Skip to main content

Coexistence and extinction of a periodic stochastic predator–prey model with general functional response

Abstract

This note deals with a stochastic predator–prey system with periodic coefficients and general functional response, and provides the threshold between coexistence and extinction. The result refines and evolves some prior investigations.

Introduction

This note dissects the following predator–prey model with random perturbations:

$$ \textstyle\begin{cases} \mathrm{d}N_{1}= \{N_{1} [r_{1}(t)-a_{1}(t)N_{1} ]-f(N_{1},N_{2},t)N_{2} \}\,\mathrm{d}t+\xi _{1}(t)N_{1} \,\mathrm{d}B_{1}(t), \\ \mathrm{d}N_{2}=N_{2} [-r_{2}(t)+\eta (t) f(N_{1},N_{2},t)-a_{2}(t)N_{2} ]\,\mathrm{d}t+\xi _{2}(t)N_{2}\,\mathrm{d}B_{2}(t),\end{cases} $$
(1)

where \(N_{1}=N_{1}(t)\) and \(N_{2}=N_{2}(t)\) indicate the prey and predator population sizes, respectively. The growth rate \(r_{1}(t)\), the death rate \(r_{2}(t)\), the intra-specific competition rate \(a_{i}(t)\), and the intensity of the white noise \(\xi _{i}(t)\) are continuous, positive, and T-periodic functions on \(\mathbb{R}_{+}=[0,+\infty )\); \(B_{1}(t)\) and \(B_{2}(t)\) are two independent Brownian motions defined on a complete probability space \((\varOmega ,\mathcal{F},\mathrm{P})\) which obeys the usual conditions; \(\eta (t)>0\), a T-periodic function, means the food conversion, the T-periodic function \(f(N_{1},N_{2},t)\in \mathrm{C}(\mathbb{R}_{+}^{3},\mathbb{R}_{+})\) denotes the functional response which complies with the follow conditions:

  1. (C1)

    \(f(e^{N_{1}},e^{N_{2}},t)\) and \(g(e^{N_{1}},e^{N_{2}},t)\) are locally Lipschitz (see, e.g., [16]), where \(g(N_{1},N_{2},t)=f(N_{1},N_{2},t)N_{2}/N_{1}\);

  2. (C2)

    \(f(0,N_{2},t)\equiv 0\) for all \(N_{2}\geq 0\) and \(t\geq 0\), which indicates that without the prey, the predator will go to extinction; \(g(N_{1},0,t)\equiv 0\) for all \(N_{1}\geq 0\) and \(t\geq 0\), which indicates that without the predator, the growth of the prey will follow the logistic rule;

  3. (C3)

    \(\frac{\partial f (N_{1},N_{2},t)}{\partial N_{1}}\geq 0\) and \(-M\leq \frac{\partial f (N_{1},N_{2},t)}{\partial N_{2}}\leq 0\) for all \((N_{1},N_{2},t)\in \mathbb{R}_{+}^{3}\), where M is a positive constant. The former indicates that the more the prey, the more food each predator will obtain. The later indicates that the more the predator, the less food each predator will obtain;

  4. (C4)

    For arbitrary \((N_{1},N_{2},t)\in \mathbb{R}_{+}^{3}\) and arbitrary \((x_{1},x_{2},t)\in \mathbb{R}_{+}^{3}\), \(f (N_{1},N_{2},t)\leq M_{1}N_{1}\), \(g (N_{1},N_{2},t)\leq M_{1}N_{2}\), \(|f (x_{1},0,t)-f (x_{2},0,t)|\leq M_{2}|x_{1}-x_{2}|\), where \(M_{1}\) and \(M_{2}\) are positive constants.

Establishing theoretical coexistence-and-extinction threshold is an interesting issue in the exploration of stochastic ecological models [18] and has attracted many scholars’ attention (see, e.g., [4, 7, 1115, 19]). However, most prior threshold explorations have concentrated on autonomous models (see, e.g., [12]) or single-species nonautonomous models (see, e.g., [14, 19]), little research has been conducted to provide the coexistence-and-extinction threshold for the multi-species nonautonomous model (1). For this reason, this note dissects model (1).

