Skip to main content

A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions

Abstract

In the article, we introduce the generalized exponentially μ-preinvex function, derive a new q-integral identity for second order q-differentiable function, and establish several new q-trapezoidal type integral inequalities for the function whose absolute value of second q-derivative is exponentially μ-preinvex.

Introduction and preliminaries

Convexity [15] is a very simple and natural notion which plays a pivotal role in different fields of pure and applied sciences [69] such as optimization theory [10], engineering and management sciences [11, 12]. In recent past the classical concept of convexity has been extended and generalized in different directions [1325]. A significant generalization of convexity is the preinvexity, which was introduced and studied by Weir and Mond [26]. Recently, Awan et al. [27] introduced and studied another extension of classical convexity which is called exponentially convex functions.

Another important aspect which makes the theory of convexity more charming is its relation with the theory of inequalities. Many inequalities can be obtained using the theory of convex functions [2836]. One of the most inequalities in convex functions is Hermite–Hadamard inequality [3739], which provides us a necessary and sufficient condition for a function to be convex. In recent years many new generalizations, improvements, and variants of the Hermite–Hadamard inequality have been obtained in the literature [4048] by use of the ordinary, quantum, and fractional calculus.

The main purpose of the article is to introduce the class of generalized exponentially μ-preinvex functions. We derive a new q-integral identity and then some new estimates of bounds for it essentially utilizing the concepts of quantum calculus.

Preliminaries

In this section, we introduce the new definition of exponentially μ-preinvex function, establish a new q-integral identity, and obtain new associated q-bounds.

First of all, let \(\mathcal{K}\subset \Re ^{n}\) be a nonempty set, \({\Lambda }:\mathcal{K}\to \Re \) be a continuous function, and \(\mu:\mathcal{K}\times \mathcal{K}\to \Re \setminus \{0\}\) and \(\theta:\mathcal{K}\times \mathcal{K}\to \Re ^{n}\) be two continuous bifunctions.

Definition 2.1

A set \({\mathcal{K}}\subseteq \Re ^{n}\) is said to be μ-invex with respect to the bifunctions \(\mu (\cdot,\cdot )\) and \(\theta (\cdot,\cdot )\) if

$$ a+k\mu (b,a)\theta (b,a)\in {\mathcal{K}} $$

for all \(a,b\in {\mathcal{K}}\) and \(k\in [0,1]\).

Note that the convex set with \(\mu (b,a)=1\) and \(\theta (b,a)=b-a\) is an invex set, but the converse is not true. For example, the set \(\mathcal{K}=\Re \setminus (-1/2,1/2)\) is an invex set with respect to θ and \(\mu (b,a)=1\), where

$$ \theta (b,a)= \textstyle\begin{cases} b-a, & \text{for $b>0, a>0$ or $b< 0, a< 0$,} \\ a-b,& \text{for $b< 0, a>0$ or $b< 0, a< 0$.} \end{cases} $$

It is clear that \(\mathcal{K}\) is not a convex set.

Definition 2.2

A function \({\Lambda }:{\mathcal{K}}\to \Re \) is said to be generalized exponentially μ-preinvex function if there exist bifunctions \(\mu (\cdot,\cdot )\) and \(\theta (\cdot,\cdot )\), \(\chi \geq 1\) and nonpositive α such that

$$ {\Lambda } \bigl(a+k \mu (b,a)\theta (b,a) \bigr)\leq (1-k)^{s} \frac{{\Lambda }(a)}{{\chi }^{\alpha a}}+k^{s} \frac{{\Lambda }(b)}{{\chi }^{\alpha b}} $$

for all \(a,b\in {\mathcal{K}}\), \(k\in [0,1]\), and \(s\in (0,1]\).

Note that, if \(\alpha =0\) or \(\chi =1\), then the class of generalized exponentially μ-preinvex functions reduces to the class of generalized μ-preinvex functions. The class of generalized exponentially μ-preinvex function includes the class of of preinvexity for \(\alpha =0\) and \(\mu (b,a)=1\). Also note that if we take \(\chi =e\), then we have the class of exponentially μ-preinvex functions, which is defined as follows.

Definition 2.3

A function \({\Lambda }:{\mathcal{K}}\to \Re \) is said to be exponentially μ-preinvex if there exist bifunctions \(\mu (\cdot,\cdot )\) and \(\theta (\cdot,\cdot )\) and nonpositive α such that

$$ {\Lambda } \bigl(a+k \mu (b,a)\theta (b,a) \bigr)\leq (1-k)^{s} \frac{{\Lambda }(a)}{{e}^{\alpha a}}+k^{s} \frac{{\Lambda }(b)}{{e}^{\alpha b}} $$

for all \(a,b\in {\mathcal{K}}\), \(k\in [0,1]\), and \(s\in (0,1]\).

Example 2.1

The function \({\Lambda }:\Re \to \Re \) defined by \(\Lambda (k)=k^{2}\) is exponentially μ-preinvex for all \(\alpha <0\) and \(\mu (b,a)=1\).

Next, we recall some previously known concepts and results, which will be helpful in obtaining the quantum analogues of the main results of the article.

Definition 2.4

(see [49, 50])

Let \(0< q<1\) and \({\Lambda }:J=[a,b]\rightarrow \Re \) be an arbitrary function. Then the q-derivative of Λ on J at t is defined as follows:

$$ _{a}D_{q}{\Lambda } ( t ) = \frac{{\Lambda } ( t ) -{\Lambda } ( qt+ ( 1-q ) a ) }{ ( 1-q ) ( t-a )} \quad(t \neq a) \quad\text{and} \quad{}_{a}D_{q}{\Lambda } ( a ) = \lim _{t \rightarrow a _{a}} D_{q}{\Lambda } ( t ). $$

We note that \(\lim_{q\rightarrow 1}{_{a}}D_{q}{\Lambda }(t)=d{\Lambda }(t)/dt\) is just the classical derivative if Λ is differentiable.

Definition 2.5

(see [49, 50])

Let \({\Lambda }:J=[a,b]\rightarrow \Re \) be an arbitrary function. Then the second-order q-derivative on the interval J is defined by

$$ {}_{a}D_{q}^{2}{\Lambda } ( t ) = {}_{a}D_{q} \bigl( {}_{a}D_{q}{ \Lambda } ( t ) \bigr) $$

provided \(_{a}D_{q}\) is q-differentiable on J. Similarly, the higher order q-derivative on J can be defined by

$$ _{a}D_{q}^{n}{\Lambda } ( t ) = _{a}D_{q} \bigl( {}_{a}D_{q}^{n-1}{ \Lambda } ( t ) \bigr). $$

Definition 2.6

(see [49, 50])

Let \(0< q<1\) and \({\Lambda }:J=[a,b]\rightarrow \Re \) be an arbitrary function. Then the q-integral on J is defined by

$$ \int _{a}^{x}{\Lambda }(k)\,\mathrm{d}_{q}k=(1-q) (x-a)\sum_{n=0}^{\infty }q^{n}{\Lambda } \bigl(q^{n}x+ \bigl(1-q^{n} \bigr)a \bigr) $$

for \(x\in J\).

