\prime }} \biggl( \theta + \vartheta - \biggl( \frac{\lambda }{2}x +\frac{2-\lambda }{2}y \biggr) \biggr) \,d\lambda . $$

Then integrating by parts, we get

$$\begin{aligned} &=-\frac{2}{\alpha ^{\frac{\beta }{k} } ( y-x ) }\tau \biggl( \theta +\vartheta -\frac{x+y}{2} \biggr) \\ &\quad {} + \frac{2 \alpha \frac{\beta }{k} }{\alpha ^{\frac{\beta }{k} } ( y-x ) }\int _{0}^{1} \bigl( 1- ( 1-\lambda ) ^{\alpha } \bigr) ^{ \frac{\beta }{k} -1} ( 1-\lambda ) ^{\alpha -1} \tau \biggl( \theta +\vartheta - \biggl( \frac{2-\lambda }{2}x+ \frac{\lambda }{2}y \biggr) \biggr) \,d\lambda \\ &=-\frac{2}{\alpha ^{\frac{\beta }{k} } ( y-x ) }\tau \biggl( \theta +\vartheta -\frac{x+y}{2} \biggr) \\ &\quad {} + \frac{2^{\alpha \frac{\beta }{k} } \frac{\beta }{k} }{\alpha ^{\frac{\beta }{k} -1} ( y-x ) ^{\alpha \frac{\beta }{k} +1}} \int _{\theta +\vartheta - \frac{x+y}{2}}^{\theta +\vartheta -x} \biggl( \biggl( \frac{y-x}{2} \biggr) ^{\alpha } - \biggl( \lambda _{1}- \biggl( \theta +\vartheta - \frac{x+y}{2} \biggr) \biggr)^{\alpha } \biggr) ^{\frac{\beta }{k} -1} \\ &\quad {} \times \frac{\tau ( \lambda _{1} ) }{ ( \lambda _{1}- ( \theta +\vartheta -\frac{x+y}{2} ) ) ^{1-\alpha }}\,d\lambda _{1} \\ &=-\frac{2}{\alpha ^{\frac{\beta }{k} } ( y-x ) }\tau \biggl( \theta +\vartheta -\frac{x+y}{2} \biggr) \\ &\quad {}+ \biggl( \frac{2}{y-x} \biggr) ^{\alpha \frac{\beta }{k} +1} \frac{\Gamma _{k} ( \beta +k ) }{\alpha ^{\frac{\beta }{k} -1}} {}_{k} ^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{+} }^{\alpha } \tau ( \theta +\vartheta -x ). \end{aligned}$$
(2.22)

Similarly, we have

$$\begin{aligned} I_{2} =& \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} }\tau ^{{\prime }} \biggl( \theta + \vartheta - \biggl( \frac{\lambda }{2}x+\frac{2-\lambda }{2}y \biggr) \biggr) \,d\lambda \\ =&\frac{2}{\alpha ^{\frac{\beta }{k} } ( y-x ) }\tau \biggl( \theta +\vartheta - \frac{x+y}{2} \biggr) \\ &{}- \biggl( \frac{2}{y-x} \biggr) ^{\alpha \frac{\beta }{k} +1} \frac{\Gamma _{k} (\beta +k ) }{\alpha ^{\frac{\beta }{k} -1}} {}_{k} ^{\beta } J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{-} }^{\alpha } \tau ( \theta +\vartheta -y ). \end{aligned}$$
(2.23)

Therefore, inequality (2.20) follows from (2.21)–(2.23). □

Remark 2.6

Lemma 2.5 leads to the conclusion that:

  1. (i)

    If we take \(k=1\), \(x=\theta \), and \(y=\vartheta \), then we can get Lemma 3.1 of [65].

  2. (ii)

    If we take \(\alpha =k=1\), \(x=\theta \), and \(y=\vartheta \), then Lemma 2.5 reduces to Lemma 1.1 of [68].

Lemma 2.7

Let \(\alpha , \beta >0\), \(\theta <\vartheta \) and \(\tau :[\theta ,\vartheta ]\rightarrow {R}\) be a differentiable mapping such that \(\tau ^{{\prime }}\in L[\theta ,\vartheta ]\). Then the identity

$$\begin{aligned} &\frac{\tau ( \theta +\vartheta -x ) +\tau ( \theta +\vartheta -y )}{2} - \frac{ \alpha ^{\frac{\beta }{k}} \Gamma _{k} (\beta +k )}{2 ( y-x ) ^{\alpha \frac{\beta }{k} }} \\ &\qquad {} \times \bigl\{ {}_{k} ^{\beta }J_{ (\theta +\vartheta -y )^{+} }^{\alpha } \tau ( \theta +\vartheta -x ) + {}_{k} ^{ \beta }J_{ (\theta +\vartheta -x )^{-} }^{\alpha } \tau ( \theta +\vartheta -y ) \bigr\} \\ &\quad =\frac{ ( y-x ) \alpha ^{\frac{\beta }{k} }}{2} \int _{0}^{1} \biggl[ \biggl( \frac{1- ( 1-\lambda )^{\alpha }}{\alpha } \biggr)^{\frac{\beta }{k}} - \biggl( \frac{1-\lambda ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} } \biggr] \\ &\qquad {}\times \tau ^{{\prime }} \bigl( \theta +\vartheta - \bigl( \lambda x+ ( 1-\lambda ) y \bigr) \bigr)\,d\lambda \end{aligned}$$
(2.24)

holds for all \(x,y\in [\theta ,\vartheta ]\).

Proof

Let

$$\begin{aligned} I&=\frac{ ( y-x ) \alpha ^{\frac{\beta }{k} }}{2} \int _{0}^{1} \biggl[ \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} }- \biggl( \frac{1-\lambda ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} } \biggr] \tau ^{{\prime }} \bigl( \theta + \vartheta - \bigl( \lambda x+ ( 1-\lambda ) y \bigr) \bigr) \,d\lambda . \\ &=\frac{ ( y-x ) \alpha ^{\frac{\beta }{k} }}{2}\{I_{1} - I_{2} \}. \end{aligned}$$
(2.25)

Then we clearly see that

$$\begin{aligned} I_{1} =& \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} } \tau ^{{\prime }} \bigl( \theta +\vartheta - \bigl( \lambda x+ ( 1-\lambda ) y \bigr) \bigr) \,d\lambda \\ =&\frac{1}{\alpha ^{\frac{\beta }{k} }} \frac{\tau ( \theta +\vartheta -x ) }{y-x}- \frac{\frac{\beta }{k} }{y-x} \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} -1} \\ &{}\times ( 1-\lambda ) ^{\alpha -1}\tau \bigl( \theta + \vartheta - \bigl( \lambda x+ ( 1-\lambda ) y \bigr) \bigr) \,d\lambda \\ =&\frac{1}{\alpha ^{\frac{\beta }{k} }} \frac{\tau ( \theta +\vartheta -x ) }{y-x}-\frac{\Gamma _{k} ( \beta +k ) }{ ( y-x ) ^{\alpha \frac{\beta }{k} +1}} \bigl\{ {}_{k} ^{\beta }J_{ ( \theta +\vartheta -x )^{+} }^{\alpha } \tau ( \theta +\vartheta -y ) \bigr\} \end{aligned}$$
(2.26)

and

$$\begin{aligned} I_{2}&= \int _{0}^{1} \biggl( \frac{1-\lambda ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} } \tau ^{{\prime }} \bigl( \theta + \vartheta - \bigl( \lambda x+ ( 1-\lambda ) y \bigr) \bigr) \,d\lambda \\ & =-\frac{1}{\alpha ^{\frac{\beta }{k} }} \frac{\tau ( \theta +\vartheta -y ) }{y-x}+ \frac{\frac{\beta }{k} }{y-x} \int _{0}^{1} \biggl( \frac{1-\lambda ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} -1} \lambda ^{\alpha -1} \tau \bigl( \theta +\vartheta - \bigl( \lambda x+ ( 1-\lambda ) y \bigr) \bigr) \,d\lambda \\ &=-\frac{1}{\alpha ^{\frac{\beta }{k} }} \frac{\tau ( \theta +\vartheta -y ) }{y-x}+\frac{\Gamma _{k} (\beta +k ) }{ ( y-x ) ^{\alpha \frac{\beta }{k} +1}} \bigl\{ {}_{k} ^{\beta }J_{ ( \theta +\vartheta -y )^{-} }^{\alpha } \tau ( \theta +\vartheta -x ) \bigr\} . \end{aligned}$$
(2.27)

Therefore, identity (2.24) follows from (2.25)–(2.27). □

Corollary 2.8

If we take \(\alpha ={\beta }={k}=1\), then Lemma 2.7leads to the equality

$$\begin{aligned}& \frac{ \tau ( \theta +\vartheta -x ) + \tau ( \theta +\vartheta -y ) }{2}-\frac{1}{y-x} \int _{\theta +\vartheta -y}^{\theta +\vartheta -x} \tau ( \lambda ) \,d\lambda \\& \quad =\frac{y-x}{2} \int _{0}^{1} ( 2\lambda -1 ) \tau ^{{ \prime }} \bigl( \theta +\vartheta - \bigl( \lambda x+ ( 1- \lambda ) y \bigr) \bigr) \,d\lambda . \end{aligned}$$
(2.28)

Remark 2.9

If we take \(x=\theta \) and \(y=\vartheta \) in Corollary 2.8, then equality (2.28) becomes the equality

$$ \frac{\tau ( \theta ) +\tau ( \vartheta ) }{2}- \frac{1}{\vartheta -\theta }\int _{\theta }^{\vartheta }\tau ( \lambda ) \,d\lambda = \frac{\vartheta -\theta }{2}\int _{0}^{1} ( 2\lambda -1 ) \tau ^{{\prime }} \bigl( ( 1-\lambda ) \theta +\lambda \vartheta \bigr) \,d\lambda , $$

which was proved in Lemma 2.1 of [69].

