Skip to main content

A note on negative λ-binomial distribution

Abstract

In this paper, we introduce one discrete random variable, namely the negative λ-binomial random variable. We deduce the expectation of the negative λ-binomial random variable. We also get the variance and explicit expression for the moments of the negative λ-binomial random variable.

Introduction

In a sequence of independent Bernoulli trials, let the random variable X denote the trial at which the rth success occurs, where r is a fixed nonnegative integer. Then

$$ P(X=x)={\binom{x-1}{r-1}}p^{r}(1-p)^{x-r}, \quad x=r,r+1,r+2,\ldots , $$

and we say that X has a negative binomial distribution with parameters \((r,p)\) (see [13, 12, 13]).

The negative binomial distribution is sometimes defined in terms of the random variable Y, the number of failures before the rth success. This formulation is statistically equivalent to one given above in terms of X denoting the trial at which the rth success occurs, since \(Y=X-r\). The alternative form of the negative binomial distribution is

$$ p(k)=P(Y=k)={\binom{r+k-1}{k}}p^{r}(1-p)^{k},\quad k=0,1,2,\ldots , $$

where p is the probability of success in the trial (see [1, 3, 12, 13]).

It is known that the degenerate exponential function is defined by

$$ e_{\lambda }^{x}(t)=(1+\lambda t)^{\frac{x}{\lambda }}=\sum_{n=0}^{ \infty }(x)_{n,\lambda } \frac{t^{n}}{n!}, \quad \lambda \in \mathbb{R}, $$
(1)

where

$$ (x)_{0,\lambda }=1,\qquad (x)_{n,\lambda }=x(x-\lambda ) \cdots \bigl(x-(n-1) \lambda \bigr)\quad (n\ge 1)\ (\text{see [5--7, 10, 11]}). $$
(2)

Recently, λ-analogue of binomial coefficients was considered by Kim to be

$$ {\binom{x}{0}}_{\lambda }=1,\qquad { \binom{x}{n}}_{\lambda }= \frac{(x)_{n,\lambda }}{n!}= \frac{x(x-\lambda )\cdots (x-(n-1)\lambda )}{n!}\quad (n\ge 1)\ ( \text{see [6, 8, 9]}). $$
(3)

In this paper, we consider the negative λ-binomial distribution and obtain expressions for its moments.

Negative λ-binomial distribution

Definition 2.1

\(Y_{\lambda }\) is the negative λ-binomial random variable if the probability mass function of \(Y_{\lambda }\) with parameters \((r,p)\) is given by

$$ p_{\lambda }(k)=P_{\lambda }(Y_{\lambda }=k)={ \binom{r+(k-1)\lambda }{k}}_{\lambda }e_{\lambda }^{r}(p-1) (1-p)^{k}, $$
(4)

where λ (0,1) and p is the probability of success in the trials.

Note that

$$ {\binom{r+(k-1)\lambda }{k}}_{\lambda }=(-1)^{k}{ \binom{-r}{k}}_{\lambda },\quad k\ge 0\ (\text{see [4]}) $$
(5)

and

$$\begin{aligned} \sum_{n=0}^{\infty }p_{\lambda }(k) =& \sum_{n=0}^{\infty }{ \binom{r+(k-1)\lambda }{k}}_{\lambda }(1-p)^{k} e_{\lambda }^{r}(p-1) \\ =&e_{\lambda }^{r}(p-1)e_{\lambda }^{-r}(p-1)=1. \end{aligned}$$
(6)

From (4), we note that

$$ \lim_{\lambda \rightarrow 1}p_{\lambda }(k) $$
(7)

is the probability mass function of negative binomial random variable with parameters \((r,p)\), and

$$ \lim_{\lambda \rightarrow 0}p_{\lambda }(k) $$
(8)

is the probability mass function of Poisson random variable with parameters \(r(1-p)\).

Let X be a discrete random variable, and let \(f(x)\) be a real-valued function. Then we have

$$ E\bigl(f(X)\bigr)=\sum_{x}f(x)p(x), $$
(9)

where \(p(x)\) is the probability mass function.