Many functional response functions satisfy (C1)–(C4), for example:

  • (Lotka–Volterra) \(f(N_{1},N_{2},t)=m(t)N_{1}\);

  • (Holling II [17]) \(f(N_{1},N_{2},t)=\frac{m_{1}(t)N_{1}}{1+m_{2}(t)N_{1}}\);

  • (Beddington–DeAngelis [1, 3]) \(f(N_{1},N_{2},t)=\frac{m_{1}(t)N_{1}}{m_{2}(t)N_{1}+m_{3}(t)N_{2}+m_{4}(t)}\),

where \(m(t)\) and \(m_{i}(t)\) are continuous, positive, and T-periodic functions on \(\mathbb{R}_{+}\).

For model (1), we are going to prove

Theorem 1

Define

$$\begin{aligned}& b_{1}(t)=r_{1}(t)-\xi _{1}^{2}(t)/2, \qquad \varLambda _{1}=\frac{1}{T} \int _{0}^{T} b_{1}(s)\, \mathrm{d}s, \\& b_{2}(t)=r_{2}(t)+\xi _{2}^{2}(t)/2, \qquad \varLambda _{2}=\frac{1}{T} \int _{0}^{T} \biggl[\eta (s) \int _{0}^{+\infty } f(\tau ,0,s)\rho _{s}(\mathrm{d} \tau )-b_{2}(s) \biggr]\,\mathrm{d}s, \end{aligned}$$

where \(\rho _{t}(\cdot )\)is a periodic measure which is given in Lemma 1below. Under (C1)(C4),

  1. (i)

    If \(\varLambda _{1}<0\), then both species 1 and 2 die out almost surely (a.s.), i.e., \(\lim_{t\rightarrow +\infty }N_{1}(t)=0\)and \(\lim_{t\rightarrow +\infty }N_{2}(t)=0\)a.s.;

  2. (ii)

    If \(\varLambda _{1}>0\)and \(\varLambda _{2}<0\), then species 2 dies out a.s. and the distribution of \(N_{1}(t)\)converges weakly to \(\rho _{t}(\cdot )\);

  3. (iii)

    If \(\varLambda _{1}>0\)and \(\varLambda _{2}>0\), then species 1 and 2 are uniformly weakly persistent in the mean (UWPIM), i.e., there is a pair of positive constants \(\beta _{1}\)and \(\beta _{2}\)such that

    $$ \beta _{1}< \limsup_{t\rightarrow +\infty }t^{-1} \int _{0}^{t} N_{i}(s) \, \mathrm{d}s< \beta _{2},\quad i=1,2. $$

Remark 1

Zu et al. [20] investigated model (1) with \(f(N_{1},N_{2},t)=m(t)N_{1}\), and testified that

  • If \(\varLambda _{1}>0\) and \(T^{-1}\int _{0}^{T} [\eta ^{u} m^{u} b_{1}(s)-a_{1}^{l} b_{2}(s) ]\,\mathrm{d}s<0\), then species 2 dies out, where \(c^{u}=\max_{0\leq t\leq T}\{c(t)\}\), \(c^{l}= \min_{0\leq t\leq T}\{c(t)\}\);

  • If \(\varLambda _{1}>0\) and \(T^{-1}\int _{0}^{T} [\eta ^{l} m^{l} b_{1}(s)-a_{1}^{u} b_{2}(s) ]\,\mathrm{d}s>0\), then both species 1 and 2 are weakly persistent in the mean (WPIM), i.e., \(\limsup_{t\rightarrow +\infty }t^{-1}\int _{0}^{t} N_{i}(s) \,\mathrm{d}s>0\), \(i=1,2\).

Theorem 1 refines and evolves the work of [20]: firstly, the model in [20] is a special case of model (1); secondly, there is a gap in [20] while we provide the coexistence-and-extinction threshold; thirdly, we provide the conditions for UWPIM which indicates WPIM, however, WPIM does not indicate UWPIM.

