 Research
 Open Access
 Published:
Existence and approximate controllability of Hilfer fractional evolution equations with almost sectorial operators
Advances in Difference Equations volume 2020, Article number: 615 (2020)
Abstract
In this article, we are concerned with the existence of mild solutions and approximate controllability of Hilfer fractional evolution equations with almost sectorial operators and nonlocal conditions. The existence results are obtained by first defining Green’s function and approximate controllability by specifying a suitable control function. These results are established with the help of Schauder’s fixed point theorem and theory of almost sectorial operators in a Banach space. An example is also presented for the demonstration of obtained results.
Introduction
In current times, the rising interest of researchers in fractional calculus reflects the popularity of this branch [1–3, 5–13, 15, 19, 30–32]. Differential equations of fractional order are widely applicable in the areas of physics, chemistry, electromagnetics, and mechanics. Fractional differential equations (FDEs) have been used widely in the identification of different physical systems, in control theory, in simulating viscoelastic materials, and in the modeling of different complex phenomena [22–29, 39, 42]. The concept of exact controllability and approximate controllability of FDEs is an active field of investigation because of its major applications in physical sciences. Under some admissible control inputs, exact controllability steers the system to arbitrary final state, while approximate controllability steers the system to the small neighborhood of arbitrary final state. In the published works, there are numerous articles focussing on the exact or approximate controllability of systems represented by FDEs, neutral FDEs, FDEs with impulsive inclusions, and FDEs with delay functions [4, 18, 40, 44].
In particular, approximate controllability of Hilfer FDEs under different conditions has been discussed widely. Mahmudov et al. [36] investigated the exact controllability of Hilfer FDEs in a Hilbert space under the assumption that a linear system of the given equation is approximate controllable. In 2017, Yang et al. [41] discussed the approximate controllability of Hilfer FDEs with nonlocal conditions in a Banach space with the help of semigroup theory, fixed point techniques, and multivalued analysis. Later on, Debbouche et al. [14] and Du et al. [17] studied the approximate controllability of Hilfer FDEs and semilinear Hilfer FDEs with impulsive control inclusions in Banach spaces, respectively. In 2018, Lv and Yang [34] investigated the approximate controllability of neutral Hilfer FDEs by applying the techniques of stochastic analysis theory and semigroup operator theory in a Hilbert space. In recent works, Lv and Yang [35], with the help of Banach contraction principle, discussed the approximate controllability for a class of Hilfer FDEs of order \(1< \alpha < 2\) and type \(0\le \beta \le 1\). It is noted that, in almost all the problems discussed above, a linear operator generates the strongly continuous semigroup of bounded linear operators.
In [37] Periago and Straub formulated theory to analyze almost sectorial operators. Here authors also mentioned the suitable assumptions required to establish the existence of mild solutions and classical solutions of FDEs with almost sectorial operator. There are numerous works focussing on the existence of mild solutions and analytical solutions of fractional evolution equations with almost sectorial operators [16, 33, 43]. Recently, Jaiswal et al. [21] proved the existence of mild solutions of Hilfer FDEs with almost sectorial operators. We found that in the available literature, approximate controllability of Hilfer FDEs with almost sectorial operators has not been discussed yet. Thus, motivated by the abovediscussed works, we consider here the following system of Hilfer FDEs for investigating proposed results:
where \({}^{H}{\mathcal{D}}^{\nu , \mu }_{0^{+}}\) is the Hilfer fractional derivative of order \(0<\nu <1\) and type \(0\le \mu \le 1\). \({\mathcal{A}}:D({\mathcal{A}})\subset {\mathcal{V}}\longrightarrow { \mathcal{V}}\) is an almost sectorial operator in Banach space \({\mathcal{V}}\) and , . The control function takes value in \(\mathcal{L}^{2}(\mathfrak{J}, \mathcal{W})\). \(\mathcal{L}^{2}(\mathfrak{J}, \mathcal{W} )\) denotes the space of admissible control functions for Banach space \(\mathcal{W}\). ϒ is a bounded linear operator from \(\mathcal{W}\) into \(\mathcal{V}\). \(\varPsi :\mathfrak{J}\times \mathcal{V} \times \mathcal{V} \longrightarrow \mathcal{V} \) is a continuous linear mapping, , \(\mathfrak{m}\in \mathbb{N}\), and are real numbers such that . The characteristics functions \(\mathfrak{q}(\mathfrak{t},\mathfrak{s}) : \varDelta \longrightarrow \mathbb{R}\) and \(\varphi : \varDelta \times \mathcal{V} \longrightarrow \mathcal{V}\), are specified in the next section.