From (9), we note that

$$\begin{aligned} E(Y_{\lambda }) =&\sum_{k=0}^{\infty }kp_{\lambda }(k)= \sum_{k=0}^{ \infty }k{\binom{r+(k-1)\lambda }{k}}_{\lambda }(1-p)^{k} e_{\lambda }^{r}(p-1) \\ =&\frac{r}{e_{\lambda }^{\lambda }(p-1)}\sum_{k=1}^{\infty } \frac{(r+(k-1)\lambda )\cdots (r+\lambda )}{(k-1)!}(1-p)^{k} e_{\lambda }^{r+\lambda }(p-1) \\ =&\frac{r}{e_{\lambda }^{\lambda }(p-1)}\sum_{k=0}^{\infty } \frac{(r+k\lambda )\cdots (r+\lambda )}{k!}(1-p)^{k+1} e_{\lambda }^{r+ \lambda }(p-1) \\ =&\frac{r(1-p)}{e_{\lambda }^{\lambda }(p-1)}\sum_{k=0}^{\infty }{ \binom{r+\lambda +(k-1)\lambda }{k}}_{\lambda }(1-p)^{k} e_{\lambda }^{r+ \lambda }(p-1) \\ =&\frac{r(1-p)}{e_{\lambda }^{\lambda }(p-1)}e_{\lambda }^{-(r+\lambda )}(p-1)e_{\lambda }^{r+\lambda }(p-1) \\ =&\frac{r(1-p)}{e_{\lambda }^{\lambda }(p-1)}. \end{aligned}$$
(10)

Therefore, by (10), we obtain the following theorem.

Theorem 2.1

Let \(Y_{\lambda }\) be a negative λ-binomial random variable with parameters \((r,p)\). Then we have

$$ E(Y_{\lambda })=\frac{r(1-p)}{e_{\lambda }^{\lambda }(p-1)}. $$

Note 2.1

$$ \lim_{\lambda \rightarrow 1}E(Y_{\lambda })=\frac{r(1-p)}{p}=E(Y), $$

where Y is the negative binomial random variable with parameters \((r,p)\).

Note 2.2

$$ \lim_{\lambda \rightarrow 0}E(Y_{\lambda })=r(1-p)=E(Y), $$

where Y is the Poisson random variable with parameter \(r(1-p)\).

Now, we observe that

$$\begin{aligned} E\bigl(Y^{2}_{\lambda }\bigr) =&\sum _{k=0}^{\infty }k^{2}p_{\lambda }(k)= \sum_{k=0}^{ \infty }k(k+1-1)p_{\lambda }(k) \\ =&\sum_{k=0}^{\infty }k(k-1)p_{\lambda }(k)+ \sum_{k=0}^{\infty }kp_{\lambda }(k) \\ =&\sum_{k=0}^{\infty }k(k-1){ \binom{r+(k-1)\lambda }{k}}_{\lambda }(1-p)^{k} e_{\lambda }^{r}(p-1)+E(Y_{\lambda }) \\ =&\frac{r(r+\lambda )}{e_{\lambda }^{2\lambda }(p-1)}\sum_{k=2}^{ \infty } \frac{(r+(k-1)\lambda )\cdots (r+2\lambda )}{(k-2)!}(1-p)^{k} e_{\lambda }^{r+2\lambda }(p-1)+E(Y_{\lambda }) \\ =&\frac{r(r+\lambda )}{e_{\lambda }^{2\lambda }(p-1)}\sum_{k=0}^{ \infty }{ \binom{r+(k+1)\lambda }{k}}_{\lambda }(1-p)^{k+2} e_{\lambda }^{r+2 \lambda }(p-1)+E(Y_{\lambda }) \\ =&\frac{r(r+\lambda )(1-p)^{2}}{e_{\lambda }^{2\lambda }(p-1)}\sum_{k=0}^{ \infty }{ \binom{r+2\lambda +(k-1)\lambda }{k}}_{\lambda }(1-p)^{k} e_{\lambda }^{r+2\lambda }(p-1)+E(Y_{\lambda }) \\ =&\frac{r(r+\lambda )(1-p)^{2}}{e_{\lambda }^{2\lambda }(p-1)}e_{\lambda }^{-(r+2\lambda )}(p-1)e_{\lambda }^{r+2\lambda }(p-1)+E(Y_{\lambda }) \\ =&\frac{r(r+\lambda )(1-p)^{2}}{e_{\lambda }^{2\lambda }(p-1)}+ \frac{r(1-p)}{e_{\lambda }^{\lambda }(p-1)}. \end{aligned}$$
(11)

The variance of random variable X is defined by

$$ \operatorname{Var}(X)=E\bigl(X^{2}\bigr)-\bigl[E(X) \bigr]^{2}\quad (\text{see [1, 3]}). $$
(12)