Remark 2

Li and Zhang [8] delved into model (1) with

$$ f(N_{1},N_{2},t)= \frac{m_{1}(t)N_{1}}{m_{2}(t)N_{1}+m_{3}(t)N_{2}+m_{4}(t)} $$

in thee nonautonomous case. When their results are restricted to the periodic case, Li and Zhang [8] testified that

  • If \(\varLambda _{1}>0\) and \(T^{-1}\int _{0}^{T} [ \frac{\eta ^{u} m_{1}^{u}}{m_{4}^{l}} b_{1}(s)-a_{1}^{l} b_{2}(s) ]\,\mathrm{d}s<0\), then species 2 dies out;

  • If \(\varLambda _{1}>0\) and \(T^{-1}\int _{0}^{T} [ \frac{\eta (s)m_{1}(s)\psi ^{\ast }(s)}{m_{2}(s)\psi ^{\ast }(s)+m_{3}(s)\phi ^{\ast }(s)+m_{4}(s)}-b_{2}(s) ]\,\mathrm{d}s>0\), then both species 1 and are WPIM, where \((\psi ^{\ast }(t),\phi ^{\ast }(t))\) is the periodic solution of the following equations:

    $$ \begin{aligned} &\mathrm{d}\psi =\psi \bigl[r_{1}(t)-a_{1}(t) \psi \bigr]\,\mathrm{d}t+\xi _{1}(t) \psi \,\mathrm{d}B_{1}(t),\\ &\mathrm{d}\phi =\phi \bigl[-r_{2}(t)+\eta (t)m_{1}(t)/m_{2}(t)-a_{2}(t) \phi \bigr]\,\mathrm{d}t+\xi _{2}(t)\phi \,\mathrm{d}B_{2}(t). \end{aligned} $$
    (2)

Theorem 1 refines and evolves the above results in the periodic case: firstly, model (1) is more general; secondly, we provide the coexistence-and-extinction threshold while there is a gap in [8]; thirdly, we provide the conditions for UWPIM, the authors [8] provided conditions for WPIM.

Proof

Lemma 1

If \(\varLambda _{1}>0\), then Eq. (2) possesses a positive T-periodic solution \(\psi ^{\ast }(t)\)which complies with

$$ \lim_{t\rightarrow +\infty } \bigl\vert \psi (t)-\psi ^{\ast }(t) \bigr\vert =0, $$
(3)

where \(\psi (t)\)is an arbitrary solution of Eq. (2) with \(\psi (0)>0\), and there is a continuous T-periodic function \(\rho _{s}(\cdot )\)such that the transition function \(p(s,\psi (s),s+t,\cdot )\)converges weakly to \(\rho _{s}(\cdot )\)as \(t\rightarrow +\infty \).

Proof

The existence of \(\psi ^{\ast }(t)\) follows from Theorem 3.1 in [20]. In accordance with Theorem 6.2 in [9], one can obtain (3). Analogous to the proof of Lemma 2.6 in [12], one can obtain the last assertion. □

Lemma 2

For any \((N_{1}(0),N_{2}(0))\in \mathbb{R}_{+}^{2,0}=\{x\in \mathbb{R}^{2}: x_{1}>0,x_{2}>0 \}\), under (C1), model (1) possesses a unique solution \((N_{1}(t),N_{2}(t))\)which is global and positive a.s. Additionally,

$$ \limsup_{t\rightarrow +\infty }\ln N_{1}(t)/\ln t\leq 1,\qquad \limsup_{t\rightarrow +\infty }\ln N_{2}(t)/\ln t \leq 1,\quad \textit{a.s.}$$
(4)

Proof

On the basis of (C1), model (1) possesses a unique solution which is local and positive. Analogous to the proof of Theorem 2.1 in [9], namely, using Itô’s formula to \(V(N_{1},N_{2})=\sum_{i=1,2} (N_{i}-1-\ln N_{i})\), one can illustrate that this local solution is global. On the other hand, analogous to the proof of Lemma 3.4 in [9], one obtains (4). □

Proof of Theorem 1

In the light of Itô’s formula,

$$\begin{aligned}& \begin{aligned}[b] t^{-1}\ln \bigl(N_{1}(t)/N_{1}(0) \bigr)& =t^{-1} \int _{0}^{t} b_{1}(s)\, \mathrm{d}s-t^{-1} \int _{0}^{t} a_{1}(s)N_{1}(s) \,\mathrm{d}s \\ &\quad {} -t^{-1} \int _{0}^{t} g \bigl(N_{1}(s),N_{2}(s),s \bigr) \,\mathrm{d}s+t^{-1}\varPsi _{1}(t), \end{aligned} \end{aligned}$$
(5)
$$\begin{aligned}& \begin{aligned}[b] t^{-1}\ln \bigl(N_{2}(s)/N_{2}(0) \bigr)& =-t^{-1} \int _{0}^{t} b_{2}(s)\, \mathrm{d}s-t^{-1} \int _{0}^{t} a_{2}(s)N_{2}(s) \,\mathrm{d}s \\ &\quad {} +t^{-1} \int _{0}^{t} \eta (s)f \bigl(N_{1}(s),N_{2}(s),s \bigr) \,\mathrm{d}s+t^{-1}\varPsi _{2}(t), \end{aligned} \end{aligned}$$
(6)