Preliminaries
Let us consider \(\mathcal{V}\) and \(\mathcal{W} \) as real Banach spaces with respective norms \(\lVert \cdot \rVert _{\mathcal{V}}\) and \(\lVert \cdot \rVert _{\mathcal{W}}\). \(\mathcal{C}(\mathfrak{J}, \mathcal{V})\) denotes the Banach space formed by all continuous functions from \(\mathfrak{J}\) into \(\mathcal{V}\) with corresponding norm function . \(\mathcal{L}^{2}(\mathfrak{J}, \mathcal{W} )\) denotes the Banach space of all \(\mathcal{W}\)valued Bochner square integrable functions defined on \(\mathfrak{J}\) w.r.t. norm function
Definition 2.1
([20])
Hilfer fractional derivative of a continuously differentiable function f of order \(0 < \nu <1\) and \(0\le \mu \le 1\) is defined as
where \({\mathcal{I}}^{\nu (1\mu )}_{0^{+}}\) is a Riemann–Liouville fractional integral and \({\mathcal{D}}^{\nu +\mu \nu \mu }_{0^{+}}\) is a Riemann–Liouville fractional derivative.
Definition 2.2
([38])
For \(\alpha >0\), the Riemann–Liouville fractional integral of a continuously differentiable f of order α is defined as follows:
Almost sectorial operator
Let \(0< \beta < \pi \) and \(1<\gamma <0\). We define \(S^{o}_{\beta } = \lbrace \omega \in \mathbb{C}\setminus \lbrace 0 \rbrace \colon \lvert \operatorname{arg} \omega \rvert < \beta \rbrace\) and \(S_{\beta } =\bar{S^{o}_{\beta }}= \lbrace \omega \in \mathbb{C} \setminus \lbrace 0 \rbrace \colon \lvert \operatorname{arg} \omega \rvert \le \beta \rbrace \cup \lbrace 0 \rbrace \). A closed linear operator \({\mathcal{A}}:D({\mathcal{A}})\subset {\mathcal{V}}\longrightarrow { \mathcal{V}}\) is called an almost sectorial operator if the following hold:

1.
\(\sigma (\mathcal{A})\) is contained in \(S_{\omega }\).

2.
\(\forall \beta \in (\omega , \pi )\) there exists a constant \(\mathcal{M}_{\beta }>0\) such that \(\lVert \mathcal{R}(\mathfrak{z}, \mathcal{A} ) \rVert _{L( \mathcal{V})}\le {\mathcal{M}}_{\beta } \mathfrak{z}^{\gamma }\),
where \(\mathcal{R}(\mathfrak{z}, \mathcal{A})= (\mathfrak{z} I \mathcal{A} )^{1}\) is the resolvent operator of \(\mathcal{A} \) for \(\mathfrak{z} \in \rho (\mathcal{A}) \).
Let us define \(\Theta ^{\gamma }_{\omega }\) as a family of almost sectorial operators.
Proposition 2.1
([21])
Let be the compact semigroup defined in [37] and \(\mathcal{A} \in \Theta ^{\gamma }_{\omega }\) for \(1<\gamma <0\) and \(0<\omega <\frac{\pi }{2}\). Then following holds for :
(i) is analytic and , \(\mathfrak{t} \in S^{o}_{ \frac{\pi }{2}\omega } \). (ii) \(\forall \mathfrak{t}\), \(\mathfrak{s}\in S^{o}_{ \frac{\pi }{2}\omega } \). (iii) , \(\mathfrak{t}>0\); where \(c_{0}>0 \) is a constant. (iv) Let , then if \(\theta > 1+\gamma \).