Theorem 2.10

Let \(\alpha ,\beta >0\), \(\theta <\vartheta \) and \(\tau : [ \theta ,\vartheta ] \rightarrow R\) be a differentiable mapping such that \(\tau ^{{\prime }}\in L [ \theta ,\vartheta ]\) and \(|\tau ^{{\prime }}|\) is a convex mapping on \([\theta ,\vartheta ]\). Then the inequality

$$\begin{aligned}& \biggl\vert \frac{2^{\alpha \frac{\beta }{k} -1} \alpha ^{\frac{\beta }{k} } \Gamma _{k} ( \beta +k )}{ ( y-x ) ^{\alpha \frac{\beta }{k} }} \bigl\{ {}_{k}^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{+} }^{\alpha } \tau ( \theta +\vartheta -x ) + {}_{k}^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{-} }^{\alpha } \tau ( \theta +\vartheta -y ) \bigr\} \\& \qquad {} -\tau \biggl(\theta +\vartheta -\frac{x+y}{2} \biggr) \biggr\vert \\& \quad \leq \frac{y-x}{4}\alpha ^{\frac{\beta }{k} } \biggl[ \bigl( \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert + \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert \bigr) \biggl( \frac{1}{\alpha ^{\frac{\beta }{k} +1}}B \biggl( \frac{\beta }{k} +1,\frac{1}{\alpha } \biggr) \biggr) \\& \qquad {} - \biggl\{ \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert \biggl( \frac{1}{2\alpha ^{\frac{\beta }{k} +1}} \biggl( B \biggl( \frac{\beta }{k} +1, \frac{2}{\alpha } \biggr) +B \biggl( \frac{\beta }{k} +1, \frac{1}{\alpha } \biggr) \biggr) \biggr) \biggr\} \\& \qquad {} + \biggl\{ \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert \biggl( \frac{1}{2\alpha ^{\frac{\beta }{k} +1}} \biggl( B \biggl( \frac{\beta }{k} +1, \frac{2}{\alpha } \biggr) -B \biggl( \frac{\beta }{k} +1, \frac{1}{\alpha } \biggr) \biggr) \biggr) \biggr\} \\& \qquad {} + \bigl( \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert + \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert \bigr) \biggl( \frac{1}{\alpha ^{\frac{\beta }{k} +1}}B \biggl( \frac{\beta }{k} +1,\frac{1}{\alpha } \biggr) \biggr) \\& \qquad {} - \biggl\{ \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert \biggl( \frac{1}{2\alpha ^{\frac{\beta }{k} +1}} \biggl( B \biggl( \frac{\beta }{k} +1, \frac{1}{\alpha } \biggr) -B \biggl( \frac{\beta }{k} +1, \frac{2}{\alpha } \biggr) \biggr) \biggr) \biggr\} \\& \qquad {} + \biggl\{ \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert \biggl( \frac{1}{2\alpha ^{\frac{\beta }{k} +1}} \biggl( B \biggl( \frac{\beta }{k} +1, \frac{2}{\alpha } \biggr) +B \biggl( \frac{\beta }{k} +1, \frac{1}{\alpha } \biggr) \biggr) \biggr) \biggr\} \biggr], \end{aligned}$$
(2.29)

holds for all \(x,y\in [ \theta ,\vartheta ]\).

Proof

It follows from Lemma 2.5 and Jensen–Mercer inequality using the convexity of \(\vert \tau ^{{\prime }} \vert \) that

$$\begin{aligned}& \biggl\vert \frac{2^{\alpha \frac{\beta }{k} -1} \alpha ^{\frac{\beta }{k} } \Gamma _{k} ( \beta +k ) }{ ( y-x ) ^{\alpha \frac{\beta }{k} }} \bigl\{ {}_{k}^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{+} }^{\alpha } \tau ( \theta +\vartheta -x ) + {}_{k}^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{-} }^{\alpha } \tau ( \theta +\vartheta -y ) \bigr\} \\& \qquad{} -\tau \biggl(\theta +\vartheta -\frac{x+y}{2} \biggr) \biggr\vert \\& \quad \leq \frac{y-x}{4}\alpha ^{\frac{\beta }{k} } \biggl\{ \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} } \biggl\vert \tau ^{{\prime }} \biggl( \theta + \vartheta - \biggl( \frac{2-\lambda }{2}x+\frac{\lambda }{2}y \biggr) \biggr) \biggr\vert \,d\lambda \\& \qquad {} + \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} } \biggl\vert \tau ^{{\prime }} \biggl( \theta + \vartheta - \biggl( \frac{\lambda }{2}x+\frac{2-\lambda }{2}y \biggr) \biggr) \biggr\vert \,d\lambda \biggr\} \\& \quad \leq \frac{y-x}{4}\alpha ^{\frac{\beta }{k} } \biggl\{ \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} } \biggl\{ \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert + \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert - \biggl(\frac{2-\lambda }{2} \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert + \frac{\lambda }{2} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert \biggr) \biggr\} \,d\lambda \\& \qquad {} + \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} } \biggl\{ \bigl\vert \tau ^{{ \prime }} ( \theta ) \bigr\vert + \bigl\vert \tau ^{{ \prime }} ( \vartheta ) \bigr\vert - \biggl(\frac{\lambda }{2} \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert +\frac{2-\lambda }{2} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert \biggr) \biggr\} \,d\lambda \biggr\} \\& \quad \leq \frac{y-x}{4}\alpha ^{\frac{\beta }{k} }\times \biggl\{ \bigl( \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert + \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert \bigr) \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} }\,d\lambda \\& \qquad {} - \biggl( \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} } \frac{2-\lambda }{2} \,d\lambda + \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} } \frac{\lambda }{2} \,d\lambda \biggr) \biggr\} \\& \qquad {} + \biggl\{ \bigl( \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert + \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert \bigr) \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} }\,d\lambda \\& \qquad {} - \biggl( \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} } \frac{\lambda }{2} \,d\lambda + \bigl\vert \tau ^{{ \prime }} ( y ) \bigr\vert \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr)^{\frac{\beta }{k} } \frac{2-\lambda }{2} \,d\lambda \biggr) \biggr\} . \end{aligned}$$

Therefore, inequality (2.29) can be derived after some simple calculations. □

Remark 2.11

From Theorem 2.10 we clearly see that:

  1. (i)

    If we take \(k=1\), \(x=\theta \), and \(y=\vartheta \) in Theorem 2.10, then we get Theorem 3.1 of [65].

  2. (ii)

    If we take \(\alpha =k=1\), \(x=\theta \), and \(y=\vartheta \) in Theorem 2.10, then we obtain Theorem 5 of [68] in the case of \(q=1\).

Theorem 2.12

Let \(q>1\), \(\alpha , \beta >0\), \(\theta <\vartheta \) and \(\tau : [ \theta ,\vartheta ] \rightarrow R\) be a differentiable mapping such that \(\tau ^{{\prime }} \in L [ \theta ,\vartheta ]\) and \(|\tau ^{{\prime }}|^{q}\) is a convex mapping on \([\theta ,\vartheta ]\). Then the inequality

$$\begin{aligned}& \biggl\vert \frac{2^{\alpha \frac{\beta }{k} -1} \alpha ^{\frac{\beta }{k} } \Gamma _{k} ( \beta +k )}{ ( y-x ) ^{\alpha \frac{\beta }{k} }} \bigl\{ {}_{k} ^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{+} }^{\alpha } \tau ( \theta +\vartheta -x ) + {}_{k} ^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{-} }^{\alpha } \tau ( \theta +\vartheta -y ) \bigr\} \\& \qquad {} -\tau \biggl(\theta +\vartheta -\frac{x+y}{2} \biggr) \biggr\vert \\& \quad \leq \frac{y-x}{4}\alpha ^{\frac{\beta }{k} } \biggl( \frac{1}{\alpha ^{\frac{\beta }{k} +1}}B \biggl( \frac{\beta }{k} +1, \frac{1}{\alpha } \biggr) \biggr) ^{1- \frac{1}{q}} \\& \qquad {}\times\biggl\{ \bigl( \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q} + \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q} \bigr) \biggl( \biggl( \frac{1}{\alpha ^{\frac{\beta }{k} +1}}B \biggl( \frac{\beta }{k} +1, \frac{1}{\alpha } \biggr) \biggr) \biggr) \\& \qquad {} - \biggl\{ \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert ^{q} \biggl( \frac{1}{2\alpha ^{\frac{\beta }{k} +1}} \biggl( B \biggl( \frac{\beta }{k} +1,\frac{1}{\alpha } \biggr) -B \biggl( \frac{\beta }{k} +1,\frac{2}{\alpha } \biggr) \biggr) \biggr) \\& \qquad {} + \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggl( \frac{1}{2\alpha ^{\frac{\beta }{k} +1}} \biggl( B \biggl( \frac{\beta }{k} +1, \frac{2}{\alpha } \biggr) +B \biggl( \frac{\beta }{k} +1, \frac{1}{\alpha } \biggr) \biggr) \biggr) \biggr\} \\& \qquad {} + \bigl( \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q} + \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q} \bigr) \biggl( \biggl( \frac{1}{\alpha ^{\frac{\beta }{k} +1}}B \biggl( \frac{\beta }{k} +1, \frac{1}{\alpha } \biggr) \biggr) \biggr) \\& \qquad {} - \biggl\{ \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert ^{q} \biggl( \frac{1}{2\alpha ^{\frac{\beta }{k} +1}} \biggl( B \biggl( \frac{\beta }{k} +1,\frac{2}{\alpha } \biggr) -B \biggl( \frac{\beta }{k} +1,\frac{1}{\alpha } \biggr) \biggr) \biggr) \\& \qquad {} + \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggl( \frac{1}{2\alpha ^{\frac{\beta }{k} +1}} \biggl( B \biggl( \frac{\beta }{k} +1, \frac{1}{\alpha } \biggr) +B \biggl( \frac{\beta }{k} +1, \frac{2}{\alpha } \biggr) \biggr) \biggr) \biggr\} \biggr\} ^{ \frac{1}{q}} \end{aligned}$$
(2.30)

holds for all \(x,y\in [ \theta ,\vartheta ]\).