Note that if \(a=0\), then we have the classical q-integral, which is defined as follows:

$$ \int _{0}^{x}{\Lambda }(k)\,\mathrm{d}_{q}k=(1-q)x \sum_{n=0}^{ \infty }q^{n}{\Lambda } \bigl(q^{n}x \bigr). $$

Lemma 2.2

(see [49, 50])

Let \(\alpha \in \Re \setminus \{-1\}\). Then

$$ \int _{a}^{x}(k-a)^{\alpha } \, \mathrm{d}_{q}k= \biggl( \frac{1-q}{1-q^{\alpha +1}} \biggr) (x-a)^{\alpha +1}. $$

Definition 2.7

(see [51])

Let \(a\in \Re \) and \(n\in \mathbb{N}\). Then the q-analogue of a is defined by

$$ [a]_{q}=\frac{1-q^{n}}{1-q}. $$

Definition 2.8

(see [51])

Let \(k,p>0\). Then \({\mathbf{{B}}}_{q}(k,p)\) is defined by

$$ {\mathbf{{B}}}_{q}(k,p)= \int _{0}^{1}x^{k-1}(1-qx)_{q}^{p-1} \,\mathrm{d}_{q}x. $$

For more details for q-calculus, we recommend the literature [5255] to the readers.

Results and discussions

In this section, we present our main results of the article.

Lemma 3.1

Let \(0<{q}<1\) and \({{\Lambda }}:{\mathcal{K}}\to \Re \) be an arbitrary function such that \({\mathrm{D}}^{2}_{{q}}{{\Lambda }}\) is q-integrable on \({\mathcal{K}}\). Then one has

$$\begin{aligned} &\frac{q\Lambda (a)+{{\Lambda }}(a+\mu (b,a)\theta (b,a))}{{q}+1}- \frac{1}{\mu (b,a)\theta (b,a)} \int _{a}^{a+\mu (b,a)\theta (b,a)}{{ \Lambda }}(x)\, \mathrm{d}_{{q}}x \\ &\quad =\frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \int _{0}^{1}k(1-{q}k){ \mathrm{D}}^{2}_{{q}}{{ \Lambda }} \bigl(a+k\mu (b,a)\theta (b,a) \bigr)\,\mathrm{d}_{{q}}k. \end{aligned}$$
(3.1)

Proof

We clearly see that

$$\begin{aligned} & \int _{0}^{1}k(1-{q}k){\mathrm{D}}^{2}_{{q}}{{ \Lambda }} \bigl(a+k \mu (b,a)\theta (b,a) \bigr)\,\mathrm{d}_{{q}}k \\ &\quad= \int _{0}^{1} \bigl(k(1-{q}k) \bigl[q\Lambda \bigl(a+k\mu (b,a)\theta (b,a)\bigr)-(1+{q}){{\Lambda }}\bigl(a+{q}k\mu (b,a) \theta (b,a)\bigr)\\ &\qquad{}+{{\Lambda }}\bigl(a+{q}^{2}k\mu (b,a)\theta (b,a) \bigr) \bigr]\bigr) \\ &\qquad{}/\bigl(k^{2}{q}(1-{q})^{2}\mu ^{2}(b,a) \theta ^{2}(b,a)\bigr) \,\mathrm{d}_{{q}}k \\ &\quad= \Biggl({q}\sum_{n=0}^{\infty }{{\Lambda }}\bigl(a+{q}^{n}\mu (b,a)\theta (b,a)\bigr)-(1+{q})\sum _{n=0}^{\infty }{{\Lambda }}\bigl(a+{q}^{n+1}\mu (b,a)\theta (b,a)\bigr) \\ &\qquad{}+\sum_{n=0}^{\infty }{{ \Lambda }}\bigl(a+{q}^{n+2}\mu (b,a)\theta (b,a)\bigr)\Biggr) \\ &\qquad{}/\bigl({q}(1-{q})\mu ^{2}(b,a)\theta ^{2}(b,a) \bigr) \\ &\qquad{}-{q} \biggl\{ \frac{{q}(1-{q})\mu (b,a)\theta (b,a)\sum_{n=0}^{\infty }{q}^{n}{{\Lambda }}(a+{q}^{n}\mu (b,a)\theta (b,a))}{{q}(1-{q})^{2}\mu ^{3}(b,a)\theta ^{3}(b,a)} \\ &\qquad{}-(1+{q}) (1-{q})\mu (b,a)\theta (b,a) \\ &\qquad{}\times \frac{\sum_{n=0}^{\infty }{q}^{n+1}{{\Lambda }}(a+{q}^{n+1}\mu (b,a)\theta (b,a))}{{q}^{2}(1-{q})^{2}\mu ^{3}(b,a)\theta ^{3}(b,a)} \\ &\qquad{} + \frac{(1-{q})\mu (b,a)\theta (b,a)\sum_{n=0}^{\infty }{q}^{n+2}{{\Lambda }}(a+{q}^{n+2}\mu (b,a)\theta (b,a))}{{q}^{3}(1-{q})^{2}\mu ^{3}(b,a)\theta ^{3}(b,a)} \biggr\} \\ &\quad= \frac{q({{\Lambda }}(a+\mu (b,a)\theta (b,a))-{{\Lambda }}(a))-{{\Lambda }}(a+{q}\mu (b,a)\theta (b,a))+{{\Lambda }}(a)}{{q}(1-{q})\mu ^{2}(b,a)\theta ^{2}(b,a)} \\ &\qquad{}- \frac{1+{q}}{{q}^{2}\mu ^{3}(b,a)\theta ^{3}(b,a)} \\ &\qquad{}\times \int _{a}^{a+\mu (b,a)\theta (b,a)}{{\Lambda }}(x) \, \mathrm{d}_{{q}}k- \frac{{q}^{2}+{q}-1}{{q}^{2}(1-{q})\mu ^{2}(b,a)\theta ^{2}(b,a)}{{ \Lambda }} \bigl(a+\mu (b,a) \theta (b,a) \bigr) \\ &\qquad{}+ \frac{{{\Lambda }}(a+{q}\mu (b,a)\theta (b,a))}{{q}(1-{q})\mu ^{2}(b,a)\theta ^{2}(b,a)} \\ &\quad = \frac{q\Lambda (a)+{{\Lambda }}(a+\mu (b,a)\theta (b,a))}{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}- \frac{1+{q}}{{q}^{2}\mu ^{3}(b,a)\theta ^{3}(b,a)} \int _{a}^{a+ \mu (b,a)\theta (b,a)}{{\Lambda }}(x)\,\mathrm{d}_{{q}}x. \end{aligned}$$