Let us define the operator families and as follows:
where \(\mathcal{M}_{\nu }(\theta )\) is a Wrighttype function defined as follows:
Proposition 2.2
([21])
(i) For each fixed \(\mathfrak{t} \in S^{o}_{\frac{\pi }{2}\omega }\), and are bounded linear operators in \(\mathcal{V}\). Also
where and are constants depending only on ν and γ. (ii) and are continuous in the uniform operator topology for \(\mathfrak{t}>0 \).
Lemma 2.1
The mild solution for the system of equations Eq. (1.1) is defined as follows:
where and .
Proposition 2.3
([21])
(i) For every fixed \(\mathfrak{t}\in S^{o}_{\frac{\pi }{2}\omega }\), and are bounded linear operators on \(\mathcal{V}\). For \(\mathfrak{t}>0\),
(ii) and are strongly continuous operators.
Let , . Assume that .
We have
By the operator spectrum theorem, exists bounded and \(D( \mathcal{O})= \mathcal{V}\).
By the Neumann series expression, \(\mathcal{O}\) can be expressed as .
Therefore
By Lemma 2.1 mild solutions of Eq. (1.1) are given by
At ,
Thus the mild solutions of Eq. (1.1) are defined as follows:
Now we introduce the Green’s function \(\mathcal{G}(\mathfrak{t}, \mathfrak{s})\) as follows:
where
The mild solutions of Eq. (1.1) in terms of the Green’s function are expressed as
In addition to the abovementioned propositions and lemma, we assume here the following assumptions to establish the proposed results:

(A1)
For each \(\mathfrak{t} \in \mathfrak{J}^{\prime }\), \(\varPsi :\mathfrak{J}^{\prime } \times \mathcal{V} \times \mathcal{V} \longrightarrow \mathcal{V}\) is a Caratheodory function.

(A2)
There exist \(\psi _{1}\in L^{1}(\mathfrak{J}, \mathbb{R}^{+})\) and a continuous function \(\psi _{2}\) such that, for and \(\mathfrak{t} \in \mathfrak{J}\), .

(A3)
\(\varphi (\mathfrak{t},\mathfrak{s}, \cdot): \mathcal{V} \longrightarrow \mathcal{V}\) is a Caratheodory function and there exists with

(A4)
is bounded on with .

(A5)
There exists \(\kappa \in L^{1}(\mathfrak{J}, \mathbb{R}^{+})\) such that , \(\forall \mathfrak{t} \in \mathfrak{J}\) and .
Existence result
For and , we introduce
with the norm defined as .
Let . Then iff and .
We define
Define an operator \(\mathcal{P} : \mathcal{B}_{\delta }(\mathfrak{J}) \longrightarrow \mathcal{B}_{\delta }(\mathfrak{J}) \) such that
where is defined as
Let us denote , , \(\hat{\mathfrak{m}}= \sup_{\mathfrak{t}\in \mathfrak{J}^{\prime } } \lbrace \kappa (\mathfrak{t}) \rbrace \), and .
Lemma 3.1
Let \(\mathcal{A} \in \Theta ^{\gamma }_{\omega }\) for \(1<\gamma <0\) and \(0<\omega <\frac{\pi }{2}\). Assume that assumptions (A1)–(A5) and Proposition 2.3hold. Then the operator is bounded and continuous if .
Proof
For , we have
If possible, suppose .
This implies
Applying \(\lim_{\delta \longrightarrow \infty }\) on both sides, we have
which is a contradiction.
So our supposition is wrong. Therefore . This implies the boundedness of operator \(\mathcal{P}\).
Now, to show that \(\mathcal{P}: \mathcal{B}_{\delta }(\mathfrak{J}) \longrightarrow \mathcal{B}_{\delta }(\mathfrak{J})\) is a continuous operator, let and with , \(n \in \mathbb{N}\).
By the continuity of function Ψ w.r.t. to the second and third variable
For \(\mathfrak{t} \in \mathfrak{J}\),
Since
by the Lebesgue dominated convergence theorem and the continuity of function Ψ,
This completes the proof of Lemma 3.1. □
Lemma 3.2
Let \(\mathcal{A} \in \Theta ^{\gamma }_{\omega }\) for \(1<\gamma <0\) and \(0<\omega <\frac{\pi }{2}\). If assumptions (A1)–(A5) and Proposition 2.3are satisfied, the operator is equicontinuous for \(\mathfrak{t} \in \mathfrak{J}\).