where \(\varPsi _{i}(t)=\int _{0}^{t}\xi _{i}(s)\,\mathrm{d}B_{i}(s)\), \(i=1,2\). Notice that (see [10])

$$ \lim_{t\rightarrow +\infty }\varPsi _{i}(t)/t=0 \quad \text{a.s.} $$
(7)

(I) By (5) and (7),

$$ \limsup_{t\rightarrow +\infty }t^{-1}\ln N_{1}(t)\leq \limsup_{t\rightarrow +\infty }t^{-1} \int _{0}^{t} b_{1}(s) \, \mathrm{d}s= \varLambda _{1}< 0. $$

As a result, \(\lim_{t\rightarrow +\infty } N_{1}(t)=0\). Then (6), (7), and (C2) suggest that

$$ \limsup_{t\rightarrow +\infty }t^{-1}\ln N_{2}(t)\leq - \limsup_{t\rightarrow +\infty }t^{-1} \int _{0}^{t} b_{2}(s) \, \mathrm{d}s< 0. $$

Accordingly, \(\lim_{t\rightarrow +\infty } N_{2}(t)=0\).

(II) We first show

$$ \lim_{t\rightarrow +\infty }t^{-1} \int _{0}^{t} \eta (s)f \bigl( \psi (s),0,s \bigr) \,\mathrm{d}s=T^{-1} \int _{0}^{T} \eta (s) \int _{0}^{+ \infty } f(\tau ,0,s)\rho _{s}(\mathrm{d}\tau )\,\mathrm{d}s\quad \text{a.s.} $$
(8)

As a matter of fact, in accordance with (C4) and (3),

$$ \lim_{t\rightarrow +\infty }t^{-1} \int _{0}^{t}\eta (s) \bigl\vert f \bigl( \psi (s),0,s \bigr)-f \bigl(\psi ^{\ast }(s),0,s \bigr) \bigr\vert \, \mathrm{d}s=0 \quad \text{a.s.} $$
(9)

Define \(N^{\ast }(t)=\eta (t)f(\psi ^{\ast }(t),0,t)\), then \(N^{\ast }(t)\) is a T-periodic stochastic process which possesses a unique T-periodic measure \(\lambda _{t}(\cdot )\). For this reason, \(\bar{\lambda }(\cdot ):=T^{-1}\int _{0}^{T}\lambda _{s}(\cdot ) \,\mathrm{d}s\) is the unique invariant measure of \(N^{\ast }(t)\) (see [5]). In accordance with Theorem 3.2.6 and Theorem 3.3.1 in [2], \(\bar{\lambda }(\cdot )\) is ergodic. Accordingly,

$$ \lim_{t\rightarrow +\infty }t^{-1} \int _{0}^{t} N^{\ast }(s) \, \mathrm{d}s= \int _{A}\mu \bar{\lambda }(\mathrm{d}\mu )\quad \text{a.s.}, $$

where \(A=\{\mu |\mu =\eta (t)f(x,0,t),0 \leq t\leq T, x>0\}\). Hence

$$\begin{aligned} & \lim_{t\rightarrow +\infty }t^{-1} \int _{0}^{t} \eta (s)f \bigl(\psi ^{\ast }(s),0,s \bigr)\,\mathrm{d}s \\ &\quad =\lim_{t\rightarrow + \infty }t^{-1} \int _{0}^{t} N^{\ast }(s)\, \mathrm{d}s=T^{-1} \int _{0}^{T} \int _{A}\mu \lambda _{s}( \mathrm{d}\mu )\, \mathrm{d}s \\ &\quad=T^{-1} \int _{0}^{T} \eta (s) \int _{0}^{+ \infty } f(\tau ,0,s)\rho _{s}(\mathrm{d}\tau )\,\mathrm{d}s\quad \text{a.s.} \end{aligned}$$