Multiplying both sides of the above equality by \({q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)/(1+{q})\), we get the required result. □

Theorem 3.2

Let \({{\Lambda }}:{\mathcal{K}}\to \Re \) be an arbitrary function, \(\mu (b,a)\theta (b,a)>0\) with \(\mathrm{D}_{{q}}^{2}{{\Lambda }}\) be q-integrable on \({\mathcal{K}}\), where \(0<{q}<1\) is a constant. If \(|\mathrm{D}_{{q}}^{2}{{\Lambda }}|^{r}\) is a generalized exponentially μ-preinvex function with \(\chi \geq 1\) and non-positive α, then for \(s\in (0,1]\) and \(r> 1\) we have

$$\begin{aligned} & \biggl\vert \frac{q\Lambda (a)+{{\Lambda }}(a+\mu (b,a)\theta (b,a))}{{q}+1}- \frac{1}{\mu (b,a)\theta (b,a)} \int _{a}^{a+\mu (b,a)\theta (b,a)}{{ \Lambda }}(x)\, \mathrm{d}_{{q}}x \biggr\vert \\ &\quad\leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \biggl( \frac{1}{1+{q}} \biggr)^{1-\frac{1}{r}} \biggl(\psi _{1} \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(a)}{{\chi }^{\alpha a}} \biggr\vert ^{r}+ \psi _{2} \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(b)}{{\chi }^{\alpha b}} \biggr\vert ^{r} \biggr)^{\frac{1}{r}}, \end{aligned}$$
(3.2)

where

$$ \psi _{1}=2^{1-s}{\mathbf{{B}}}_{{q}}(2,r+1)- { \mathbf{{B}}}_{{q}}(s+2,r+1) $$

and

$$ \psi _{2}={\mathbf{{B}}}_{{q}}(s+2,r+1). $$

Proof

Using Lemma 3.1, the well-known power mean inequality, and the given hypothesis of the theorem, we get

$$\begin{aligned} & \biggl\vert \frac{q\Lambda (a)+{{\Lambda }}(a+\mu (b,a)\theta (b,a))}{{q}+1}- \frac{1}{\mu (b,a)\theta (b,a)} \int _{a}^{a+\mu (b,a)\theta (b,a)}{{ \Lambda }}(x)\, \mathrm{d}_{{q}}x \biggr\vert \\ &\quad= \biggl\vert \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \int _{0}^{1}k(1-{q}k){\mathrm{D}}^{2}_{{q}}{{ \Lambda }} \bigl(a+k\mu (b,a) \theta (b,a) \bigr)\,\mathrm{d}_{{q}}k \biggr\vert \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \int _{0}^{1}k(1-{q}k) \bigl\vert \mathrm{D}_{{q}}^{2}{{\Lambda }} \bigl(a+k\mu (b,a)\theta (b,a) \bigr) \,\mathrm{d}_{{q}}k \bigr\vert \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \biggl( \int _{0}^{1}k\,\mathrm{d}_{{q}}k \biggr)^{1-\frac{1}{r}} \\ &\qquad{}\times\biggl( \int _{0}^{1}k(1-{q}k)^{r} \bigl\vert \mathrm{D}_{{q}}^{2}{{ \Lambda }} \bigl(a+k\mu (b,a)\theta (b,a) \bigr) \bigr\vert ^{r}\,\mathrm{d}_{{q}}k \biggr)^{\frac{1}{r}} \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \biggl( \frac{1}{1+{q}} \biggr)^{1-\frac{1}{r}} \\ &\qquad{}\times\biggl( \int _{0}^{1}k(1-{q}k)^{r} \biggl[(1-k)^{s} \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(a)}{{\chi }^{\alpha a}} \biggr\vert ^{r}+k^{s} \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(b)}{{\chi }^{\alpha b}} \biggr\vert ^{r} \biggr]\,\mathrm{d}_{{q}}k \biggr)^{\frac{1}{r}} \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \biggl( \frac{1}{1+{q}} \biggr)^{1-\frac{1}{r}} \\ &\qquad{}\times\biggl( \int _{0}^{1}k(1-{q}k)_{{q}}^{r} \biggl[(1-k)^{s} \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(a)}{{\chi }^{\alpha a}} \biggr\vert ^{r}+k^{s} \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(b)}{{\chi }^{\alpha b}} \biggr\vert ^{r} \biggr]\,\mathrm{d}_{{q}}k \biggr)^{\frac{1}{r}} \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \biggl( \frac{1}{1+{q}} \biggr)^{1-\frac{1}{r}}\\ &\qquad{}\times \biggl( \int _{0}^{1}k(1-{q}k)_{{q}}^{r} \biggl[ \bigl(2^{1-s}-k^{s} \bigr) \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(a)}{{\chi }^{\alpha a}} \biggr\vert ^{r}+k^{s} \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(b)}{{\chi }^{\alpha b}} \biggr\vert ^{r} \biggr]\,\mathrm{d}_{{q}}k \biggr)^{\frac{1}{r}} \\ &\quad =\frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \biggl( \frac{1}{1+{q}} \biggr)^{1-\frac{1}{r}} \biggl( \psi _{1} \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(a)}{{\chi }^{\alpha a}} \biggr\vert ^{r}+ \psi _{2} \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(b)}{{\chi }^{\alpha b}} \biggr\vert ^{r} \biggr)^{\frac{1}{r}}, \end{aligned}$$

where

$$ \psi _{1}= \int _{0}^{1}k \bigl(2^{1-s}-k^{s} \bigr) (1-{q}k)_{{q}}^{r} \,\mathrm{d}_{{q}}k=2^{1-s} {\mathbf{{B}}}_{{q}}(2,r+1)-{\mathbf{{B}}}_{{q}}(s+2,r+1) \geq 0 $$

due to \(2^{1-s}-k^{s}\geq 0\) for all \(k\in [0,1]\) and \(s\in (0,1]\), and

$$ \psi _{2}= \int _{0}^{1}k^{s+1}(1-{q}k)_{{q}}^{r} \,\mathrm{d}_{{q}}k= {\mathbf{{B}}}_{{q}}(s+2,r+1). $$