Proof

It follows from Lemma 2.5, Jensen–Mercer inequality, power-mean inequality, and the convexity of function \(\vert \tau ^{{\prime }} \vert ^{q}\) that

$$\begin{aligned}& \biggl\vert \frac{2^{\alpha \frac{\beta }{k} -1} \alpha ^{\frac{\beta }{k} } \Gamma _{k} ( \beta +k ) }{ ( y-x ) ^{\alpha \frac{\beta }{k} }} \bigl\{ {}_{k} ^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{+} }^{\alpha } \tau ( \theta +\vartheta -x ) + {}_{k} ^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{-} }^{\alpha } \tau ( \theta +\vartheta -y ) \bigr\} \\& \qquad {} -\tau \biggl(\theta +\vartheta -\frac{x+y}{2} \biggr) \biggr\vert \\& \quad \leq \frac{y-x}{4}\alpha ^{\frac{\beta }{k} } \biggl\{ \biggl( \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} }\,d\lambda \biggr) ^{1-\frac{1}{q}} \\& \qquad {} \times \biggl( \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} } \biggl\vert \tau ^{{ \prime }} \biggl( \theta + \vartheta - \biggl( \frac{\lambda }{2}x+ \frac{2-\lambda }{2}y \biggr) \biggr) \biggr\vert ^{q}\,d\lambda \biggr) ^{\frac{1}{q}} \\& \qquad {} + \biggl( \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} }\,d\lambda \biggr) ^{1-\frac{1}{q}} \\& \qquad {} \times \biggl( \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} } \biggl\vert \tau ^{{\prime }} \biggl( \theta + \vartheta - \biggl( \frac{2-\lambda }{2}x+\frac{\lambda }{2}y \biggr) \biggr) \biggr\vert ^{q}\,d\lambda \biggr) ^{\frac{1}{q}} \biggr\} \\& \quad \leq \frac{y-x}{4}\alpha ^{\frac{\beta }{k} } \biggl\{ \biggl( \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} }\,d\lambda \biggr) ^{1-\frac{1}{q}}\biggl( \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} } \\& \qquad {} \times \biggl( \bigl( \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q} \bigr) - \biggl( \frac{\lambda }{2} \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert ^{q}+ \frac{2-\lambda }{2} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggr) \biggr) \,d\lambda \biggr) ^{\frac{1}{q}} \\& \qquad {} + \biggl( \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} }\,d\lambda \biggr) ^{1-\frac{1}{q}}\biggl( \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} } \\& \qquad {} \times \biggl( \bigl( \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q} \bigr) - \biggl( \frac{2-\lambda }{2} \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert ^{q}+ \frac{\lambda }{2} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggr) \biggr) \,d\lambda \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
(2.31)

Making simple simplifications, we get (2.30) from (2.31). □

Remark 2.13

Theorem 2.12 leads to the conclusion that:

  1. (i)

    If we take \(k=1\), \(x=\theta \), and \(y=\vartheta \) in Theorem 2.12, then we get Theorem 3.2 of [65].

  2. (ii)

    Let \(\alpha =k=1\), \(x=\theta \), and \(y=\vartheta \), then Theorem 2.12 reduces to Theorem 5 of [68].

Theorem 2.14

Let \(\alpha , \beta >0\), \(p, q>1\) with \(1/p+1/q=1\), \(\theta <\vartheta \) and \(\tau : [ \theta ,\vartheta ]\rightarrow R\) be a differentiable mapping such that \(\tau ^{{\prime }} \in L [ \theta ,\vartheta ]\) and \(|\tau ^{{\prime }}|^{q}\) is a convex mapping on \([\theta ,\vartheta ]\). Then one has

$$\begin{aligned}& \biggl\vert \frac{2^{\alpha \frac{\beta }{k} -1} \alpha ^{\frac{\beta }{k} } \Gamma _{k} (\beta +k ) }{ ( y-x ) ^{\alpha \frac{\beta }{k} }} \bigl\{ {}_{k} ^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{+} }^{\alpha } \tau ( \theta +\vartheta -x ) + {}_{k} ^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{-} }^{\alpha } \tau ( \theta +\vartheta -y ) \bigr\} \\& \qquad {} -\tau \biggl(\theta +\vartheta -\frac{x+y}{2} \biggr) \biggr\vert \\& \quad \leq \frac{y-x}{4}\alpha ^{\frac{\beta }{k} } \biggl( \frac{1}{\alpha ^{\frac{\beta }{k} p +1}}B \biggl( \frac{\beta }{k} p +1,\frac{1}{\alpha } \biggr) \biggr) ^{ \frac{1}{p}} \\& \qquad {}\times \biggl\{ \biggl( \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q} + \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q}- \biggl( \frac{3 \vert \tau ^{{\prime }} ( x ) \vert ^{q}+ \vert \tau ^{{\prime }} ( y ) \vert ^{q}}{4} \biggr) \biggr) ^{\frac{1}{q}} \\& \qquad {} + \biggl( \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q} + \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q}- \biggl( \frac{ \vert \tau ^{{\prime }} ( x ) \vert ^{q}+3 \vert \tau ^{{\prime }} ( y ) \vert ^{q}}{4} \biggr) \biggr) ^{\frac{1}{q}} \biggr\} \end{aligned}$$
(2.32)

for all \(x,y\in [\theta ,\vartheta ]\).

Proof

By using Lemma 2.5, and the Jensen–Mercer and Hölder integral inequalities, we obtain

$$\begin{aligned}& \biggl\vert \frac{2^{\alpha \frac{\beta }{k} -1} \alpha ^{\frac{\beta }{k} } \Gamma _{k} ( \beta +k ) }{ ( y-x ) ^{\alpha \frac{\beta }{k} }} \bigl\{ {}_{k} ^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{+} }^{\alpha } \tau ( \theta +\vartheta -x ) + {}_{k} ^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{-} }^{\alpha } \tau ( \theta +\vartheta -y ) \bigr\} \\& \qquad {} -\tau \biggl(\theta +\vartheta -\frac{x+y}{2} \biggr) \biggr\vert \\& \quad \leq \frac{y-x}{4}\alpha ^{\frac{\beta }{k} } \biggl( \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} p }\,d\lambda \biggr) ^{\frac{1}{p}} \\& \qquad {}\times \biggl\{ \biggl( \int _{0}^{1} \biggl\vert \tau ^{{\prime }} \biggl( \theta +\vartheta - \biggl( \frac{2-\lambda }{2}x+ \frac{\lambda }{2}y \biggr) \biggr) \biggr\vert ^{q} \biggr) ^{ \frac{1}{q}}\,d\lambda \\& \qquad {} + \biggl( \int _{0}^{1} \biggl\vert \tau ^{{\prime }} \biggl( \theta + \vartheta - \biggl( \frac{\lambda }{2}x+ \frac{2-\lambda }{2}y \biggr) \biggr) \biggr\vert ^{q} \biggr) ^{\frac{1}{q}}\,d\lambda \biggr\} . \end{aligned}$$

It follows from the convexity of \(\vert \tau ^{{\prime }} \vert ^{q} \) that

$$\begin{aligned}& \biggl\vert \tau ^{{\prime }} \biggl( \theta +\vartheta - \biggl( \frac{2-\lambda }{2}x+\frac{\lambda }{2}y \biggr) \biggr) \biggr\vert ^{q} \\& \quad \leq \bigl\vert \tau ^{{ \prime }} ( \theta ) \bigr\vert ^{q} + \bigl\vert \tau ^{{ \prime }} ( \vartheta ) \bigr\vert ^{q}- \biggl( \frac{2-\lambda }{2} \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert ^{q}+\frac{\lambda }{2} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggr) \\& \quad \leq \frac{y-x}{4}\alpha ^{\frac{\beta }{k} } \biggl( \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} p}\,d\lambda \biggr) ^{\frac{1}{p}} \\& \qquad {} \times \biggl\{ \biggl( \int _{0}^{1} \biggl( \bigl\vert \tau ^{{ \prime }} ( \theta ) \bigr\vert ^{q} + \bigl\vert \tau ^{{ \prime }} ( \vartheta ) \bigr\vert ^{q}- \biggl( \frac{2-\lambda }{2} \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert ^{q}+\frac{\lambda }{2} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggr) \biggr) \biggr) ^{ \frac{1}{q}}\,d\lambda \\& \qquad {} + \biggl( \int _{0}^{1} \biggl( \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q} + \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q}- \biggl( \frac{\lambda }{2} \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert ^{q}+\frac{2-\lambda }{2} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggr) \biggr) \biggr) ^{ \frac{1}{q}}\,d\lambda \biggr\} \\& \quad \leq \frac{y-x}{4}\alpha ^{\frac{\beta }{k} } \biggl( \frac{1}{\alpha ^{\frac{\beta }{k} p +1}}B \biggl( \frac{\beta }{k} p +1,\frac{1}{\alpha } \biggr) \biggr) ^{ \frac{1}{p}} \\& \qquad {}\times \biggl\{ \biggl( \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q} + \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q}- \biggl( \frac{3 \vert \tau ^{{\prime }} ( x ) \vert ^{q}+ \vert \tau ^{{\prime }} ( y ) \vert ^{q}}{4} \biggr) \biggr) ^{\frac{1}{ q}} \\& \qquad {} + \biggl( \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q} + \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q}- \biggl( \frac{ \vert \tau ^{{\prime }} ( x ) \vert ^{q}+3 \vert \tau ^{{\prime }} ( y ) \vert ^{q}}{4} \biggr) \biggr) ^{\frac{1}{q}} \biggr\} , \end{aligned}$$

which completes the proof. □

Corollary 2.15

Let \(\alpha =k=1\). Then Theorem 2.14leads to

$$\begin{aligned} & \biggl\vert \frac{1}{y-x} \int _{\theta +\vartheta -y}^{\theta + \vartheta -x}\tau ( \lambda ) \,d\lambda -\tau \biggl( \theta +\vartheta -\frac{x+y}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{1}{2^{\frac{1}{p}}} \times \biggl\{ \biggl( \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q} + \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q}- \biggl( \frac{3 \vert \tau ^{{\prime }} ( x ) \vert ^{q}+ \vert \tau ^{{\prime }} ( y ) \vert ^{q}}{4} \biggr) \biggr) ^{\frac{1}{q}} \\ &\qquad {} + \biggl( \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q} + \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q}- \biggl( \frac{ \vert \tau ^{{\prime }} ( x ) \vert ^{q}+3 \vert \tau ^{{\prime }} ( y ) \vert ^{q}}{4} \biggr) \biggr)^{\frac{1}{q}} \biggr\} . \end{aligned}$$