From Theorem 2.1, (11), and (12), we note that

$$\begin{aligned} \operatorname{Var}(Y_{\lambda }) =&E\bigl(Y_{\lambda }^{2} \bigr)-\bigl[E(Y_{\lambda })\bigr]^{2} \\ =&\frac{r(r+\lambda )(1-p)^{2}}{e_{\lambda }^{2\lambda }(p-1)}+ \frac{r(1-p)}{e_{\lambda }^{\lambda }(p-1)}- \frac{r^{2}(1-p)^{2}}{e_{\lambda }^{2\lambda }(p-1)} \\ =&\frac{r(1-p)^{2}}{e_{\lambda }^{2\lambda }(p-1)}(r+\lambda -r)+ \frac{r(1-p)}{e_{\lambda }^{\lambda }(p-1)} \\ =&\lambda \frac{r(1-p)^{2}}{e_{\lambda }^{2\lambda }(p-1)}+ \frac{r(1-p)}{e_{\lambda }^{\lambda }(p-1)}. \end{aligned}$$

Therefore, we obtain the following theorem.

Theorem 2.2

Let \(Y_{\lambda }\) be a negative λ-binomial random variable with parameters \((r,p)\). Then we have

$$ \operatorname{Var}(Y_{\lambda })=\lambda \frac{r(1-p)^{2}}{e_{\lambda }^{2\lambda }(p-1)}+ \frac{r(1-p)}{e_{\lambda }^{\lambda }(p-1)}. $$

Note 2.3

$$ \lim_{\lambda \rightarrow 1}\operatorname{Var}(Y_{\lambda })= \frac{r(1-p)}{p^{2}}=\operatorname{Var}(Y), $$

where Y is the negative binomial random variable with parameters \((r,p)\).

Note 2.4

$$ \lim_{\lambda \rightarrow 0}\operatorname{Var}(Y_{\lambda })=r(1-p)= \operatorname{Var}(Y), $$

where Y is the Poisson random variable with parameter \(r(1-p)\).

Note that

$$ k^{n}=\sum_{l=0}^{n}S_{2}(n,l) (k)_{l}, $$
(13)

where \(S_{2}(n,l)\) is the Stirling number of the second kind, and

$$ (k)_{0}=1,\qquad (k)_{l}=k(k-1)\cdots (k-l+1)\quad (l\ge 1)\ (\text{see [14, 15]}). $$

From (13), we note that

$$\begin{aligned} E\bigl(Y^{n}_{\lambda }\bigr) =&\sum _{k=0}^{\infty }k^{n}p_{\lambda }(k)= \sum_{l=0}^{n}S_{2}(n,l) \sum_{k=l}^{\infty }(k)_{l} p_{\lambda }(k) \\ =&\sum_{l=0}^{n}S_{2}(n,l) \sum_{k=l}^{\infty }(k)_{l} { \binom{r+(k-1)\lambda }{k}}_{\lambda }(1-p)^{k} e_{\lambda }^{r}(p-1) \\ =&\sum_{l=0}^{n}S_{2}(n,l) \frac{r(r+\lambda )\cdots (r+(l-1)\lambda )}{e_{\lambda }^{l\lambda }(p-1)} \\ &{}\times\sum_{k=l}^{\infty } \frac{(r+(k-1)\lambda )\cdots (r+l\lambda )}{(k-l)!}(1-p)^{k} e_{\lambda }^{r+l\lambda }(p-1) \\ =&\sum_{l=0}^{n}S_{2}(n,l) \frac{r(r+\lambda )\cdots (r+(l-1)\lambda )}{e_{\lambda }^{l\lambda }(p-1)} \\ &{}\times\sum_{k=0}^{\infty } \frac{(r+(k+l-1)\lambda )\cdots (r+l\lambda )}{k!}(1-p)^{k+l} e_{\lambda }^{r+l\lambda }(p-1) \\ =&\sum_{l=0}^{n}S_{2}(n,l) \frac{r(r+\lambda )\cdots (r+(l-1)\lambda )}{e_{\lambda }^{l\lambda }(p-1)} \\ &{}\times\sum_{k=0}^{\infty }{ \binom{r+(k+l-1)\lambda }{k}}_{\lambda }(1-p)^{k+l}e_{\lambda }^{r+l\lambda }(p-1) \\ =&\sum_{l=0}^{n}S_{2}(n,l) \frac{r(r+\lambda )\cdots (r+(l-1)\lambda )(1-p)^{l}}{e_{\lambda }^{l\lambda }(p-1)} \\ &{}\times\sum_{k=0}^{\infty }{ \binom{r+l\lambda + (k-1)\lambda }{k}}_{\lambda }(1-p)^{k} e_{\lambda }^{r+l\lambda }(p-1) \\ =&\sum_{l=0}^{n}S_{2}(n,l) \frac{r(r+\lambda )\cdots (r+(l-1)\lambda )(1-p)^{l}}{e_{\lambda }^{l\lambda }(p-1)} e_{\lambda }^{-r-l\lambda }(p-1) e_{\lambda }^{r+l\lambda }(p-1) \\ =&\sum_{l=0}^{n}S_{2}(n,l) \frac{r(r+\lambda )\cdots (r+(l-1)\lambda )(1-p)^{l}}{e_{\lambda }^{l\lambda }(p-1)} \\ =&\sum_{l=0}^{n}S_{2}(n,l) \frac{(r+(l-1)\lambda )_{l,_{\lambda }}(1-p)^{l}}{e_{\lambda }^{l\lambda }(p-1)}. \end{aligned}$$