Proof
For and ,
Here,
The strong continuity of operator yields as \(\mathfrak{t}_{1}\longrightarrow \mathfrak{t}_{2}\).
Following Lemma 3.1 and assumptions (A1)–(A5), it is easy to see that
exists and is bounded. Thus as \(\mathfrak{t}_{2} \longrightarrow \mathfrak{t}_{1}\).
After following the given assumptions and performing some steps of calculation, we have
Clearly, as \(\mathfrak{t}_{2} \longrightarrow \mathfrak{t}_{1} \).
So, we have
This proves the equicontinuity of operator . □
Theorem 3.1
Let \(1<\gamma <0\), \(0<\omega <\frac{\pi }{2}\), and . The system of equations Eq. (1.1) has at least one mild solution in if assumptions (A1)–(A5) hold along with Lemma 3.1and Lemma 3.2.
Proof
The mild solution of Eq. (1.1) is equivalent to the fixed point of operator \(\mathcal{P} : \mathcal{B}_{\delta }(\mathfrak{J}) \longrightarrow \mathcal{B}_{\delta }(\mathfrak{J}) \). Here we prove that the operator \(\mathcal{P}\) has at least one fixed point.
In the following, we show that the operator \(\mathcal{P}\) is relatively compact in \(\mathcal{V}\) for every \(\mathfrak{t} \in \mathfrak{J}\).
We prove this by showing that there is a relatively compact set arbitrarily close to the set in \(\mathcal{V}\) for .
Define the operator by
Since and are compact for \(\mathfrak{t}>0\), the set is compact for \(\mathfrak{t} \in \mathfrak{J}^{\prime }\). In the following
Clearly,
We have shown that the set is arbitrarily close to the relatively compact set . This implies is relatively compact in \(\mathcal{V}\). Also, by Lemma 3.1 and Lemma 3.2, the operator \(\mathcal{P} : \mathcal{B}_{\delta }(\mathfrak{J}^{\prime }) \longrightarrow \mathcal{B}_{\delta }(\mathfrak{J}^{\prime }) \) is bounded, continuous, and equicontinuous in \(\mathcal{V}\). So by the Arzela–Ascoli theorem, is a compact operator. Hence, by Schauder’s fixed point theorem, \(\mathcal{P}\) has at least one fixed point .
Let . Then is a mild solution of Eq. (1.1). This completes the proof. □
Approximate controllability
In this section, we discuss the approximate controllability of Eq. (1.1).
The system of equations Eq. (1.1) is said to be approximate controllable on if, for every desired final state and \(\epsilon >0\), there exists a control function such that the mild solution of Eq. (1.1) satisfies
Following this, we first introduce the following two operators:
where \(\varUpsilon ^{*}\), \(\mathcal{O}^{*}\), , and characterize the adjoint operators of ϒ, \(\mathcal{O}\), , and respectively,
Theorem 4.1
Let \(\mathcal{A} \in \Theta ^{\gamma }_{\omega }\) for \(1<\gamma <0\) and \(0<\omega <\frac{\pi }{2}\). Assume that assumptions (A1)–(A5) and Proposition 2.3hold. The system of equations Eq. (1.1) is approximate controllable on \(\mathfrak{J}\) if as \(\lambda \longrightarrow 0^{+}\) in the strong operator topology.
Proof
By Theorem 3.1, the system of equations Eq. (1.1) has at least one mild solution given by
where we define the control function as
with
At ,
which implies that the sequence is bounded in the Hilbert space . Therefore, there exists a subsequence of the sequence converging weakly to some point .
Let us write
Hence, by Eqs. (4.4) and (4.6), we have
By the compactness of operators and for \(\mathfrak{t}>0\), one gets the compactness of Green’s function \(\mathcal{G}(\mathfrak{t}, \mathfrak{s})\) for \(\mathfrak{t}, \mathfrak{s}>0\), which implies that
Thus from Eq. (4.7) and Eq. (4.8) we get
Equation (4.5) implies that
Hence the approximate controllability of Eq. (1.1). □
Applications
Here we investigate the proposed results for the following Cauchy problem:
in the Banach space , \(0<\eta <1\), where \(\nu = \frac{1}{4}\), \(\mu = \frac{1}{2}\), \(\wp >0\) and , , are such that . On substituting , Eq. (5.1) reduces to Eq. (1.1) with and . It follows from article [37] that there exist constants \(\rho , \epsilon >0\) such that \(\mathcal{A}+ \rho \in \Theta ^{\frac{\eta }{2}1}_{\frac{\pi }{2} \epsilon }(\mathcal{V})\). The compactness of semigroup \(\lbrace \mathfrak{T}(\mathfrak{t}) \rbrace \) follows from (Lemma 4.66) [42]. Since and is embedded in , the compactness of resolvent operators follows for every \(\eta >0\).