Theorem 2.16

Let \(\alpha , \beta >0\), \(p, q>1\) with \(1/p+1/q=1\), \(\theta <\vartheta \) and \(\tau : [\theta ,\vartheta ]\rightarrow R\) be a differentiable mapping such that \(\tau ^{{\prime }} \in L [ \theta ,\vartheta ] \) and \(|\tau ^{{\prime }}|^{q}\) is a convex mapping on \([\theta ,\vartheta ]\). Then the inequality

$$\begin{aligned}& \biggl\vert \frac{2^{\alpha \frac{\beta }{k} -1} \alpha ^{\frac{\beta }{k} } \Gamma _{k} ( \beta +k ) }{ ( y-x ) ^{\alpha \frac{\beta }{k} }} \bigl\{ {}_{k} ^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{+} }^{\alpha } \tau ( \theta +\vartheta -x ) + {}_{k} ^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{-} }^{\alpha } \tau ( \theta +\vartheta -y ) \bigr\} \\& \qquad {} -\tau \biggl(\theta +\vartheta -\frac{x+y}{2} \biggr) \biggr\vert \\& \quad \leq \frac{ ( y-x ) \alpha ^{\frac{\beta }{k} }}{4} \biggl\{ \bigl( \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q} \bigr) \biggl( \frac{B ( \frac{\beta }{k} +1,\frac{1}{\alpha } ) }{\alpha ^{\frac{\beta }{k} +1}} \biggr) \\& \qquad {} - \biggl( \biggl( \frac{B ( \frac{\beta }{k} +1,\frac{2}{\alpha } ) +B ( \frac{\beta }{k} +1,\frac{1}{\alpha } ) }{2\alpha ^{\frac{\beta }{k} +1}} \biggr) \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert ^{q} \\& \qquad {}+ \biggl( \frac{B ( \frac{\beta }{k} +1,\frac{1}{\alpha } ) -B ( \frac{\beta }{k} +1,\frac{2}{\alpha } ) }{2\alpha ^{\frac{\beta }{k} +1}} \biggr) \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \\& \qquad {} + \bigl( \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q} \bigr) \biggl( \frac{B ( \frac{\beta }{k} +1,\frac{1}{\alpha } ) }{\alpha ^{\frac{\beta }{k} +1}} \biggr) - \biggl( \biggl( \frac{B ( \frac{\beta }{k} +1,\frac{1}{\alpha } ) -B ( \frac{\beta }{k} +1,\frac{2}{\alpha } ) }{2\alpha ^{\frac{\beta }{k} +1}} \biggr) \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert ^{q} \\& \qquad {}+ \biggl( \frac{B (\frac{\beta }{k}+1, \frac{2}{\alpha } ) +B (\frac{\beta }{k} +1,\frac{1}{\alpha } )}{2\alpha ^{\frac{\beta }{k} +1}} \biggr) \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \biggr\} \end{aligned}$$
(2.33)

holds for all \(x,y\in [ \theta ,\vartheta ]\).

Proof

It follows from Lemma 2.5, Jensen–Mercer inequality, convexity of \(\vert \tau ^{{\prime }} \vert ^{q} \), and Hölder integral inequality that

$$\begin{aligned}& \biggl\vert \frac{2^{\alpha \frac{\beta }{k} -1} \alpha ^{\frac{\beta }{k} } \Gamma _{k} ( \beta +k ) }{ ( y-x ) ^{\alpha \frac{\beta }{k} }} \bigl\{ {}_{k} ^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{+} }^{\alpha } \tau ( \theta +\vartheta -x ) + {}_{k} ^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{-} }^{\alpha } \tau ( \theta +\vartheta -y ) \bigr\} \\& \qquad {} -\tau \biggl(a+b-\frac{x+y}{2} \biggr) \biggr\vert \\& \quad \leq \frac{ ( y-x ) \alpha ^{\frac{\beta }{k} }}{4} \biggl\{ \biggl( \int _{0}^{1}1\,d\lambda \biggr) ^{\frac{1}{p}} \\& \qquad {}\times \biggl( \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} } \biggl\vert \tau ^{{\prime }} \biggl( \theta + \vartheta - \biggl( \frac{2-\lambda }{2}x+\frac{\lambda }{2}y \biggr) \biggr) \biggr\vert ^{q}\,d\lambda \biggr) ^{\frac{1}{q}} \\& \qquad {} + \biggl( \int _{0}^{1}1\,d\lambda \biggr) ^{\frac{1}{p}} \times \biggl( \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} } \biggl\vert \tau ^{{\prime }} \biggl( \theta + \vartheta - \biggl( \frac{\lambda }{2}x+\frac{2-\lambda }{2}y \biggr) \biggr) \biggr\vert ^{q}\,d\lambda \biggr) ^{\frac{1}{q}} \biggr\} \\& \quad \leq \frac{ ( y-x ) \alpha ^{\frac{\beta }{k} }}{4} \biggl\{ \biggl( \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} } \\& \qquad {}\times\biggl[ \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q}- \biggl( \frac{2-\lambda }{2} \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert ^{q}+\frac{\lambda }{2} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggr) \biggr] \biggr) ^{\frac{1}{q}} \\& \qquad {} + \biggl( \int _{0}^{1} \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} } \biggl[ \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q}- \biggl( \frac{\lambda }{2} \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert ^{q}+ \frac{2-\lambda }{2} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggr) \biggr] \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}$$

By making necessary changes, we get (2.33). □

Theorem 2.17

Let \(\theta <\vartheta \) and \(\tau : [ \theta ,\vartheta ] \rightarrow R\) be a differentiable mapping such that \(\tau ^{{\prime }} \in L [ \theta ,\vartheta ]\) and \(|\tau ^{{\prime }}|\) is a convex mapping on \([\theta ,\vartheta ]\). Then one has

$$\begin{aligned}& \biggl\vert \frac{\tau ( \theta +\vartheta -x ) +\tau ( \theta +\vartheta -y ) }{2}- \frac{ \alpha ^{\frac{\beta }{k} } \Gamma _{k} ( \beta +k ) }{2 ( y-x ) ^{\alpha \frac{\beta }{k} }} \\& \qquad {} \times \bigl\{ {}_{k} ^{\beta }J_{ ( \theta +\vartheta -y )^{+} }^{\alpha } \tau ( \theta +\vartheta -x ) + {}_{k} ^{\beta }J_{ ( \theta +\vartheta -x )^{-} }^{ \alpha } \tau ( \theta +\vartheta -y ) \bigr\} \biggr\vert \\& \quad \leq \frac{ ( y-x ) \alpha ^{\frac{\beta }{k} }}{2} \biggl[ \biggl\{ \bigl( \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert + \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert \bigr) \frac{B ( \frac{1}{\alpha },\frac{\beta }{k} +1 ) }{\alpha ^{\frac{\beta }{k} +1}} \\& \qquad {} - \frac{ \vert \tau ^{{\prime }} ( x ) \vert }{\alpha ^{\frac{\beta }{k} +1}} \biggl\{ B_{\frac{1}{2^{\alpha }}} \biggl( \frac{1}{\alpha },\frac{\beta }{k} +1 \biggr) +B \biggl( \frac{2}{\alpha },\frac{\beta }{k} +1 \biggr) -B \biggl( \frac{1}{\alpha }, \frac{\beta }{k} +1 \biggr) \biggr\} \\& \qquad {} - \frac{ \vert \tau ^{{\prime }} ( y ) \vert }{\alpha ^{\frac{\beta }{k} +1}} \biggl\{ B_{\frac{1}{2^{\alpha }}} \biggl( \frac{1}{\alpha },\frac{\beta }{k} +1 \biggr) -B \biggl( \frac{2}{\alpha },\frac{\beta }{k} +1 \biggr) \biggr\} \biggr\} \\& \qquad {} + \biggl\{ \bigl( \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert + \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert \bigr) \frac{B ( \frac{1}{\alpha },\frac{\beta }{k} +1 ) }{\alpha ^{\frac{\beta }{k} +1}} \\& \qquad {} - \frac{ \vert \tau ^{{\prime }} ( x ) \vert }{\alpha ^{\frac{\beta }{k} +1}} \biggl\{ B_{\frac{1}{2^{\alpha }}} \biggl( \frac{1}{\alpha }, \frac{\beta }{k} +1 \biggr) -B \biggl( \frac{2}{\alpha }, \frac{\beta }{k} +1 \biggr) \biggr\} \\& \qquad {} - \frac{ \vert \tau ^{{\prime }} ( y ) \vert }{\alpha ^{\frac{\beta }{k} +1}} \biggl\{ B_{\frac{1}{2^{\alpha }}} \biggl( \frac{1}{\alpha },\frac{\beta }{k} +1 \biggr) +B \biggl( \frac{2}{\alpha },\frac{\beta }{k} +1 \biggr) -B \biggl( \frac{1}{\alpha },\frac{\beta }{k} +1 \biggr) \biggr\} \biggr\} \biggr] \end{aligned}$$
(2.34)

for all \(x,y\in [ \theta ,\vartheta ]\).