Therefore, we obtain the following theorem.

Theorem 2.3

Let \(Y_{\lambda }\) be a negative λ-binomial random variable with parameters \((r,p)\). Then we have

$$ E\bigl(Y^{n}_{\lambda }\bigr)=\sum _{l=0}^{n}S_{2}(n,l) \frac{(r+(l-1)\lambda )_{l,_{\lambda }}(1-p)^{l}}{e_{\lambda }^{l\lambda }(p-1)}. $$

Note 2.5

$$ \lim_{\lambda \rightarrow 1}E\bigl(Y^{n}_{\lambda }\bigr)= \sum_{l=0}^{n}S_{2}(n,l) \frac{(r+(l-1))_{l}(1-p)^{l}}{p^{l}}=E\bigl(Y^{n}\bigr), $$

where Y is the negative binomial random variable with parameters \((r,p)\) (see [4, 12]).

Note 2.6

$$ \lim_{\lambda \rightarrow 0}E\bigl(Y^{n}_{\lambda }\bigr)= \sum_{l=0}^{n}S_{2}(n,l) \bigl(r(1-p)\bigr)^{l}=E\bigl(Y^{n}\bigr), $$

where Y is the Poisson random variable with parameter \(r(1-p)\) (see [16]).

Note that

$$\begin{aligned} E\bigl(Y^{n}_{\lambda }\bigr) =&\sum _{k=0}^{\infty }k^{n} p_{\lambda }(k) \\ =&\sum_{k=0}^{\infty }k^{n}{ \binom{r+(k-1)\lambda }{k}}_{\lambda }(1-p)^{k} e_{\lambda }^{r}(p-1) \\ =&\sum_{k=1}^{\infty }k^{n-1} \frac{(r+(k-1)\lambda )\cdots (r+\lambda )r}{(k-1)!}(1-p)^{k} e_{\lambda }^{r}(p-1) \\ =&\sum_{k=0}^{\infty }(k+1)^{n-1} \frac{(r+k\lambda )\cdots (r+\lambda )r}{k!}(1-p)^{k+1} e_{\lambda }^{r}(p-1) \\ =&r(1-p)\sum_{k=0}^{\infty }\sum _{i=0}^{n-1}{\binom{n-1}{i}}k^{i} \frac{(r+k\lambda )\cdots (r+\lambda )}{k!}(1-p)^{k} e_{\lambda }^{r}(p-1) \\ =&\frac{r(1-p)}{e_{\lambda }^{\lambda }(p-1)}\sum_{i=0}^{n-1}{ \binom{n-1}{i}}\sum_{k=0}^{\infty }k^{i}{ \binom{r+\lambda +(k-1)\lambda }{k}}_{\lambda }(1-p)^{k} e_{\lambda }^{r+ \lambda }(p-1) \\ =&\frac{r(1-p)}{e_{\lambda }^{\lambda }(p-1)}\sum_{i=0}^{n-1}{ \binom{n-1}{i}}E\bigl(Z^{i}_{\lambda }\bigr), \end{aligned}$$

where \(Z_{\lambda }\) is the negative λ-binomial random variable with parameters \((r+\lambda ,p)\).

Therefore, we obtain the following theorem.