The bounded linear operator \(\varUpsilon :\mathcal{W}= \mathcal{V}\longrightarrow \mathcal{V}\) is defined as .
Following this discussion and the definition of function Ψ and bounded operator ϒ, it is easy to verify that assumptions (A1)–(A5) hold with
Hence the existence and approximate controllability of Eq. (5.1) follow from Theorem 3.1 and Theorem 4.1 respectively.
Conclusion
In this paper, we discussed the approximate controllability of Hilfer fractional differential equations with almost sectorial operators. We first prove the existence of mild solutions for similar equations by applying fixed point theory. We will try to investigate the exact controllability and stability of a similar problem in our future research work.
Availability of data and materials
Not applicable.
References
 1.
Alkhazzan, A., Jiang, P., Baleanu, D., Khan, H., Khan, A.: Stability and existence results for a class of nonlinear fractional differential equations with singularity. Math. Methods Appl. Sci. 41(18), 9321–9334 (2018). https://doi.org/10.1002/mma.5263
 2.
Bedi, P., Kumar, A., Abdeljawad, T., Khan, A.: Existence of mild solutions for impulsive neutral Hilfer fractional evolution equations. Adv. Differ. Equ. 2020, 155 (2020). https://doi.org/10.1186/s1366202002615y
 3.
Bedi, P., Kumar, A., Abdeljawad, T., Khan, A.: Sasymptotically ωperiodic mild solutions and stability analysis of Hilfer fractional evolution equations. Evol. Equ. Control Theory (2020). https://doi.org/10.3934/eect.2020089
 4.
Chang, Y.K., Pereira, A., Ponce, R.: Approximate controllability for fractional differential equations of Sobolev type via properties on resolvent operators. Fract. Calc. Appl. Anal. 20(4), 963–987 (2017)
 5.
Chen, P., Zhang, X.: Approximate controllability of nonlocal problem for nonautonomous stochastic evolution equations. Evol. Equ. Control Theory (2019). https://doi.org/10.3934/eect.2020076
 6.
Chen, P., Zhang, X., Li, Y.: Approximation technique for fractional evolution equations with nonlocal integral conditions. Mediterr. J. Math. 14(6), 226 (2017). https://doi.org/10.1007/s0000901710290
 7.
Chen, P., Zhang, X., Li, Y.: A blowup alternative result for fractional nonautonomous evolution equation of Volterra type. Commun. Pure Appl. Anal. 17(5), 1975–1992 (2018)
 8.
Chen, P., Zhang, X., Li, Y.: Nonautonomous parabolic evolution equations with noninstantaneous impulses governed by noncompact evolution families. J. Fixed Point Theory Appl. 21(3), 84 (2019). https://doi.org/10.1007/s1178401907196
 9.
Chen, P., Zhang, X., Li, Y.: Nonautonomous evolution equations of parabolic type with noninstantaneous impulses. Mediterr. J. Math. 16(5), 118 (2019). https://doi.org/10.1007/s0000901913840
 10.
Chen, P., Zhang, X., Li, Y.: Fractional nonautonomous evolution equation with nonlocal conditions. J. PseudoDiffer. Oper. Appl. 10(4), 955–973 (2019). https://doi.org/10.1007/s1186801802579
 11.
Chen, P., Zhang, X., Li, Y.: Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators. Fract. Calc. Appl. Anal. 23(1), 268–291 (2020). https://doi.org/10.1515/fca20200011
 12.
Chen, P., Zhang, X., Li, Y.: Approximate controllability of nonautonomous evolution system with nonlocal conditions. J. Dyn. Control Syst. 26(1), 1–16 (2020). https://doi.org/10.1007/s108830189423x
 13.