This proof is completed. □

Theorem 3.3

Let \({{\Lambda }}:{\mathcal{K}}\to \Re \) be an arbitrary function, \(\mu (b,a)\theta (b,a)>0\) with \(\mathrm{D}_{{q}}^{2}{{\Lambda }}\) be q-integrable on \({\mathcal{K}}\), where \(0<{q}<1\) is a constant. If \(|\mathrm{D}_{{q}}^{2}{{\Lambda }}|^{r}\) is a generalized exponentially μ-preinvex function with \(\chi \geq 1\) and non-positive α, then for \(s\in (0,1]\), \(r>1\), and \(1/p+1/r=1\) we obtain

$$\begin{aligned} & \biggl\vert \frac{q\Lambda (a)+{{\Lambda }}(a+\mu (b,a)\theta (b,a))}{{q}+1}- \frac{1}{\mu (b,a)\theta (b,a)} \int _{a}^{a+\mu (b,a)\theta (b,a)}{{ \Lambda }}(x)\, \mathrm{d}_{{q}}x \biggr\vert \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a){\mathbf{{B}}}_{{q}}^{\frac{1}{p}}(2,p+1)}{{q}+1} \\ &\qquad{}\times\biggl( \frac{ (2^{1-s}[s+2]_{{q}}-1-{q} ) \vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(a)}{{\chi }^{\alpha a}} \vert ^{r}+(1+{q}) \vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(b)}{{\chi }^{\alpha b}} \vert ^{r}}{(1+{q})[s+2]_{q}} \biggr)^{\frac{1}{r}}. \end{aligned}$$
(3.3)

Proof

Using Lemma 3.1, Hölder’s inequality, and the given hypothesis of the theorem, we have

$$\begin{aligned} & \biggl\vert \frac{q\Lambda (a)+{{\Lambda }}(a+\mu (b,a)\theta (b,a))}{{q}+1}- \frac{1}{\mu (b,a)\theta (b,a)} \int _{a}^{a+\mu (b,a)\theta (b,a)}{{ \Lambda }}(x)\, \mathrm{d}_{{q}}x \biggr\vert \\ &\quad = \biggl\vert \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \int _{0}^{1}k(1-{q}k){\mathrm{D}}^{2}_{{q}}{{ \Lambda }} \bigl(a+k\mu (b,a) \theta (b,a) \bigr)\,\mathrm{d}_{{q}}k \biggr\vert \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \biggl( \int _{0}^{1}k(1-{q}k)^{p} \, \mathrm{d}_{{q}}k \biggr)^{\frac{1}{p}}\\ &\qquad{}\times \biggl( \int _{0}^{1}k \bigl\vert \mathrm{D}_{{q}}^{2}{{ \Lambda }} \bigl(a+k \mu (b,a)\theta (b,a) \bigr) \bigr\vert ^{r} \, \mathrm{d}_{{q}}k \biggr)^{ \frac{1}{r}} \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \biggl( \int _{0}^{1}k(1-{q}k)_{{q}}^{p} \,\mathrm{d}_{{q}}k \biggr)^{ \frac{1}{p}} \\ &\qquad{}\times\biggl( \int _{0}^{1}k \biggl[(1-k)^{s} \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(a)}{{\chi }^{\alpha a}} \biggr\vert ^{r}+k^{s} \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(b)}{{\chi }^{\alpha b}} \biggr\vert ^{r} \biggr] \, \mathrm{d}_{{q}}k \biggr)^{\frac{1}{r}} \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a){\mathbf{{B}}}_{{q}}^{\frac{1}{p}}(2,p+1)}{{q}+1}\\ &\qquad{}\times \biggl( \frac{ (2^{1-s}[s+2]_{{q}}-1-{q} ) \vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(a)}{{\chi }^{\alpha a}} \vert ^{r}+(1+{q}) \vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(b)}{{\chi }^{\alpha b}} \vert ^{r}}{[s+2]_{q}} \biggr)^{\frac{1}{r}}. \end{aligned}$$

This completes the proof. □

Theorem 3.4

Let \({{\Lambda }}:{\mathcal{K}}\to \Re \) be an arbitrary function, \(\mu (b,a)\theta (b,a)>0\) with \(\mathrm{D}_{{q}}^{2}{{\Lambda }}\) be q-integrable on \({\mathcal{K}}\), where \(0<{q}<1\) is a constant. If \(|\mathrm{D}_{{q}}^{2}{{\Lambda }}|^{r}\) is a generalized exponentially μ-preinvex function with \(\chi \geq 1\) and non-positive α, then for \(s\in (0,1]\), \(r>1\), and \(1/p+1/r=1\) we get

$$\begin{aligned} & \biggl\vert \frac{q\Lambda (a)+{{\Lambda }}(a+\mu (b,a)\theta (b,a))}{{q}+1}- \frac{1}{\mu (b,a)\theta (b,a)} \int _{a}^{a+\mu (b,a)\theta (b,a)}{{ \Lambda }}(x)\, \mathrm{d}_{{q}}x \biggr\vert \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \\ &\qquad{}\times \biggl( \bigl(2^{1-s}{\mathbf{{B}}}_{{q}}(r+1,r+1)- {\mathbf{{B}}}_{{q}}(r+s+1,r+1) \bigr) \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(a)}{{\chi }^{\alpha a}} \biggr\vert ^{r} \\ &\qquad{}+ {\mathbf{{B}}}_{{q}}(r+s+1,r+1) \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(b)}{{\chi }^{\alpha b}} \biggr\vert ^{r} \biggr)^{\frac{1}{r}}. \end{aligned}$$
(3.4)

Proof

Using Lemma 3.1, Hölder’s inequality, and the given hypothesis of the theorem, we obtain

$$\begin{aligned} & \biggl\vert \frac{q\Lambda (a)+{{\Lambda }}(a+\mu (b,a)\theta (b,a))}{{q}+1}- \frac{1}{\mu (b,a)\theta (b,a)} \int _{a}^{a+\mu (b,a)\theta (b,a)}{{ \Lambda }}(x)\, \mathrm{d}_{{q}}x \biggr\vert \\ &\quad = \biggl\vert \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \int _{0}^{1}k(1-{q}k){\mathrm{D}}^{2}_{{q}}{{ \Lambda }} \bigl(a+k\mu (b,a) \theta (b,a) \bigr)\,\mathrm{d}_{{q}}k \biggr\vert \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \biggl( \int _{0}^{1}1\,\mathrm{d}_{{q}}k \biggr)^{\frac{1}{p}} \\ &\qquad{}\times \biggl( \int _{0}^{1}k^{r}(1-{q}k)^{r} \bigl\vert \mathrm{D}_{{q}}^{2}{{\Lambda }} \bigl(a+k \mu (b,a)\theta (b,a) \bigr) \bigr\vert ^{r}\,\mathrm{d}_{{q}}k \biggr)^{ \frac{1}{r}} \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \biggl( \int _{0}^{1}k^{r}(1-{q}k)_{{q}}^{r} \biggl[(1-k)^{s} \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(a)}{{\chi }^{\alpha a}} \biggr\vert ^{r}+k^{s} \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(b)}{{\chi }^{\alpha b}} \biggr\vert ^{r} \biggr]\,\mathrm{d}_{{q}}k \biggr)^{\frac{1}{r}} \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \biggl( \bigl(2^{1-s} { \mathbf{{B}}}_{{q}}(r+1,r+1)-{\mathbf{{B}}}_{{q}}(r+s+1,r+1) \bigr) \\ &\qquad{}\times \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(a)}{{\chi }^{\alpha a}} \biggr\vert ^{r}+ { \mathbf{{B}}}_{{q}}(r+s+1,r+1) \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(b)}{{\chi }^{\alpha b}} \biggr\vert ^{r} \biggr)^{\frac{1}{r}}, \end{aligned}$$

where

$$ 2^{1-s}{\mathbf{{B}}}_{{q}}(r+1,r+1)-{ \mathbf{{B}}}_{{q}}(r+s+1,r+1) \geq 0. $$