Proof

By using Lemma 2.7 and similar arguments as in the the proofs the previous theorems, we get

$$\begin{aligned}& \biggl\vert \frac{\tau ( \theta +\vartheta -x ) +\tau ( \theta +\vartheta -y ) }{2}- \frac{ \alpha ^{\frac{\beta }{k} } \Gamma _{k} ( \beta +k ) }{2 ( y-x ) ^{\alpha \frac{\beta }{k} }} \\& \qquad {}\times \bigl\{ {}_{k} ^{\beta }J_{ ( \theta +\vartheta -y )^{+} }^{\alpha } \tau ( \theta +\vartheta -x ) + {}_{k} ^{ \beta }J_{ ( \theta +\vartheta -x )^{-} }^{\alpha } \tau ( \theta +\vartheta -y ) \bigr\} \biggr\vert \\& \quad \leq \frac{ ( y-x ) \alpha ^{\frac{\beta }{k} }}{2}\int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} }- \biggl( \frac{1-\lambda ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} } \biggr\vert \bigl\vert \tau ^{{\prime }} \bigl( \theta +\vartheta - \bigl( \lambda x+ ( 1-\lambda ) y \bigr) \bigr) \bigr\vert \,d\lambda \\& \quad \leq \frac{ ( y-x ) \alpha ^{\frac{\beta }{k} }}{2}\int _{0}^{1} \biggl\vert \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} }- \biggl( \frac{1-\lambda ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} } \biggr\vert \\& \qquad {}\times \bigl\{ \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert + \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert - \bigl( \lambda \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert + ( 1-\lambda ) \bigl\vert \tau ^{{ \prime }} ( y ) \bigr\vert \bigr) \bigr\} \,d\lambda \\& \quad \leq \frac{ ( y-x ) \alpha ^{\frac{\beta }{k} }}{2} \biggl[ \int _{0}^{\frac{1}{2}} \biggl[ \biggl( \frac{1-\lambda ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} }- \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} } \biggr] \\& \qquad {}\times \bigl\{ \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert + \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert - \bigl( \lambda \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert + ( 1-\lambda ) \bigl\vert \tau ^{{ \prime }} ( y ) \bigr\vert \bigr) \bigr\} \,d\lambda \\& \qquad {}+ \int _{\frac{1}{2}}^{1} \biggl[ \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} }- \biggl( \frac{1-\lambda ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} } \biggr] \\& \qquad {}\times \bigl\{ \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert + \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert - \bigl( \lambda \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert + ( 1-\lambda ) \bigl\vert \tau ^{{ \prime }} ( y ) \bigr\vert \bigr) \bigr\} \,d\lambda \biggr]. \end{aligned}$$

This completes the proof. □

New inequalities via improved Hölder inequality

Theorem 3.1

Let \(\alpha , \beta >0\), \(p, q>1\) with \(1/p+1/q=1\), \(\theta <\vartheta \) and \(\tau : [ \theta ,\vartheta ] \rightarrow R\) be a differentiable mapping such that \(\tau ^{{\prime }} \in L [ \theta ,\vartheta ] \) and \(|\tau ^{{\prime }}|^{q}\) is a convex mapping on \([\theta , \vartheta ]\). Then one has

$$\begin{aligned}& \biggl\vert \frac{2^{\alpha \frac{\beta }{k} -1} \alpha ^{\frac{\beta }{k} } \Gamma _{k} ( \beta +k ) }{ ( y-x ) ^{\alpha \frac{\beta }{k} }} \bigl\{ {}_{k}^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{+} }^{\alpha }\tau ( \theta +\vartheta -x ) + {}_{k}^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{-} }^{\alpha } \tau ( \theta +\vartheta -y ) \bigr\} \\& \qquad {} -\tau \biggl(\theta +\vartheta -\frac{x+y}{2} \biggr) \biggr\vert \\& \quad \leq \frac{ ( y-x ) \alpha ^{\frac{\beta }{k} }}{2} \biggl[ \biggl\{ \biggl( \frac{B ( \frac{2}{\alpha },\frac{\beta }{k} p+1 ) }{\alpha ^{\frac{\beta }{k} p+1}} \biggr) ^{\frac{1}{p}} \\& \qquad {}\times\biggl( \frac{ \vert \tau ^{{\prime }} ( \theta ) \vert ^{q}+ \vert \tau ^{{\prime }} ( \vartheta ) \vert ^{q}}{2}- \biggl( \frac{5}{12} \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert ^{q}+\frac{1}{12} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggr) \biggr) ^{\frac{1}{q}} \\& \qquad {} + \biggl( \frac{B ( \frac{1}{\alpha },\frac{\beta }{k} p+1 ) -B ( \frac{2}{\alpha },\frac{\beta }{k} p+1 ) }{\alpha ^{\frac{\beta }{k} p+1}} \biggr) ^{\frac{1}{p}} \\& \qquad {}\times \biggl( \frac{ \vert \tau ^{{\prime }} ( \theta ) \vert ^{q}+ \vert \tau ^{{\prime }} ( \vartheta ) \vert ^{q}}{2}- \biggl( \frac{1}{3} \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert ^{q}+\frac{1}{6} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggr) \biggr) ^{\frac{1}{q}} \biggr\} \\& \qquad {} + \biggl\{ \biggl( \frac{B ( \frac{2}{\alpha },\frac{\beta }{k} p+1 ) }{\alpha ^{\frac{\beta }{k} p+1}} \biggr) ^{\frac{1}{p}} \biggl( \frac{ \vert \tau ^{{\prime }} ( \theta ) \vert ^{q}+ \vert \tau ^{{\prime }} ( \vartheta ) \vert ^{q}}{2}- \biggl( \frac{1}{12} \bigl\vert \tau ^{{ \prime }} ( x ) \bigr\vert ^{q}+\frac{5}{12} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggr) \biggr) ^{ \frac{1}{q}} \\& \qquad {} + \biggl( \frac{B ( \frac{1}{\alpha },\frac{\beta }{k} p+1 ) -B ( \frac{2}{\alpha },\frac{\beta }{k} p+1 ) }{\alpha ^{\frac{\beta }{k} p+1}} \biggr) ^{\frac{1}{p}} \\& \qquad {}\times \biggl( \frac{ \vert \tau ^{{\prime }} ( \theta ) \vert ^{q}+ \vert \tau ^{{\prime }} ( \vartheta ) \vert ^{q}}{2}- \biggl( \frac{1}{6} \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert ^{q}+\frac{1}{3} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggr) \biggr) ^{\frac{1}{q}} \biggr\} \biggr] \end{aligned}$$
(3.1)

for all \(x,y\in [ \theta ,\vartheta ]\).

Proof

It follows from Lemma 2.5, Jensen–Mercer inequality, the convexity of \(\vert \tau ^{{\prime }} \vert ^{q} \), and Hölder–İşcan integral inequality given in Theorem 1.4 of [70] that

$$\begin{aligned}& \biggl\vert \frac{2^{\alpha \frac{\beta }{k} -1} \alpha ^{\frac{\beta }{k} } \Gamma _{k} ( \beta +k ) }{ ( y-x ) ^{\alpha \frac{\beta }{k} }} \bigl\{ {}_{k}^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{+} }^{\alpha } \tau ( \theta +\vartheta -x ) + {}_{k}^{ \beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{-} }^{ \alpha } \tau ( \theta +\vartheta -y ) \bigr\} \\& \qquad {} -\tau \biggl(a+b-\frac{x+y}{2} \biggr) \biggr\vert \\& \quad \leq \frac{ ( y-x ) \alpha ^{\frac{\beta }{k} }}{4} \biggl[ \biggl\{ \biggl( \int _{0}^{1} ( 1-\lambda ) \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} p}\,d\lambda \biggr) ^{ \frac{1}{p}} \\& \qquad {}\times \biggl( \int _{0}^{1} ( 1-\lambda ) \biggl\vert \tau ^{{\prime }} \biggl( \theta +\vartheta - \biggl( \frac{2-\lambda }{2}x+ \frac{\lambda }{2}y \biggr) \biggr) \biggr\vert ^{q} \,d\lambda \biggr) ^{\frac{1}{q}} \\& \qquad {}\times\biggl( \int _{0}^{1}\lambda \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} p}\,d\lambda \biggr) ^{\frac{1}{p}} \biggl( \int _{0}^{1}\lambda \biggl\vert \tau ^{{\prime }} \biggl( \theta + \vartheta - \biggl( \frac{2-\lambda }{2}x+ \frac{\lambda }{2}y \biggr) \biggr) \biggr\vert ^{q} \,d\lambda \biggr) ^{\frac{1}{q}} \biggr\} \\& \qquad {}+ \biggl\{ \biggl( \int _{0}^{1} ( 1-\lambda ) \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} p}\,d\lambda \biggr) ^{\frac{1}{p}} \\& \qquad {}\times \biggl( \int _{0}^{1} ( 1-\lambda ) \biggl\vert \tau ^{{\prime }} \biggl( \theta +\vartheta - \biggl( \frac{\lambda }{2}x+ \frac{2-\lambda }{2}y \biggr) \biggr) \biggr\vert ^{q} \,d\lambda \biggr) ^{ \frac{1}{q}} \\& \qquad {}\times \biggl( \int _{0}^{1}\lambda \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} p}\,d\lambda \biggr) ^{\frac{1}{p}} \\& \qquad {}\times\biggl( \int _{0}^{1}\lambda \biggl\vert \tau ^{{\prime }} \biggl( \theta + \vartheta - \biggl( \frac{\lambda }{2}x+ \frac{2-\lambda }{2}y \biggr) \biggr) \biggr\vert ^{q} \,d\lambda \biggr) ^{\frac{1}{q}} \biggr\} \biggr] \\& \quad \leq \frac{ ( y-x ) \alpha ^{\frac{\beta }{k} }}{4} \biggl[ \biggl\{ \biggl( \int _{0}^{1} ( 1-\lambda ) \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} p}\,d\lambda \biggr) ^{ \frac{1}{p}} \\& \qquad {}\times \biggl( \int _{0}^{1} ( 1-\lambda ) \biggl[ \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q}- \biggl( \frac{2-\lambda }{2} \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert ^{q}+\frac{\lambda }{2} \bigl\vert \tau ^{{ \prime }} ( y ) \bigr\vert ^{q} \biggr) \biggr]\,d\lambda \biggr) ^{\frac{1}{q}} \\& \qquad {}\times\biggl( \int _{0}^{1}\lambda \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} p}\,d\lambda \biggr) ^{\frac{1}{p}} \\& \qquad {}\times \biggl( \int _{0}^{1}\lambda \biggl[ \bigl\vert \tau ^{{ \prime }} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \tau ^{{ \prime }} ( \vartheta ) \bigr\vert ^{q}- \biggl( \frac{2-\lambda }{2} \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert ^{q}+\frac{\lambda }{2} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggr) \biggr]\,d\lambda \biggr) ^{ \frac{1}{q}} \biggr\} \\& \qquad {}+ \biggl\{ \biggl( \int _{0}^{1} ( 1-\lambda ) \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} p}\,d\lambda \biggr) ^{\frac{1}{p}} \\& \qquad {}\times \biggl( \int _{0}^{1} ( 1-\lambda ) \biggl[ \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q}- \biggl( \frac{\lambda }{2} \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert ^{q}+ \frac{2-\lambda }{2} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggr) \biggr] \,d\lambda \biggr) ^{\frac{1}{q}} \\& \qquad {}\times\biggl( \int _{0}^{1}\lambda \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} p}\,d\lambda \biggr) ^{\frac{1}{p}} \\ & \qquad {}\times \biggl( \int _{0}^{1}\lambda \biggl[ \bigl\vert \tau ^{{ \prime }} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \tau ^{{ \prime }} ( \vartheta ) \bigr\vert ^{q}- \biggl( \frac{\lambda }{2} \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert ^{q}+\frac{2-\lambda }{2} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggr) \biggr] \,d\lambda \biggr) ^{ \frac{1}{q}} \biggr\} \biggr]. \end{aligned}$$