Chen, P., Zhang, X., Li, Y.: Cauchy problem for fractional nonautonomous evolution equations. Banach J. Math. Anal. 14(2), 559–584 (2020). https://doi.org/10.1007/s43037019000082
 14.
Debbouche, A., Antonov, V.: Approximate controllability of semilinear Hilfer fractional differential inclusions with impulsive control inclusion conditions in Banach spaces. Chaos Solitons Fractals 102, 140–148 (2017). https://doi.org/10.1016/j.chaos.2017.03.023
 15.
Devi, A., Kumar, A., Abdeljawad, T., Khan, A.: Existence and stability analysis of solutions for fractional Langevin equation with nonlocal integral and antiperiodic type boundary conditions. Fractals (2020). https://doi.org/10.1142/S0218348X2040006X
 16.
Ding, X.L., Ahmad, B.: Analytical solutions to fractional evolution equations with almost sectorial operators. Adv. Differ. Equ. 2016(1), 203 (2016). https://doi.org/10.1186/s136620160927y
 17.
Du, J., Jiang, W., Niazi, A.U.K.: Approximate controllability of impulsive Hilfer fractional differential inclusions. J. Nonlinear Sci. Appl. 10(2), 595–611 (2017)
 18.
Fu, X.: Approximate controllability of semilinear nonautonomous evolution systems with statedependent delay. Evol. Equ. Control Theory 6(4), 517–534 (2017). https://doi.org/10.3934/eect.2017026
 19.
GomezAguilar, J.F., CordovaFraga, T., Abdeljawad, T., Khan, A., Khan, H.: Analysis of fractalfractional malaria transmission model. Fractals (2020). https://doi.org/10.1142/S0218348X20400411
 20.
Gu, H., Trujillo, J.J.: Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 257, 344–354 (2015). https://doi.org/10.1016/j.amc.2014.10.083
 21.
Jaiswal, A., Bahuguna, D.: Hilfer fractional differential equations with almost sectorial operators. Differ. Equ. Dyn. Syst. (2020). https://doi.org/10.1007/s1259102000514y
 22.
Khan, A., Khan, T.S., Syam, M.I., Khan, H.: Analytical solutions of timefractional wave equation by double Laplace transform method. Eur. Phys. J. Plus 134(4), 163 (2019). https://doi.org/10.1140/epjp/i201912499y
 23.
Khan, A., Shah, K., Li, Y., Khan, T.S.: Ulam type stability for a coupled system of boundary value problems of nonlinear fractional differential equations. J. Funct. Spaces (2017). https://doi.org/10.1155/2017/3046013
 24.
Khan, A., Syam, M.I., Zada, A., Khan, H.: Stability analysis of nonlinear fractional differential equations with Caputo and Riemann–Liouville derivatives. Eur. Phys. J. Plus 133(7), 264 (2018). https://doi.org/10.1140/epjp/i2018121196
 25.
Khan, H., Alipour, M., Khan, R.A., Tajadodi, H., Khan, A.: On approximate solution of fractional order logistic equations by operational matrices of Bernstein polynomials. J. Math. Comput. Sci. 14, 222–232 (2015)
 26.
Khan, H., Chen, W., Khan, A., Khan, T.S., AlMadlal, Q.M.: Hyers–Ulam stability and existence criteria for coupled fractional differential equations involving pLaplacian operator. Adv. Differ. Equ. 2018(1), 455 (2018). https://doi.org/10.1186/s136620181899x
 27.
Khan, H., Gomez Aguilar, J.F., Abdeljawad, T., Khan, A.: Existence results and stability criteria for ABCfuzzyVolterra integrodifferential equation. Fractals (2020). https://doi.org/10.1142/S0218348X20400484
 28.
Khan, H., GómezAguilar, J.F., Alkhazzan, A., Khan, A.: A fractional order HIVTB coinfection model with nonsingular MittagLeffler law. Math. Methods Appl. Sci. 43(6), 3786–3806 (2020). https://doi.org/10.1002/mma.6155
 29.