Then (8) follows from (9). Now we prove \(\lim_{t\rightarrow +\infty } N_{2}(t)=0\). Let \(\bar{\psi }(t)\) be a solution of Eq. (2) with \(\bar{\psi }(0)=N_{1}(0)\). In accordance with the comparison theorem (see [6]) and (C3), one can see that

$$ \eta (t)f \bigl(N_{1}(t),N_{2}(t),t \bigr)\leq \eta (t)f \bigl(N_{1}(t),0,t \bigr)\leq \eta (t)f \bigl( \bar{\psi }(t),0,t \bigr). $$

Then by (6), we get

$$ \begin{aligned}[b] t^{-1}\ln \bigl(N_{2}(t)/N_{2}(0) \bigr)& = -t^{-1} \int _{0}^{t}b_{2}(s)\, \mathrm{d}s-t^{-1} \int _{0}^{t}a_{2}(s)N_{2}(s) \,\mathrm{d}s \\ &\quad {} +t^{-1} \int _{0}^{t}\eta (s)f \bigl(N_{1}(s),N_{2}(s),s \bigr) \,\mathrm{d}s+t^{-1} \varPsi _{2}(t) \\ & \leq -t^{-1} \int _{0}^{t}b_{2}(s)\, \mathrm{d}s-t^{-1} \int _{0}^{t}a_{2}(s)N_{2}(s) \,\mathrm{d}s \\ &\quad {} +t^{-1} \int _{0}^{t}\eta (s)f \bigl(\bar{\psi }(s),0,s \bigr) \,\mathrm{d}s+t^{-1} \varPsi _{2}(t). \end{aligned} $$
(10)

Applying (7) and (8), one gets

$$ \begin{aligned} \limsup_{t\rightarrow +\infty }t^{-1}\ln N_{2}(t)& \leq -T^{-1} \int _{0}^{T}b_{2}(s) \, \mathrm{d}s+T^{-1} \int _{0}^{T} \eta (s) \int _{0}^{+\infty } f(\tau ,0,s)\rho _{s}(\mathrm{d}\tau ) \,\mathrm{d}s \\ &=\varLambda _{2}< 0. \end{aligned} $$

Accordingly, \(\lim_{t\rightarrow +\infty } N_{2}(t)=0\) a.s. This suggests that the distribution of \(N_{1}(t)\) converges weakly to \(\rho _{t}(\cdot )\).

(III) We first show that

$$ \limsup_{t\rightarrow +\infty }t^{-1} \int _{0}^{t} N_{2}(s) \,\mathrm{d}s \geq \beta _{1} \quad \text{a.s.}$$
(11)

Otherwise, for any \(\varepsilon >0\), Eq. (1) possesses a solution (\(\tilde{N_{1}}(t)\), \(\tilde{N_{2}}(t)\)) with \(\tilde{N_{1}}(0)>0\) and \(\tilde{N_{2}}(0)>0\) such that \(\mathrm{P}\{\limsup_{t\rightarrow +\infty }t^{-1} \int _{0}^{t} \tilde{N_{2}}(s)\,\mathrm{d}s< \varepsilon \}>0\). Choose a sufficiently small ε such that

$$ \varLambda _{2}- \bigl(a_{2}^{u}+M\eta ^{u} \bigr)\varepsilon -2M_{1}M_{2} \eta ^{u}\varepsilon >0. $$

In the light of (6),

$$ \begin{aligned}[b] & t^{-1}\ln \bigl( \tilde{N_{2}}(t)/\tilde{N_{2}}(0) \bigr) \\ &\quad =-t^{-1} \int _{0}^{t} b_{2}(s)\, \mathrm{d}s+t^{-1} \int _{0}^{t} \eta (s)f \bigl( \tilde{N_{1}}(s),\tilde{N_{2}}(s),s \bigr)\, \mathrm{d}s-t^{-1} \int _{0}^{t} a_{2}(s) \tilde{N_{2}}(s)\,\mathrm{d}s+t^{-1}\varPsi _{2}(t) \\ &\quad =-t^{-1} \int _{0}^{t} b_{2}(s)\, \mathrm{d}s+t^{-1} \int _{0}^{t} \eta (s)f \bigl(\tilde{\psi }(s),0,s \bigr)\,\mathrm{d}s-t^{-1} \int _{0}^{t} a_{2}(s) \tilde{N_{2}}(s)\,\mathrm{d}s+t^{-1}\varPsi _{2}(t) \\ &\qquad {} +t^{-1} \int _{0}^{t} \eta (s)f \bigl( \tilde{N_{1}}(s),0,s \bigr) \,\mathrm{d}s-t^{-1} \int _{0}^{t} \eta (s)f \bigl(\tilde{\psi }(s),0,s \bigr) \,\mathrm{d}s \\ &\qquad {} +t^{-1} \int _{0}^{t} \eta (s)f \bigl( \tilde{N_{1}}(s), \tilde{N_{2}}(s),s \bigr)\, \mathrm{d}s-t^{-1} \int _{0}^{t} \eta (s)f \bigl( \tilde{N_{1}}(s),0,s \bigr)\,\mathrm{d}s, \end{aligned} $$
(12)