By making use of some computations, one can get the required result. □

Theorem 3.2

Let \(\alpha , \beta >0\), \(p, q>1\) with \(1/p+1/q=1\), \(\theta <\vartheta \) and \(\tau : [ \theta ,\vartheta ] \rightarrow R\) ba a differentiable mapping such that \(\tau ^{{\prime }} \in L [ \theta ,\vartheta ] \) and \(|\tau ^{{\prime }}|^{q}\) is a convex mapping on \([\theta ,\vartheta ]\). Then the inequality

$$\begin{aligned}& \biggl\vert \frac{2^{\alpha \frac{\beta }{k} -1} \alpha ^{\frac{\beta }{k} } \Gamma _{k} ( \beta +k ) }{ ( y-x ) ^{\alpha \frac{\beta }{k} }} \bigl\{ {}_{k}^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{+} }^{\alpha } \tau ( \theta +\vartheta -x ) + {}_{k}^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{-} }^{\alpha } \tau ( \theta +\vartheta -y ) \bigr\} \\& \qquad {} -\tau \biggl(\theta +\vartheta -\frac{x+y}{2} \biggr) \biggr\vert \\& \quad \leq \frac{ ( y-x ) \alpha ^{\frac{\beta }{k} }}{4} \biggl[ \biggl\{ \biggl( \frac{B ( \frac{2}{\alpha },\frac{\beta }{k} +1 ) }{\alpha ^{\frac{\beta }{k} +1}} \biggr) ^{1-\frac{1}{q}} \\& \qquad {} \times \biggl( \bigl( \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q} \bigr) \biggl( \frac{B ( \frac{2}{\alpha },\frac{\beta }{k} +1 ) }{\alpha ^{\frac{\beta }{k} +1}} \biggr) \\& \qquad {}- \biggl( \frac{1}{2\alpha ^{\frac{\beta }{k} +1}} \bigl\vert \tau ^{{ \prime }} ( x ) \bigr\vert ^{q} \biggl( B \biggl( \frac{2}{\alpha }, \frac{\beta }{k} +1 \biggr) +B \biggl( \frac{3}{\alpha }, \frac{\beta }{k} +1 \biggr) \biggr) \\& \qquad {}+\frac{1}{2\alpha ^{\frac{\beta }{k} +1}} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggl( B \biggl( \frac{2}{\alpha },\frac{\beta }{k} +1 \biggr) -B \biggl( \frac{3}{\alpha },\frac{\beta }{k} +1 \biggr) \biggr) \biggr) \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \frac{B ( \frac{1}{\alpha },\frac{\beta }{k} +1 ) -B ( \frac{2}{\alpha },\frac{\beta }{k} +1 ) }{\alpha ^{\frac{\beta }{k} +1}} \biggr) ^{1-\frac{1}{q}} \\& \qquad {}\times\biggl( \bigl( \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q} \bigr) \biggl( \frac{B ( \frac{1}{\alpha },\frac{\beta }{k} +1 ) -B ( \frac{2}{\alpha },\frac{\beta }{k} +1 ) }{\alpha ^{\frac{\beta }{k} +1}} \biggr) \\& \qquad {} - \biggl( \frac{1}{2\alpha ^{\frac{\beta }{k} +1}} \bigl\vert \tau ^{{ \prime }} ( x ) \bigr\vert ^{q} \biggl( B \biggl( \frac{1}{\alpha }, \frac{\beta }{k} +1 \biggr) -B \biggl( \frac{3}{\alpha }, \frac{\beta }{k} +1 \biggr) \biggr) \\& \qquad {}+\frac{1}{2\alpha ^{\frac{\beta }{k} +1}} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggl( B \biggl( \frac{1}{\alpha },\frac{\beta }{k} +1 \biggr) -2B \biggl( \frac{2}{\alpha },\frac{\beta }{k} +1 \biggr) +B \biggl( \frac{3}{\alpha },\frac{\beta }{k} +1 \biggr) \biggr) \biggr) \biggr)^{\frac{1}{q}} \biggr\} \\& \qquad {} + \biggl\{ \biggl( \frac{B ( \frac{2}{\alpha },\frac{\beta }{k} +1 ) }{\alpha ^{\frac{\beta }{k} +1}} \biggr) ^{1-\frac{1}{q}} \biggl( \bigl( \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q} \bigr) \biggl( \frac{B ( \frac{2}{\alpha },\frac{\beta }{k} +1 ) }{\alpha ^{\frac{\beta }{k} +1}} \biggr) \\& \qquad {} - \biggl( \frac{1}{2\alpha ^{\frac{\beta }{k} +1}} \bigl\vert \tau ^{{ \prime }} ( x ) \bigr\vert ^{q} \biggl( B \biggl( \frac{2}{\alpha }, \frac{\beta }{k} +1 \biggr) -B \biggl( \frac{3}{\alpha }, \frac{\beta }{k} +1 \biggr) \biggr) \\& \qquad {} +\frac{1}{2\alpha ^{\frac{\beta }{k} +1}} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggl( B \biggl( \frac{2}{\alpha },\frac{\beta }{k} +1 \biggr) +B \biggl( \frac{3}{\alpha },\frac{\beta }{k} +1 \biggr) \biggr) \biggr) \biggr) ^{ \frac{1}{q}} \\& \qquad {} + \biggl( \frac{B ( \frac{1}{\alpha },\frac{\beta }{k} +1 ) -B ( \frac{2}{\alpha },\frac{\beta }{k} +1 ) }{\alpha ^{\frac{\beta }{k} +1}} \biggr) ^{1-\frac{1}{q}} \\& \qquad {}\times\biggl( \bigl( \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q} \bigr) \biggl( \frac{B ( \frac{1}{\alpha },\frac{\beta }{k} +1 ) -B ( \frac{2}{\alpha },\frac{\beta }{k} +1 ) }{\alpha ^{\frac{\beta }{k} +1}} \biggr) \\& \qquad {} - \biggl( \frac{1}{2\alpha ^{\frac{\beta }{k} +1}} \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert ^{q} \biggl( B \biggl( \frac{1}{\alpha }, \frac{\beta }{k} +1 \biggr) -2B \biggl( \frac{2}{\alpha }, \frac{\beta }{k} +1 \biggr) +B \biggl( \frac{3}{\alpha }, \frac{\beta }{k} +1 \biggr) \biggr) \\& \qquad {} +\frac{1}{2\alpha ^{\frac{\beta }{k} +1}} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggl( B \biggl( \frac{1}{\alpha }, \frac{\beta }{k} +1 \biggr) -B \biggl( \frac{3}{\alpha },\frac{\beta }{k} +1 \biggr) \biggr) \biggr) \biggr) ^{\frac{1}{q}} \biggr\} \biggr], \end{aligned}$$
(3.2)

holds for all \(x,y\in [ \theta ,\vartheta ]\).

Proof

It follows from Lemma 2.5, Jensen–Mercer inequality, the convexity of \(\vert \tau ^{{\prime }} \vert ^{q} \), and the improved power-mean integral inequality given in Theorem 1.5 of [70] that

$$\begin{aligned}& \biggl\vert \frac{2^{\alpha \frac{\beta }{k} -1} \alpha ^{\frac{\beta }{k} } \Gamma _{k} ( \beta +k ) }{ ( y-x ) ^{\alpha \frac{\beta }{k} }} \bigl\{ {}_{k}^{\beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{+} }^{\alpha } \tau ( \theta +\vartheta -x ) + {}_{k}^{ \beta }J_{ ( \theta +\vartheta -\frac{x+y}{2} )^{-} }^{ \alpha } \tau ( \theta +\vartheta -y ) \bigr\} \\& \qquad {} -\tau \biggl(\theta +\vartheta -\frac{x+y}{2} \biggr) \biggr\vert \\& \quad \leq \frac{ ( y-x ) \alpha ^{\frac{\beta }{k} }}{4} \biggl[ \biggl\{ \biggl( \int _{0}^{1} ( 1-\lambda ) \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} }\,d\lambda \biggr) ^{1- \frac{1}{q}} \\& \qquad {}\times \biggl( \int _{0}^{1} ( 1-\lambda ) \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} } \biggl\vert \tau ^{{\prime }} \biggl( \theta + \vartheta - \biggl( \frac{2-\lambda }{2}x+ \frac{\lambda }{2}y \biggr) \biggr) \biggr\vert ^{q}\,d\lambda \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{1}\lambda \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} }\,d\lambda \biggr) ^{1- \frac{1}{q}} \\& \qquad {}\times \biggl( \int _{0}^{1}\lambda \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} } \biggl\vert \tau ^{{\prime }} \biggl( \theta + \vartheta - \biggl( \frac{2-\lambda }{2}x+ \frac{\lambda }{2}y \biggr) \biggr) \biggr\vert ^{q}\,d\lambda \biggr) ^{\frac{1}{q}} \biggr\} \\& \qquad {}+ \biggl\{ \biggl( \int _{0}^{1} ( 1-\lambda ) \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} }\,d\lambda \biggr) ^{1-\frac{1}{q}} \\& \qquad {}\times \biggl( \int _{0}^{1} ( 1-\lambda ) \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} } \biggl\vert \tau ^{{\prime }} \biggl( \theta + \vartheta - \biggl( \frac{\lambda }{2}x+ \frac{2-\lambda }{2}y \biggr) \biggr) \biggr\vert ^{q}\,d\lambda \biggr) ^{ \frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{1}\lambda \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} }\,d\lambda \biggr) ^{1- \frac{1}{q}} \\& \qquad {}\times \biggl( \int _{0}^{1}\lambda \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} } \biggl\vert \tau ^{{\prime }} \biggl( \theta + \vartheta - \biggl( \frac{\lambda }{2}x+ \frac{2-\lambda }{2}y \biggr) \biggr) \biggr\vert ^{q}\,d\lambda \biggr) ^{\frac{1}{q}} \biggr\} \biggr] \\& \quad \leq \frac{ ( y-x ) \alpha ^{\frac{\beta }{k} }}{4} \biggl[ \biggl\{ \biggl( \int _{0}^{1} ( 1-\lambda ) \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} }\,d\lambda \biggr) ^{1- \frac{1}{q}}\biggl( \int _{0}^{1} ( 1-\lambda ) \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} } \\& \qquad {}\times \biggl[ \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q}- \biggl( \frac{2-\lambda }{2} \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert ^{q}+ \frac{\lambda }{2} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggr) \biggr] \,d\lambda \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{1}\lambda \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} }\,d\lambda \biggr) ^{1- \frac{1}{q}}\biggl( \int _{0}^{1}\lambda \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} } \\& \qquad {}\times \biggl[ \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q}- \biggl( \frac{2-\lambda }{2} \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert ^{q}+ \frac{\lambda }{2} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggr) \biggr] \,d\lambda \biggr) ^{\frac{1}{q}} \biggr\} \\& \qquad {}+ \biggl\{ \biggl( \int _{0}^{1} ( 1-\lambda ) \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} }\,d\lambda \biggr) ^{1-\frac{1}{q}}\biggl( \int _{0}^{1} ( 1-\lambda ) \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} } \\& \qquad {}\times \biggl[ \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q}- \biggl( \frac{\lambda }{2} \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert ^{q}+ \frac{2-\lambda }{2} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggr) \biggr] \,d\lambda \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{1}\lambda \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{\frac{\beta }{k} }\,d\lambda \biggr)^{1- \frac{1}{q}}\biggl( \int _{0}^{1}\lambda \biggl( \frac{1- ( 1-\lambda ) ^{\alpha }}{\alpha } \biggr) ^{ \frac{\beta }{k} } \\& \qquad {}\times \biggl[ \bigl\vert \tau ^{{\prime }} ( \theta ) \bigr\vert ^{q}+ \bigl\vert \tau ^{{\prime }} ( \vartheta ) \bigr\vert ^{q}- \biggl( \frac{\lambda }{2} \bigl\vert \tau ^{{\prime }} ( x ) \bigr\vert ^{q}+ \frac{2-\lambda }{2} \bigl\vert \tau ^{{\prime }} ( y ) \bigr\vert ^{q} \biggr) \biggr] \,d\lambda \biggr) ^{\frac{1}{q}} \biggr\} \biggr]. \end{aligned}$$