Theorem 2.4

Let \(Y_{\lambda }\), \(Z_{\lambda }\) be two negative λ-binomial random variables with parameters \((r,p)\), \((r+\lambda ,p)\) respectively. Then we have

$$ E\bigl(Y^{n}_{\lambda }\bigr)=\frac{r(1-p)}{e_{\lambda }^{\lambda }(p-1)}\sum _{i=0}^{n-1}{ \binom{n-1}{i}}E \bigl(Z^{i}_{\lambda }\bigr). $$

Conclusion

In this paper, we introduced one discrete random variable, namely the negative λ-binomial random variable. The details and results are as follows. We defined the negative λ-binomial random variable with parameter \((r,p)\) in (4) and deduced its expectation in Theorem 2.1. We also obtained its variance in Theorem 2.2 and derived explicit expression for the moment of the negative λ-binomial random variable in Theorem 2.3.

References

  1. 1.

    Alexander, H.W.: Recent publications: introduction to probability and mathematical statistics. Am. Math. Mon. 70(2), 222–223 (1963)

    MathSciNet  Google Scholar 

  2. 2.

    Bayad, A., Chikhi, J.: Apostol–Euler polynomials and asymptotics for negative binomial reciprocals. Adv. Stud. Contemp. Math. (Kyungshang) 24(1), 33–37 (2014)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Carlitz, L.: Comment on the paper “Some probability distributions and their associated structures”. Math. Mag. 37(1), 51–53 (1964)

    MathSciNet  Google Scholar 

  4. 4.

    Funkenbusch, W.: On writing the general term coefficient of the binomial expansion to negative and fractional powers, in tri-factorial form. Natl. Math. Mag. 17(7), 308–310 (1943)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Kim, D.S., Kim, T.: A note on a new type of degenerate Bernoulli numbers. Russ. J. Math. Phys. 27(2), 227–235 (2020)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Kim, T.: λ-Analogue of Stirling numbers of the first kind. Adv. Stud. Contemp. Math. (Kyungshang) 27(3), 423–429 (2017)

    MATH  Google Scholar 

  7. 7.

    Kim, T., Kim, D.S.: Degenerate Laplace transform and degenerate gamma function. Russ. J. Math. Phys. 24(2), 241–248 (2017)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Kim, T., Kim, D.S.: Degenerate Bernstein polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 2913–2920 (2019)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Kim, T., Kim, D.S.: Correction to: Degenerate Bernstein polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 2921–2922 (2019)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Kim, T., Kim, D.S.: Note on the degenerate gamma function. Russ. J. Math. Phys. 27 (3), 352–358 (2020)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Kim, T., Kim, D.S., Jang, L.C., Kim, H.Y.: A note on discrete degenerate random variables. Proc. Jangjeon Math. Soc. 23(1), 125–135 (2020)

    MathSciNet  Google Scholar 

  12. 12.

    Rider, P.R.: Classroom notes: the negative binomial distribution and the incomplete beta function. Am. Math. Mon. 69(4), 302–304 (1962)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Ross, S.M.: Introduction to Probability Models. Twelfth edition of [MR0328973]. Academic Press, London (2019). ISBN 978-0-12-814346-9

    Google Scholar 

  14. 14.

    Simsek, Y.: Identities on the Changhee numbers and Apostol-type Daehee polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 27(2), 199–212 (2017)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Simsek, Y.: Combinatorial inequalities and sums involving Bernstein polynomials and basis functions. J. Inequal. Spec. Funct. 8(3), 15–24 (2017)

    MathSciNet  Google Scholar 

  16. 16.

    Theodorescu, R., Borwein, J.M.: Problems and solutions: solutions: moments of the Poisson distribution: 10738. Am. Math. Mon. 107(7), 659 (2000)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Jangjeon Institute for Mathematical Science for the support of this research.

Availability of data and materials

Not applicable.

Funding

This research was funded by the National Natural Science Foundation of China (No. 11871317, 11926325, 11926321).

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the manuscript and typed, read, and approved the final manuscript.

Corresponding author

Correspondence to Taekyun Kim.

Ethics declarations

Ethics approval and consent to participate

All authors reveal that there is no ethical problem in the production of this paper.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

All authors want to publish this paper in this journal.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Kim, T. A note on negative λ-binomial distribution. Adv Differ Equ 2020, 569 (2020). https://doi.org/10.1186/s13662-020-03030-z

Download citation

MSC

  • 11B83
  • 11S80

Keywords

  • Negative λ-binomial random variable
  • Expectation
  • Variance
  • Moments