where \(\tilde{\psi }(t)\) is the solution of Eq. (2) with \(\tilde{\psi }(0)=\tilde{N_{1}}(0)\). In accordance with the comparison theorem, one has \(\tilde{N_{1}}(t)\leq \tilde{\psi }(t)\). Then (C4) suggests that

$$ f \bigl(\tilde{N_{1}}(t),0,t \bigr)-f \bigl( \tilde{ \psi }(t),0,t \bigr)\geq -M_{2} \bigl( \tilde{\psi }(t)- \tilde{N_{1}}(t) \bigr). $$
(13)

On the basis of (C3),

$$ f \bigl(\tilde{N_{1}}(t),\tilde{N_{2}}(t),t \bigr)-f \bigl(\tilde{N_{1}}(t),0,t \bigr)\geq -M \tilde{N_{2}}(t). $$
(14)

Substituting (13) and (14) into (12) yields

$$ \begin{aligned}[b] &t^{-1}\ln \bigl( \tilde{N_{2}}(t)/\tilde{N_{2}}(0) \bigr) \\ &\quad \geq -t^{-1} \int _{0}^{t} b_{2}(s)\, \mathrm{d}s+t^{-1} \int _{0}^{t} \eta (s)f \bigl(\tilde{\psi }(s),0,s \bigr)\,\mathrm{d}s-t^{-1} \int _{0}^{t} \bigl(a_{2}(s)+M\eta (s) \bigr)\tilde{N_{2}}(s)\,\mathrm{d}s \\ &\qquad {} +t^{-1}\varPsi _{2}(t)-M_{2} t^{-1} \int _{0}^{t} \eta (s) \bigl(\tilde{\psi }(s)- \tilde{N_{1}}(s) \bigr)\,\mathrm{d}s \\ &\quad \geq -t^{-1} \int _{0}^{t} b_{2}(s)\, \mathrm{d}s+t^{-1} \int _{0}^{t}\eta (s)f \bigl(\tilde{\psi }(s),0,s \bigr)\,\mathrm{d}s- \bigl(a_{2}^{u}+M \eta ^{u} \bigr)t^{-1} \int _{0}^{t} \tilde{N_{2}}(s)\, \mathrm{d}s \\ &\qquad {} +t^{-1}\varPsi _{2}(t)-M_{2}\eta ^{u} t^{-1} \int _{0}^{t} \bigl(\tilde{\psi }(s)- \tilde{N_{1}}(s) \bigr)\,\mathrm{d}s. \end{aligned} $$
(15)

Define \(V(t)=|\ln \tilde{\psi }(t)-\ln \tilde{N_{1}}(t)|\), then

$$ \mathrm{d}^{+}V(t)\leq \bigl[ g \bigl( \tilde{N_{1}}(t),\tilde{N_{2}}(t),t \bigr)-a_{1}^{l} \bigl\vert \tilde{\psi }(t)-\tilde{N_{1}}(t) \bigr\vert \bigr] \,\mathrm{d}t.$$
(16)

For any \(\omega \in \{\limsup_{t\rightarrow +\infty }t^{-1} \int _{0}^{t} \tilde{N_{2}}(s)\,\mathrm{d}s< \varepsilon \}\), (16) and (C4) suggest that

$$ \begin{aligned} a_{1}^{l} t^{-1} \int _{0}^{t} \bigl\vert \tilde{\psi }(s, \omega )-\tilde{N_{1}}(s,\omega ) \bigr\vert \,\mathrm{d}s& \leq t^{-1} \int _{0}^{t}g \bigl(\tilde{N_{1}}(s, \omega ),\tilde{N_{2}}(s,\omega ),s \bigr)\,\mathrm{d}s+t^{-1}V(0) \\ & \leq t^{-1} \int _{0}^{t} M_{1} \tilde{N_{2}}(s,\omega ) \,\mathrm{d}s+t^{-1}V(0) \\ &\leq M_{1}\varepsilon +t^{-1}V(0).\end{aligned} $$