Using the same idea as in the proof of Theorem 3.2, we can complete the proof. □

Theorem 3.5

Let \({{\Lambda }}:{\mathcal{K}}\to \Re \) be an arbitrary function, \(\mu (b,a)\theta (b,a)>0\) with \(\mathrm{D}_{{q}}^{2}{{\Lambda }}\) be q-integrable on \({\mathcal{K}}\), where \(0<{q}<1\) is a constant. If \(|\mathrm{D}_{{q}}^{2}{{\Lambda }}|^{r}\) is a generalized exponentially μ-preinvex function with \(\chi \geq 1\) and non-positive α, then for \(s\in (0,1]\), \(r>1\), and \(1/p+1/r=1\) we have

$$\begin{aligned} & \biggl\vert \frac{q\Lambda (a)+{{\Lambda }}(a+\mu (b,a)\theta (b,a))}{{q}+1}- \frac{1}{\mu (b,a)\theta (b,a)} \int _{a}^{a+\mu (b,a)\theta (b,a)}{{ \Lambda }}(x)\, \mathrm{d}_{{q}}x \biggr\vert \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a){\mathbf{{B}}}_{{q}}^{\frac{1}{p}}(p+1,p+1)}{{q}+1} \\ &\qquad{}\times\biggl( \frac{ (2^{1-s}[s+1]_{{q}}-1 ) \vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(a)}{{\chi }^{\alpha a}} \vert ^{r}+ \vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(b)}{{\chi }^{\alpha b}} \vert ^{r}}{[s+1]_{{q}}} \biggr)^{\frac{1}{r}}. \end{aligned}$$
(3.5)

Proof

Using Lemma 3.1, Hölder’s inequality, and the given hypothesis of the theorem, we get

$$\begin{aligned} & \biggl\vert \frac{q\Lambda (a)+{{\Lambda }}(a+\mu (b,a)\theta (b,a))}{{q}+1}- \frac{1}{\mu (b,a)\theta (b,a)} \int _{a}^{a+\mu (b,a)\theta (b,a)}{{ \Lambda }}(x)\, \mathrm{d}_{{q}}x \biggr\vert \\ &\quad = \biggl\vert \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \int _{0}^{1}k(1-{q}k){\mathrm{D}}^{2}_{{q}}{{ \Lambda }} \bigl(a+k\mu (b,a) \theta (b,a) \bigr)\,\mathrm{d}_{{q}}k \biggr\vert \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \biggl( \int _{0}^{1}k^{p}(1-{q}k)^{p} \,\mathrm{d}_{{q}}k \biggr)^{ \frac{1}{p}} \\ &\qquad{}\times\biggl( \int _{0}^{1} \bigl\vert \mathrm{D}_{{q}}^{2}{{ \Lambda }} \bigl(a+k\mu (b,a)\theta (b,a) \bigr) \bigr\vert ^{r} \, \mathrm{d}_{{q}}k \biggr)^{\frac{1}{r}} \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a){\mathbf{{B}}}_{{q}}^{\frac{1}{p}}(p+1,p+1)}{{q}+1}\\ &\qquad{}\times \biggl( \int _{0}^{1} \biggl[(1-k)^{s} \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(a)}{{\chi }^{\alpha a}} \biggr\vert ^{r}+k^{s} \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(b)}{{\chi }^{\alpha b}} \biggr\vert ^{r} \biggr] \, \mathrm{d}_{{q}}k \biggr)^{\frac{1}{r}} \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a){\mathbf{{B}}}_{{q}}^{\frac{1}{p}}(p+1,p+1)}{{q}+1} \biggl( \frac{ (2^{1-s}[s+1]_{{q}}-1 ) \vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(a)}{{\chi }^{\alpha a}} \vert ^{r}+ \vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(b)}{{\chi }^{\alpha b}} \vert ^{r}}{[s+1]_{{q}}} \biggr)^{\frac{1}{r}}. \end{aligned}$$

This completes the proof. □

Theorem 3.6

Let \({{\Lambda }}:{\mathcal{K}}\to \Re \) be an arbitrary function, \(\mu (b,a)\theta (b,a)>0\) with \(\mathrm{D}_{{q}}^{2}{{\Lambda }}\) be q-integrable on \({\mathcal{K}}\), where \(0<{q}<1\) is a constant. If \(|\mathrm{D}_{{q}}^{2}{{\Lambda }}|^{r}\) is a generalized exponentially μ-preinvex function with \(\chi \geq 1\) and non-positive α, then for \(s\in (0,1]\), \(r>1\), and \(1/p+1/r=1\) we obtain

$$\begin{aligned} & \biggl\vert \frac{q\Lambda (a)+{{\Lambda }}(a+\mu (b,a)\theta (b,a))}{{q}+1}- \frac{1}{\mu (b,a)\theta (b,a)} \int _{a}^{a+\mu (b,a)\theta (b,a)}{{ \Lambda }}(x)\, \mathrm{d}_{{q}}x \biggr\vert \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \\ &\qquad \times \biggl(\frac{1}{[p+1]_{{q}}} \biggr)^{\frac{1}{p}} \biggl( \bigl(2^{1-s}{\mathbf{{B}}}_{{q}}(1,r+1)-{ \mathbf{{B}}}_{{q}}(s+1,r+1) \bigr) \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(a)}{{\chi }^{\alpha a}} \biggr\vert ^{r} \\ &\qquad{}+ { \mathbf{{B}}}_{{q}}(s+1,r+1) \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(b)}{{\chi }^{\alpha b}} \biggr\vert ^{r} \biggr)^{\frac{1}{r}}. \end{aligned}$$
(3.6)