By computing the above integrals, one can obtain the required result. □

Conclusions

The Hermite–Kadamard inequality is one of the most important inequalities for convex functions and in the theory of inequalities, while the Hermite–Jensen–Mercer inequality is a variant of the Hermite–Kadamard inequality which has attracted the attention of many researchers in recently years due to its many applications in pure and applied mathematics, as well as in physics. Therefore, it is important to further generalize and improve the Hermite–Jensen–Mercer inequality. In the article, we have found new methods to generalize the Hermite–Jensen–Mercer inequality to the fractional integrals, established several novel Hermite–Jensen–Mercer-type inequalities for convex functions in the framework of the k-fractional conformable integrals, generalized and improved many previously known results in the literature. The ideas and techniques we put forward are likely to open new research directions in this field and lead to a large number of follow-up studies.

Availability of data and materials

Not applicable.

References

  1. 1.

    Khurshid, Y., Adil Khan, M., Chu, Y.-M.: Conformable fractional integral inequalities for GG- and GA-convex functions. AIMS Math. 5(5), 5012–5030 (2020)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Chu, Y.-M., Awan, M.U., Javad, M.Z., Khan, A.W.: Bounds for the remainder in Simpson’s inequality via n-polynomial convex functions of higher order using Katugampola fractional integrals. J. Math. 2020, Article ID 4189036 (2020)

    MathSciNet  Google Scholar 

  3. 3.

    Yan, P.-Y., Li, Q., Chu, Y.-M., Mukhtar, S., Waheed, S.: On some fractional integral inequalities for generalized strongly modified h-convex function. AIMS Math. 5(6), 6620–6638 (2020)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Adil Khan, M., Hanif, M., Khan, Z.A., Ahmad, K., Chu, Y.-M.: Association of Jensen’s inequality for s-convex function with Csiszár divergence. J. Inequal. Appl. 2019, Article ID 162 (2019)

    Article  Google Scholar 

  5. 5.

    Rashid, S., Ashraf, R., Noor, M.A., Noor, K.I., Chu, Y.-M.: New weighted generalizations for differentiable exponentially convex mapping with application. AIMS Math. 5(4), 3525–3546 (2020)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Ge-JiLe, H., Rashid, S., Noor, M.A., Suhail, A., Chu, Y.-M.: Some unified bounds for exponentially \(tgs\)-convex functions governed by conformable fractional operators. AIMS Math. 5(6), 6108–6123 (2020)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Zhao, T.-H., He, Z.-Y., Chu, Y.-M.: On some refinements for inequalities involving zero-balanced hypergeometric function. AIMS Math. 5(6), 6479–6495 (2020)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Agarwal, P., Kadakal, M., İşcan, İ., Chu, Y.-M.: Better approaches for n-times differentiable convex functions. Mathematics 8, Article ID 950 (2020)

    Article  Google Scholar 

  9. 9.

    Wang, M.-K., Chu, H.-H., Li, Y.-M., Chu, Y.-M.: Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind. Appl. Anal. Discrete Math. 14(1), 255–271 (2020)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Shen, J.-M., Yang, Z.-H., Qian, W.-M., Zhang, W., Chu, Y.-M.: Sharp rational bounds for the gamma function. Math. Inequal. Appl. 23(3), 843–853 (2020)

    MathSciNet  Google Scholar 

  11. 11.

    Wang, M.-K., Chu, Y.-M., Li, Y.-M., Zhang, W.: Asymptotic expansion and bounds for complete elliptic integrals. Math. Inequal. Appl. 23(3), 821–841 (2020)

    MathSciNet  Google Scholar 

  12. 12.

    Hai, G.-J., Zhao, T.-H.: Monotonicity properties and bounds involving the two-parameter generalized Grötzsch ring function. J. Inequal. Appl. 2020, Article ID 66 (2020)

    Article  Google Scholar 

  13. 13.

    Awan, M.U., Akhtar, N., Kashuri, A., Noor, M.A., Chu, Y.-M.: 2D approximately reciprocal ρ-convex functions and associated integral inequalities. AIMS Math. 5(5), 4662–4680 (2020)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Sun, M.-B., Chu, Y.-M.: Inequalities for the generalized weighted mean values of g-convex functions with applications. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114(4), Article ID 172 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Abbas Baloch, I., Mughal, A.A., Chu, Y.-M., Haq, A.U., De La Sen, M.: A variant of Jensen-type inequality and related results for harmonic convex functions. AIMS Math. 5(6), 6404–6418 (2020)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Kalsoom, H., Idrees, M., Baleanu, D., Chu, Y.-M.: New estimates of \(q_{1}q_{2}\)-Ostrowski-type inequalities within a class of n-polynomial prevexity of function. J. Funct. Spaces 2020, Article ID 3720798 (2020)

    MATH  Google Scholar 

  17. 17.

    Awan, M.U., Akhtar, N., Iftikhar, S., Noor, M.A., Chu, Y.-M.: New Hermite–Hadamard type inequalities for n-polynomial harmonically convex functions. J. Inequal. Appl. 2020, Article ID 125 (2020)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Awan, M.U., Talib, S., Noor, M.A., Chu, Y.-M., Noor, K.I.: Some trapezium-like inequalities involving functions having strongly n-polynomial preinvexity property of higher order. J. Funct. Spaces 2020, Article ID 9154139 (2020)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Zhou, S.-S., Rashid, S., Noor, M.A., Noor, K.I., Safdar, F., Chu, Y.-M.: New Hermite–Hadamard type inequalities for exponentially convex functions and applications. AIMS Math. 5(6), 6874–6901 (2020)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Feng, B.-L., Ghafoor, M., Chu, Y.-M., Qureshi, M.I., Feng, X., Yao, C., Qiao, X.: Hermite–Hadamard and Jensen’s type inequalities for modified \((p, h)\)-convex functions. AIMS Math. 5(6), 6959–6971 (2020)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Khan, S., Adil Khan, M., Chu, Y.-M.: Converses of the Jensen inequality derived from the Green functions with applications in information theory. Math. Methods Appl. Sci. 43(5), 2577–2587 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Adil Khan, M., Pečarić, J., Chu, Y.-M.: Refinements of Jensen’s and McShane’s inequalities with applications. AIMS Math. 5(5), 4931–4945 (2020)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Awan, M.U., Talib, S., Chu, Y.-M., Noor, M.A., Noor, K.I.: Some new refinements of Hermite–Hadamard-type inequalities involving \(\Psi _{k}\)-Riemann–Liouville fractional integrals and applications. Math. Probl. Eng. 2020, Article ID 3051920 (2020)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Yang, X.-Z., Farid, G., Nazeer, W., Chu, Y.-M., Dong, C.-F.: Fractional generalized Hadamard and Fejér–Hadamard inequalities for m-convex function. AIMS Math. 5(6), 6325–6340 (2020)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Guo, S.-Y., Chu, Y.-M., Farid, G., Mehmood, S., Nazeer, W.: Fractional Hadamard and Fejér–Hadamard inequalities associated with exponentially \((s, m)\)-convex functions. J. Funct. Spaces 2020, Article ID 2410385 (2020)

    MATH  Google Scholar 

  26. 26.