Khan, H., Tunç, C., Alkhazan, A., Ameen, B., Khan, A.: A generalization of Minkowski’s inequality by Hahn integral operator. J. Taibah Univ. Sci. 12(5), 506–513 (2018). https://doi.org/10.1080/16583655.2018.1493859
 30.
Khan, Z.A.: Integral inequality of Gronwall type with an application. J. Math. Comput. Sci. 5(1), 34–41 (2015)
 31.
Khan, Z.A.: Solvability for a class of integral inequalities with maxima on the theory of time scales and their applications. Bound. Value Probl. 2019, 146 (2019). https://doi.org/10.1186/s1366101912590
 32.
Khan, Z.A.: Analysis on some powered integral inequalities with retarded argument and application. J. Taibah Univ. Sci. 14(1), 488–495 (2020). https://doi.org/10.1080/16583655.2020.1747218
 33.
Li, F.: Mild solutions for abstract fractional differential equations with almost sectorial operators and infinite delay. Adv. Differ. Equ. 2013(1), 327 (2013). https://doi.org/10.1186/168718472013327
 34.
Lv, J., Yang, X.: Approximate controllability of Hilfer fractional neutral stochastic differential equations. Dyn. Syst. Appl. 27(4), 691–713 (2018). https://doi.org/10.12732/dsa.v27i4.1
 35.
Lv, J., Yang, X.: Approximate controllability of Hilfer fractional differential equations. Math. Methods Appl. Sci. 43(1), 242–254 (2020). https://doi.org/10.1002/mma.5862
 36.
Mahmudov, N.I., McKibben, M.A.: On the approximate controllability of fractional evolution equations with generalized Riemann–Liouville fractional derivative. J. Funct. Spaces 2015, Article ID 263823 (2015). https://doi.org/10.1155/2015/263823
 37.
Periago, F., Straub, B.: A functional calculus for almost sectorial operators and applications to abstract evolution equations. J. Evol. Equ. 2(1), 41–68 (2002). https://doi.org/10.1007/s0002800280799
 38.
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
 39.
Ullah, M., Sarwar, M., Khan, H., Abdeljawad, T., Khan, A.: Nearcoincidence point results in metric interval space and hyperspace via simulation functions. Adv. Differ. Equ. 2020(1), 291 (2020). https://doi.org/10.1186/s13662020027346
 40.
Wang, J., Fečkan, M., Zhou, Y.: Approximate controllability of Sobolev type fractional evolution systems with nonlocal conditions. Evol. Equ. Control Theory 6(3), 471 (2017)
 41.
Yang, M., Wang, Q.R.: Approximate controllability of Hilfer fractional differential inclusions with nonlocal conditions. Math. Methods Appl. Sci. 40(4), 1126–1138 (2017). https://doi.org/10.1002/mma.4040
 42.
Yong, Z., Jinrong, W., Lu, Z.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2016)
 43.
Zhang, L., Zhou, Y.: Fractional Cauchy problems with almost sectorial operators. Appl. Math. Comput. 257, 145–157 (2015). https://doi.org/10.1016/j.amc.2014.07.024
 44.
Zhou, Y., Vijayakumar, V., Ravichandran, C., Murugesu, R.: Controllability results for fractional order neutral functional differential inclusions with infinite delay. Fixed Point Theory 18(2), 773–798 (2017). https://doi.org/10.24193/fptro.2017.2.62
Acknowledgements
The first author (Pallavi Bedi) acknowledges the support of Council of Scientific and Industrial Research (CSIR)New Delhi, India, and the third author (Thabet Abdeljawad) acknowledges the support of Prince Sultan University for funding this work through research group in Applied Mathematics (NAMAM) group number RGDES20170117.
Funding
Prince Sultan University for funding this work through research group in Applied Mathematics (NAMAM) group number RGDES20170117.
Author information
Affiliations
Contributions
All the authors have made equal contributions in this article. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Bedi, P., Kumar, A., Abdeljawad, T. et al. Existence and approximate controllability of Hilfer fractional evolution equations with almost sectorial operators. Adv Differ Equ 2020, 615 (2020). https://doi.org/10.1186/s13662020030741
Received:
Accepted:
Published:
MSC
 26A33
 34K37
 93B05
Keywords
 Hilfer fractional derivative
 Almost sectorial operator
 Approximate controllability
 Nonlocal conditions