Proof

Using Lemma 3.1, Hölder’s inequality, and the given hypothesis of the theorem, we have

$$\begin{aligned} & \biggl\vert \frac{q\Lambda (a)+{{\Lambda }}(a+\mu (b,a)\theta (b,a))}{{q}+1}- \frac{1}{\mu (b,a)\theta (b,a)} \int _{a}^{a+\mu (b,a)\theta (b,a)}{{ \Lambda }}(x)\, \mathrm{d}_{{q}}x \biggr\vert \\ &\quad = \biggl\vert \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \int _{0}^{1}k(1-{q}k){\mathrm{D}}^{2}_{{q}}{{ \Lambda }} \bigl(a+k\mu (b,a) \theta (b,a) \bigr)\,\mathrm{d}_{{q}}k \biggr\vert \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \biggl( \int _{0}^{1}k^{p}\, \mathrm{d}_{{q}}k \biggr)^{\frac{1}{p}} \\ &\qquad{}\times\biggl( \int _{0}^{1}(1-{q}k)^{r} \bigl\vert \mathrm{D}_{{q}}^{2}{{\Lambda }} \bigl(a+k \mu (b,a)\theta (b,a) \bigr) \bigr\vert ^{r}\,\mathrm{d}_{{q}}k \biggr)^{ \frac{1}{r}} \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \biggl( \frac{1}{[p+1]_{{q}}} \biggr)^{\frac{1}{p}} \\ &\qquad{}\times\biggl( \int _{0}^{1}(1-{q}k)^{r} \biggl[(1-k)^{s} \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(a)}{{\chi }^{\alpha a}} \biggr\vert ^{r}+k^{s} \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(b)}{{\chi }^{\alpha b}} \biggr\vert ^{r} \biggr]\,\mathrm{d}_{{q}}k \biggr)^{\frac{1}{r}} \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \biggl( \frac{1}{[p+1]_{{q}}} \biggr)^{\frac{1}{p}} \biggl( \bigl(2^{1-s} {\mathbf{{B}}}_{{q}}(1,r+1)- { \mathbf{{B}}}_{{q}}(s+1,r+1) \bigr) \\ &\qquad{}\times \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(a)}{{\chi }^{\alpha a}} \biggr\vert ^{r}+ { \mathbf{{B}}}_{{q}}(s+1,r+1) \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(b)}{{\chi }^{\alpha b}} \biggr\vert ^{r} \biggr)^{\frac{1}{r}}, \end{aligned}$$

where

$$ 2^{1-s}{\mathbf{{B}}}_{{q}}(1,r+1)-{\mathbf{{B}}}_{{q}}(s+1,r+1) \geq 0. $$

Using the same idea as in the proof of Theorem 3.2, we complete the proof. □

Theorem 3.7

Let \({{\Lambda }}:{\mathcal{K}}\to \Re \) be an arbitrary function, \(\mu (b,a)\theta (b,a)>0\) with \(\mathrm{D}_{{q}}^{2}{{\Lambda }}\) be q-integrable on \({\mathcal{K}}\), where \(0<{q}<1\) is a constant. If \(|\mathrm{D}_{{q}}^{2}{{\Lambda }}|^{r}\) is a generalized exponentially μ-preinvex function with \(\chi \geq 1\) and non-positive α, then for \(s\in (0,1]\), \(r>1\), and \(1/p+1/r=1\) we get

$$\begin{aligned} & \biggl\vert \frac{q\Lambda (a)+{{\Lambda }}(a+\mu (b,a)\theta (b,a))}{{q}+1}- \frac{1}{\mu (b,a)\theta (b,a)} \int _{a}^{a+\mu (b,a)\theta (b,a)}{{ \Lambda }}(x)\, \mathrm{d}_{{q}}x \biggr\vert \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a){\mathbf{{B}}}_{{q}}^{\frac{1}{p}}(1,p+1)}{{q}+1} \biggl( \biggl(\frac{2^{1-s}}{[r+1]_{{q}}}- \frac{1}{[r+s+1]_{{q}}} \biggr) \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(a)}{{\chi }^{\alpha a}} \biggr\vert ^{r} \\ &\qquad{}+ \biggl( \frac{1}{[r+s+1]_{{q}}} \biggr) \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(b)}{{\chi }^{\alpha b}} \biggr\vert ^{r} \biggr)^{\frac{1}{r}}. \end{aligned}$$
(3.7)

Proof

Using Lemma 3.1, Hölder’s inequality, and the given hypothesis of the theorem, we obtain

$$\begin{aligned} & \biggl\vert \frac{q\Lambda (a)+{{\Lambda }}(a+\mu (b,a)\theta (b,a))}{{q}+1}- \frac{1}{\mu (b,a)\theta (b,a)} \int _{a}^{a+\mu (b,a)\theta (b,a)}{{ \Lambda }}(x)\, \mathrm{d}_{{q}}x \biggr\vert \\ &\quad = \biggl\vert \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \int _{0}^{1}k(1-{q}k){\mathrm{D}}^{2}_{{q}}{{ \Lambda }} \bigl(a+k\mu (b,a) \theta (b,a) \bigr)\,\mathrm{d}_{{q}}k \biggr\vert \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a)}{{q}+1} \biggl( \int _{0}^{1}(1-{q}k)^{p} \, \mathrm{d}_{{q}}k \biggr)^{\frac{1}{p}}\\ &\qquad{}\times \biggl( \int _{0}^{1}k^{r} \bigl\vert \mathrm{D}_{{q}}^{2}{{\Lambda }} \bigl(a+k \mu (b,a)\theta (b,a) \bigr) \bigr\vert ^{r}\,\mathrm{d}_{{q}}k \biggr)^{ \frac{1}{r}} \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a){\mathbf{{B}}}_{{q}}^{\frac{1}{p}}(1,p+1)}{{q}+1}\\ &\qquad{}\times \biggl( \int _{0}^{1}k^{r} \biggl[(1-k)^{s} \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(a)}{{\chi }^{\alpha a}} \biggr\vert ^{r}+k^{s} \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(b)}{{\chi }^{\alpha b}} \biggr\vert ^{r} \biggr] \, \mathrm{d}_{{q}}k \biggr)^{\frac{1}{r}} \\ &\quad \leq \frac{{q}^{2}\mu ^{2}(b,a)\theta ^{2}(b,a){\mathbf{{B}}}_{{q}}^{\frac{1}{p}}(1,p+1)}{{q}+1} \\ &\qquad{}\times\biggl( \biggl(\frac{2^{1-s}}{[r+1]_{{q}}}- \frac{1}{[r+s+1]_{{q}}} \biggr) \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(a)}{{\chi }^{\alpha a}} \biggr\vert ^{r}+ \biggl( \frac{1}{[r+s+1]_{{q}}} \biggr) \biggl\vert \frac{\mathrm{D}_{{q}}^{2}{{\Lambda }}(b)}{{\chi }^{\alpha b}} \biggr\vert ^{r} \biggr)^{\frac{1}{r}}. \end{aligned}$$

This completes the proof. □

Conclusion

In this paper, we have defined the class of generalized exponentially μ-preinvex functions and derived a new generalized quantum integral identity. With the help of this auxiliary result, we have obtained some new estimates of the quantum bounds essentially using the class of generalized exponentially μ-preinvex functions. It is worth to mention here that if we take \(\chi =e\), then all of the main results reduce to the results for exponentially μ-preinvex functions. To the best of our knowledge, these results are new in the literature. Since the quantum calculus has wide applications in many mathematical areas, this new class of functions can be applied to obtain more results in convex analysis, special functions, quantum mechanics, optimization theory, mathematical inequalities and may stimulate further research in different areas of pure and applied sciences.