    Iqbal, A., Adil Khan, M., Ullah, S., Chu, Y.-M.: Some new Hermite–Hadamard-type inequalities associated with conformable fractional integrals and their applications. J. Funct. Spaces 2020, Article ID 9845407 (2020)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Khurshid, Y., Adil Khan, M., Chu, Y.-M.: Conformable integral version of Hermite–Hadamard–Fejér inequalities via η-convex functions. AIMS Math. 5(5), 5106–5120 (2020)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Qi, H.-X., Yussouf, M., Mehmood, S., Chu, Y.-M., Farid, G.: Fractional integral versions of Hermite–Hadamard type inequality for generalized exponentially convexity. AIMS Math. 5(6), 6030–6042 (2020)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Iqbal, A., Adil Khan, M., Mohammad, N., Nwaeze, E.R., Chu, Y.-M.: Revisiting the Hermite–Hadamard integral inequality via a Green function. AIMS Math. 5(6), 6087–6107 (2020)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Mercer, A.McD.: A variant of Jensen’s inequality. JIPAM. J. Inequal. Pure Appl. Math. 4(4), Article ID 73 (2003)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Matković, A., Pečarić, J., Perić, I.: A variant of Jensen’s inequality of Mercer’s type for operators with applications. Linear Algebra Appl. 418(2–3), 551–564 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Jarad, F., Abdeljawad, T., Baleanu, D.: Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, Article ID 142 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Mohammed, P.O., Abdeljawad, T.: Opial integral inequalities for generalized fractional operators with nonsingular kernel. J. Inequal. Appl. 2020, Article ID 148 (2020)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Yokuş, A., Gülbahar, S.: Numerical solutions with linearization techniques of the fractional Harry Dym equation. Appl. Math. Nonlinear Sci. 4(1), 35–41 (2019)

    MathSciNet  Article  Google Scholar 

  35. 35.

    Al-Ghafri, K.S., Rezazadeh, H.: Solitons and other solutions of \((3+1)\)-dimensional space-time fractional modified KdV–Zakharov–Kuznetsov equation. Appl. Math. Nonlinear Sci. 4(2), 289–304 (2019)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Odibat, Z., Baleanu, D.: Numerical simulation of initial value problems with generalized Caputo-type fractional derivatives. Appl. Numer. Math. 156, 94–105 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Singh, J., Kumar, D., Hammouch, Z., Atangana, A.: A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl. Math. Comput. 316, 504–515 (2018)

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Ameen, I., Baleanu, D., Ali, H.M.: An efficient algorithm for solving the fractional optimal control of SIRV epidemic model with a combination of vaccination and treatment. Chaos Solitons Fractals 137, Article ID 109892 (2020)

    MathSciNet  Article  Google Scholar 

  39. 39.

    Hussain, S., Khalid, J., Chu, Y.-M.: Some generalized fractional integral Simpson’s type inequalities with applications. AIMS Math. 5(6), 5859–5883 (2020)

    MathSciNet  Article  Google Scholar 

  40. 40.

    Chen, S.-B., Rashid, S., Noor, M.A., Ashraf, R., Chu, Y.-M.: A new approach on fractional calculus and probability function. AIMS Math. 5(6), 7041–7054 (2020)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Chu, Y.-M., Adil Khan, M., Ali, T., Dragomir, S.S.: Inequalities for α-fractional differentiable functions. J. Inequal. Appl. 2017, Article ID 93 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    Wang, L., Dai, L.-Z., Bian, H.-B., Ma, Y.-F., Zhang, J.-R.: Concrete cracking prediction under combined prestress and strand corrosion. Struct. Infrastruct. Eng. 15(3), 285–295 (2019)

    Article  Google Scholar 

  43. 43.

    Dai, L.-Z., Bian, H.-B., Wang, L., Potier-Ferry, M., Zhang, J.-R.: Prestress loss diagnostics in pretensioned concrete structures with corrosive cracking. J. Struct. Eng. 146(3), Article ID 04020013 (2020)

    Article  Google Scholar 

  44. 44.

    Yang, A.-M., Zhang, Y.-Z., Cattani, C., Xie, G.-N., Rashidi, M.M., Zhou, Y.-J., Yang, X.-J.: Application of local fractional series expansion method to solve Klein–Gordon equations on Cantor sets. Abstr. Appl. Anal. 2014, Article ID 372741 (2014)

    MathSciNet  MATH  Google Scholar 

  45. 45.

    Gao, W., Veeresha, P., Prakasha, D.G., Baskonus, H.M., Yel, G.: New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function. Chaos Solitons Fractals 134, Article ID 109696 (2020)

    MathSciNet  Article  Google Scholar 

  46. 46.

    Cattani, C., Pierro, G.: On the fractal geometry of DNA by the binary image analysis. Bull. Math. Biol. 75(9), 1544–1570 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    Gao, W., Yel, G., Baskonus, H.M., Cattani, C.: Complex solitons in the conformable \((2+1)\)-dimensional Ablowitz–Kaup–Newell–Segur equation. AIMS Math. 5(1), 507–521 (2020)

    MathSciNet  Article  Google Scholar 

  48. 48.

    Cattani, C.: Connection coefficients of Shannon wavelets. Math. Model. Anal. 11(2), 117–132 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  49. 49.

    İlhan, E., Kıymaz, İ.O.: A generalization of truncated M-fractional derivative and applications to fractional differential equations. Appl. Math. Nonlinear Sci. 5(1), 171–188 (2020)

    MathSciNet  Article  Google Scholar 

  50. 50.

    Mohammad, M., Cattani, C.: A collocation method via the quasi-affine biorthogonal systems for solving weakly singular type of Volterra–Fredholm integral equations. Alex. Eng. J. 59, 2181–2191 (2020)

    Article  Google Scholar 

  51. 51.

    Sweilam, N., Al-Mekhlafi, S., Shatta, S., Baleanu, D.: Numerical study for two types variable-order Burgers’ equations with proportional delay. Appl. Numer. Math. 156, 364–376 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  52. 52.

    Shen, J.-M., Rashid, S., Noor, M.A., Ashraf, R., Chu, Y.-M.: Certain novel estimates within fractional calculus theory on time scales. AIMS Math. 5(6), 6073–6086 (2020)

    MathSciNet  Article  Google Scholar 

  53. 53.

    Rashid, S., Jarad, F., Chu, Y.-M.: A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function. Math. Probl. Eng. 2020, Article ID 7630260 (2020)

    MathSciNet  Google Scholar 

  54. 54.

    Adil Khan, M., Begum, S., Khurshid, Y., Chu, Y.-M.: Ostrowski type inequalities involving conformable fractional integrals. J. Inequal. Appl. 2018, Article ID 70 (2018)

    MathSciNet  Article  Google Scholar 

  55. 55.

    Xu, L., Chu, Y.-M., Rashid, S., El-Deeb, A.A., Nisar, K.S.: On new unified bounds for a family of functions with fractional q-calculus theory. J. Funct. Spaces 2020, Article ID 4984612 (2020)

    MathSciNet  MATH  Google Scholar 

  56. 56.

    Rashid, S., Khalid, A., Rahman, S., Nisar, K.S., Chu, Y.-M.: On new modifications governed by quantum Hahn’s integral operator pertaining to fractional calculus. J. Funct. Spaces 2020, Article ID 8262860 (2020)

    MathSciNet  MATH  Google Scholar 

  57. 57.

    Rashid, S., Jarad, F., Noor, M.A., Kalsoom, H., Chu, Y.-M.: Inequalities by means of generalized proportional fractional integral operators with respect to another function. Mathematics 7(12), Article ID 1225 (2019)

    Article  Google Scholar 

  58. 58.

    Kalsoom, H., Idrees, M., Kashuri, A., Awan, M.U., Chu, Y.-M.: Some new \((p_{1}p_{2}, q_{1}q_{2})\)-estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity. AIMS Math. 5(6), 7122–7144 (2020)

    MathSciNet  Article  Google Scholar 

  59. 59.

    Zhao, T.-H., Wang, M.-K., Chu, Y.-M.: A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 5(5), 4512–4528 (2020)

    MathSciNet  Article  Google Scholar 

  60. 60.

    Huang, X.-F., Wang, M.-K., Shao, H., Zhao, Y.-F., Chu, Y.-M.: Monotonicity properties and bounds for the complete p-elliptic integrals. AIMS Math. 5(6), 7071–7086 (2020)

    MathSciNet  Article  Google Scholar 

  61. 61.

    Akdemir, A.O., Ekinci, A., Set, E.: Conformable fractional integrals and related new integral inequalities. J. Nonlinear Convex Anal. 18(4), 661–674 (2017)

    MathSciNet  Google Scholar 

  62. 62.

    Jarad, F., Uǧurlu, E., Abdeljawad, T., Baleanu, D.: On a new class of fractional operators. Adv. Differ. Equ. 2017, Article ID 247 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  63. 63.

    Kilbas, A.A.: Hadamard-type fractional calculus. J. Korean Math. Soc. 38(6), 1191–1204 (2001)

    MathSciNet  MATH  Google Scholar 

  64. 64.

    Qi, F., Habib, S., Mubeen, S., Naeem, M.N.: Generalized k-fractional conformable integrals and related inequalities. AIMS Math. 4(3), 343–368 (2019)

    MathSciNet  Article  Google Scholar 

  65. 65.

    Gözpınar, A.: Some Hermite–Hadamard type inequalities for convex functions via new fractional conformable integrals and related inequalities. AIP Conf. Proc. 1991(1), Article ID 020006 (2018). https://doi.org/10.1063/1.5047879

    Article  Google Scholar 

  66. 66.

    Sarikaya, M.Z., Set, E., Yaldiz, H., Başak, N.: Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57(9), 2403–2407 (2013)

    MATH  Article  Google Scholar 

  67. 67.

    Kian, M., Moslehian, M.S.: Refinements of the operator Jensen–Mercer inequality. Electron. J. Linear Algebra 26, 742–753 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  68. 68.

    Sarikaya, M.Z., Yildirim, H.: On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes 17(2), 1049–1059 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  69. 69.

    Dragomir, S.S., Agarwal, R.P.: Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 11(5), 91–95 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  70. 70.

    Özcan, S., İşcan, İ.: Some new Hermite–Hadamard type inequalities for s-convex functions and their applications. J. Inequal. Appl. 2019, Article ID 201 (2019)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the support of National Natural Science Foundation of China. The research of the first author has been fully supported by H.E.C. Pakistan under NRPU project 7906.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 61673169).

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yu-Ming Chu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Butt, S.I., Umar, M., Rashid, S. et al. New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals. Adv Differ Equ 2020, 635 (2020). https://doi.org/10.1186/s13662-020-03093-y

Download citation

MSC

  • 26E60

Keywords

  • Convex functions
  • Hermite–Hadamard inequality
  • Jensen inequality
  • Jensen–Mercer inequality
  • New conformable k-fractional integrals