References

  1. 1.

    Zaheer Ullah, S., Adil Khan, M., Chu, Y.-M.: A note on generalized convex functions. J. Inequal. Appl. 2019, Article ID 291 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Agarwal, P., Kadakal, M., İşcan, İ., Chu, Y.-M.: Better approaches for n-times differentiable convex functions. Mathematics 8, Article ID 950 (2020)

    Article  Google Scholar 

  3. 3.

    Wang, M.-K., He, Z.-Y., Chu, Y.-M.: Sharp power mean inequalities for the generalized elliptic integral of the first kind. Comput. Methods Funct. Theory 20(1), 111–124 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Wang, M.-K., Chu, H.-H., Li, Y.-M., Chu, Y.-M.: Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind. Appl. Anal. Discrete Math. 14(1), 255–271 (2020)

    MathSciNet  Google Scholar 

  5. 5.

    Zhao, T.-H., Shi, L., Chu, Y.-M.: Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114(2), Article ID 96 (2020)

    MATH  Article  Google Scholar 

  6. 6.

    Shen, J.-M., Yang, Z.-H., Qian, W.-M., Zhang, W., Chu, Y.-M.: Sharp rational bounds for the gamma function. Math. Inequal. Appl. 23(3), 843–853 (2020)

    MathSciNet  Google Scholar 

  7. 7.

    Wang, M.-K., Chu, Y.-M., Li, Y.-M., Zhang, W.: Asymptotic expansion and bounds for complete elliptic integrals. Math. Inequal. Appl. 23(3), 821–841 (2020)

    MathSciNet  Google Scholar 

  8. 8.

    Hai, G.-J., Zhao, T.-H.: Monotonicity properties and bounds involving the two-parameter generalized Grötzsch ring function. J. Inequal. Appl. 2020, Article ID 66 (2020)

    Article  Google Scholar 

  9. 9.

    Hussain, S., Khalid, J., Chu, Y.-M.: Some generalized fractional integral Simpson’s type inequalities with applications. AIMS Math. 5(6), 5859–5883 (2020)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Khan, S., Adil Khan, M., Chu, Y.-M.: Converses of the Jensen inequality derived from the Green functions with applications in information theory. Math. Methods Appl. Sci. 43(5), 2577–2587 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Rashid, S., Khalid, A., Rahman, S., Nisar, K.S., Chu, Y.-M.: On new modifications governed by quantum Hahn’s integral operator pertaining to fractional calculus. J. Funct. Spaces 2020, Article ID 8262860 (2020)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Shen, J.-M., Rashid, S., Noor, M.A., Ashraf, R., Chu, Y.-M.: Certain novel estimates within fractional calculus theory on time scales. AIMS Math. 5(6), 6073–6086 (2020)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Abbas Baloch, I., Chu, Y.-M.: Petrović-type inequalities for harmonic h-convex functions. J. Funct. Spaces 2020, Article ID 3075390 (2020)

    MATH  Google Scholar 

  14. 14.

    Adil Khan, M., Hanif, M., Khan, Z.A., Ahmad, K., Chu, Y.-M.: Association of Jensen’s inequality for s-convex function with Csiszár divergence. J. Inequal. Appl. 2019, Article ID 162 (2019)

    Article  Google Scholar 

  15. 15.

    Awan, M.U., Akhtar, N., Kashuri, A., Noor, M.A., Chu, Y.-M.: 2D approximately reciprocal ρ-convex functions and associated integral inequalities. AIMS Math. 5(5), 4662–4680 (2020)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Khurshid, Y., Adil Khan, M., Chu, Y.-M.: Conformable fractional integral inequalities for GG- and GA-convex functions. AIMS Math. 5(5), 5012–5030 (2020)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Latif, M.A., Rashid, S., Dragomir, S.S., Chu, Y.-M.: Hermite–Hadamard type inequalities for co-ordinated convex and quasi-convex functions and their applications. J. Inequal. Appl. 2019, Article ID 317 (2019)

    Article  Google Scholar 

  18. 18.

    Rashid, S., Ashraf, R., Noor, M.A., Noor, K.I., Chu, Y.-M.: New weighted generalizations for differentiable exponentially convex mapping with application. AIMS Math. 5(4), 3525–3546 (2020)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Chu, Y.-M., Awan, M.U., Javad, M.Z., Khan, A.W.: Bounds for the remainder in Simpson’s inequality via n-polynomial convex functions of higher order using Katugampola fractional integrals. J. Math. 2020, Article ID 4189036 (2020)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Yan, P.-Y., Li, Q., Chu, Y.-M., Mukhtar, S., Waheed, S.: On some fractional integral inequalities for generalized strongly modified h-convex function. AIMS Math. 5(6), 6620–6638 (2020)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Ge-JiLe, H., Rashid, S., Noor, M.A., Suhail, A., Chu, Y.-M.: Some unified bounds for exponentially \(tgs\)-convex functions governed by conformable fractional operators. AIMS Math. 5(6), 6108–6123 (2020)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Sun, M.-B., Chu, Y.-M.: Inequalities for the generalized weighted mean values of g-convex functions with applications. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114(4), Article ID 172 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Zhao, T.-H., He, Z.-Y., Chu, Y.-M.: On some refinements for inequalities involving zero-balanced hypergeometric function. AIMS Math. 5(6), 6479–6495 (2020)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Abbas Baloch, I., Mughal, A.A., Chu, Y.-M., Haq, A.U., De La Sen, M.: A variant of Jensen-type inequality and related results for harmonic convex functions. AIMS Math. 5(6), 6404–6418 (2020)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Awan, M.U., Talib, S., Noor, M.A., Chu, Y.-M., Noor, K.I.: Some trapezium-like inequalities involving functions having strongly n-polynomial preinvexity property of higher order. J. Funct. Spaces 2020, Article ID 9154139 (2020)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Weir, T., Mond, B.: Pre-invex functions in multiple objective optimization. J. Math. Anal. Appl. 136(1), 29–38 (1988)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Awan, M.U., Noor, M.A., Noor, K.I.: Hermite–Hadamard inequalities for exponentially convex functions. Appl. Math. Inf. Sci. 12(2), 405–409 (2018)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Adil Khan, M., Pečarić, J., Chu, Y.-M.: Refinements of Jensen’s and McShane’s inequalities with applications. AIMS Math. 5(5), 4931–4945 (2020)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Rashid, S., Jarad, F., Chu, Y.-M.: A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function. Math. Probl. Eng. 2020, Article ID 7630260 (2020)

    MathSciNet  Google Scholar 

  30. 30.

    Wang, M.-K., Chu, Y.-M., Jiang, Y.-P.: Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions. Rocky Mt. J. Math. 46(2), 679–691 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Rashid, S., Jarad, F., Noor, M.A., Kalsoom, H., Chu, Y.-M.: Inequalities by means of generalized proportional fractional integral operators with respect to another function. Mathematics 7(12), Article ID 1225 (2019)

    Article  Google Scholar 

  32. 32.

    Zhao, T.-H., Wang, M.-K., Chu, Y.-M.: A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 5(5), 4512–4528 (2020)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Zhou, S.-S., Rashid, S., Jarad, F., Kalsoom, H., Chu, Y.-M.: New estimates considering the generalized proportional Hadamard fractional integral operators. Adv. Differ. Equ. 2020, Article ID 275 (2020)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Xu, L., Chu, Y.-M., Rashid, S., El-Deeb, A.A., Nisar, K.S.: On new unified bounds for a family of functions with fractional q-calculus theory. J. Funct. Spaces 2020, Article ID 4984612 (2020)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Kalsoom, H., Idrees, M., Baleanu, D., Chu, Y.-M.: New estimates of \(q_{1}q_{2}\)-Ostrowski-type inequalities within a class of n-polynomial prevexity of function. J. Funct. Spaces 2020, Article ID 3720798 (2020)

    MATH  Google Scholar 

  36. 36.

    Chu, Y.-M., Adil Khan, M., Ali, T., Dragomir, S.S.: Inequalities for α-fractional differentiable functions. J. Inequal. Appl. 2017, Article ID 93 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Rashid, S., Noor, M.A., Noor, K.I., Safdar, F., Chu, Y.-M.: Hermite–Hadamard type inequalities for the class of convex functions on time scale. Mathematics 7(10), Article ID 956 (2019)

    Article  Google Scholar 

  38. 38.

    Iqbal, A., Adil Khan, M., Mohammad, N., Nwaeze, E.R., Chu, Y.-M.: Revisiting the Hermite–Hadamard integral inequality via a Green function. AIMS Math. 5(6), 6087–6107 (2020)

    MathSciNet  Article  Google Scholar 

  39. 39.

    Iqbal, A., Adil Khan, M., Ullah, S., Chu, Y.-M.: Some new Hermite–Hadamard-type inequalities associated with conformable fractional integrals and their applications. J. Funct. Spaces 2020, Article ID 9845407 (2020)

    MathSciNet  MATH  Google Scholar 

  40. 40.

    Qi, F., Xi, B.-Y.: Some Hermite–Hadamard type inequalities for geometrically quasi-convex functions. Proc. Indian Acad. Sci. Math. Sci. 124(3), 333–342 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Adil Khan, M., Iqbal, A., Suleman, M., Chu, Y.-M.: Hermite–Hadamard type inequalities for fractional integrals via Green’s function. J. Inequal. Appl. 2018, Article ID 161 (2018)

    MathSciNet  Article  Google Scholar 

  42. 42.

    Yang, Z.-H., Qian, W.-M., Zhang, W., Chu, Y.-M.: Notes on the complete elliptic integral of the first kind. Math. Inequal. Appl. 23(1), 77–93 (2020)

    MathSciNet  MATH  Google Scholar 

  43. 43.

    Awan, M.U., Akhtar, N., Iftikhar, S., Noor, M.A., Chu, Y.-M.: New Hermite–Hadamard type inequalities for n-polynomial harmonically convex functions. J. Inequal. Appl. 2020, Article ID 125 (2020)

    MathSciNet  Article  Google Scholar 

  44. 44.

    Awan, M.U., Talib, S., Chu, Y.-M., Noor, M.A., Noor, K.I.: Some new refinements of Hermite–Hadamard-type inequalities involving \(\Psi _{k}\)-Riemann–Liouville fractional integrals and applications. Math. Probl. Eng. 2020, Article ID 3051920 (2020)

    MathSciNet  Article  Google Scholar 

  45. 45.

    Khurshid, Y., Adil Khan, M., Chu, Y.-M.: Conformable integral version of Hermite–Hadamard–Fejér inequalities via η-convex functions. AIMS Math. 5(5), 5106–5120 (2020)

    MathSciNet  Article  Google Scholar 

  46. 46.

    Qi, H.-X., Yussouf, M., Mehmood, S., Chu, Y.-M., Farid, G.: Fractional integral versions of Hermite–Hadamard type inequality for generalized exponentially convexity. AIMS Math. 5(6), 6030–6042 (2020)

    MathSciNet  Article  Google Scholar 

  47. 47.

    Yang, X.-Z., Farid, G., Nazeer, W., Chu, Y.-M., Dong, C.-F.: Fractional generalized Hadamard and Fejér–Hadamard inequalities for m-convex function. AIMS Math. 5(6), 6325–6340 (2020)

    MathSciNet  Article  Google Scholar 

  48. 48.

    Guo, S.-Y., Chu, Y.-M., Farid, G., Mehmood, S., Nazeer, W.: Fractional Hadamard and Fejér–Hadamard inequalities associated with exponentially \((s, m)\)-convex functions. J. Funct. Spaces 2020, Article ID 2410385 (2020)

    MATH  Google Scholar 

  49. 49.

    Tariboon, J., Ntouyas, S.K.: Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, Article ID 282 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  50. 50.

    Tariboon, J., Ntouyas, S.K.: Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, Article ID 121 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  51. 51.

    Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002)

    Google Scholar 

  52. 52.

    Kunt, M., Kashuri, A., Du, T.-S., Baidar, A.W.: Quantum Montgomery identity and quantum estimates of Ostrowski type inequalities. AIMS Math. 5(6), 5439–5457 (2020)

    MathSciNet  Article  Google Scholar 

  53. 53.

    Liu, W.-J., Zhuang, H.-F.: Some quantum estimates of Hermite–Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 7(2), 501–522 (2017)

    MathSciNet  Google Scholar 

  54. 54.

    Bohner, M., Mesquita, J.G.: Massera’s theorem in quantum calculus. Proc. Am. Math. Soc. 146(11), 4755–4766 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  55. 55.

    Brahim, K., Riahi, L.: Two dimensional Mellin transform in quantum calculus. Acta Math. Sci. 38B(2), 546–560 (2018)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the editor and anonymous referee for their valuable comments and suggestions. These suggestions helped us a lot in improving the standard of the paper. First and second authors are thankful to Higher Education Commission Pakistan.

Availability of data and materials

Not applicable.

Funding

The work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11301127, 11701176, 11626101, 11601485) and the Natural Science Foundation of Huzhou City (Grant No. 2018YZ07).

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yu-Ming Chu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Awan, M.U., Talib, S., Kashuri, A. et al. A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions. Adv Differ Equ 2020, 575 (2020). https://doi.org/10.1186/s13662-020-03036-7

Download citation

MSC

  • 26A51
  • 26D15
  • 05A30

Keywords

  • Hermite–Hadamard inequality
  • Hölder inequality
  • Power mean inequality
  • Convexity
  • Generalized exponentially μ-preinvex function
  • Quantum calculus