Let t be sufficiently large such that \(t^{-1}V(0)\leq M_{1}\varepsilon \). Accordingly, for sufficiently large t,

$$ t^{-1} \int _{0}^{t} \bigl\vert \tilde{\psi }(s, \omega )-\tilde{N_{1}}(s, \omega ) \bigr\vert \,\mathrm{d}s\leq 2M_{1}\varepsilon /a_{1}^{l}. $$

When this inequality is utilized in (15), one can obtain that

$$ \limsup_{t\rightarrow +\infty }t^{-1}\ln \tilde{N_{2}}(t, \omega )\geq \varLambda _{2}- \bigl(a_{2}^{u}+M \eta ^{u} \bigr)\varepsilon -2M_{1}M_{2} \eta ^{u}\varepsilon >0. $$

This is a contradiction to (4). It follows that (11) holds.

Next we show that

$$ \limsup_{t\rightarrow +\infty }t^{-1} \int _{0}^{t} N_{1}(s) \, \mathrm{d}s \geq \beta _{1} \quad \text{a.s.} $$

Hypothesize, on the contrary, that for arbitrary \(\varepsilon >0\), there is a solution \((\bar{N_{1}}(t), \bar{N_{2}}(t))\) with \(\bar{N_{i}}(0)>0\) (\(i=1,2\)) such that \(\mathrm{P} \{\limsup_{t\rightarrow +\infty }t^{-1}\int _{0}^{t} \bar{N_{1}}(s)\,\mathrm{d}s< \varepsilon \}>0\). Let ε be sufficiently small such that

$$ \eta ^{u} M_{1}\varepsilon -T^{-1} \int _{0}^{T} b_{2}(s) \, \mathrm{d}s< 0.$$
(17)

For any \(\omega \in \{\limsup_{t\rightarrow +\infty }t^{-1}\int _{0}^{t} \bar{N_{1}}(s)\,\mathrm{d}s< \varepsilon \}\), on the basis of (C4), (6), (7), and (17),

$$ \limsup_{t\rightarrow +\infty }t^{-1}\ln \bar{N_{2}}(t, \omega )\leq -T^{-1} \int _{0}^{T} b_{2}(s)\,\mathrm{d}s+ \eta ^{u} M_{1} \varepsilon < 0. $$

Accordingly \(\lim_{t\rightarrow +\infty } \bar{N_{2}}(t,\omega )=0\). This is a contradiction to (11).

Finally, we establish

$$ \limsup_{t\rightarrow +\infty }t^{-1} \int _{0}^{t} N_{1}(s) \, \mathrm{d}s \leq \beta _{2},\qquad \limsup_{t\rightarrow +\infty }t^{-1} \int _{0}^{t} N_{2}(s)\,\mathrm{d}s \leq \beta _{2}\quad \text{a.s.} $$

Applying Lemma 4(I) in [15] to (5) and (10), one has

$$ \limsup_{t\rightarrow +\infty }t^{-1} \int _{0}^{t} N_{1}(s) \, \mathrm{d}s \leq \varLambda _{1}/a_{1}^{l} $$

and

$$ \limsup_{t\rightarrow +\infty }t^{-1} \int _{0}^{t} N_{2}(s) \,\mathrm{d}s \leq \varLambda _{2}/a_{2}^{l}, $$

respectively. This completes the proof of (III). □

Remark 3

This note imposes technical assumptions (i.e., (C1) and (C4)) in Theorem 1. How to weaken them is an interesting topic. In addition, this note assumes that the coefficients in model (1) are T-periodic. For nonperiodic model (1), this note fails to provide the coexistence-and-extinction threshold. We leave these problems for further research.

References

  1. 1.

    Beddington, J.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975)

    Article  Google Scholar 

  2. 2.

    Da Prato, G., Zabczyk, J.: Ergodicity for Infinite Dimensional Systems. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  3. 3.

    DeAngelis, D., Goldstein, R., O’Neill, R.: A model for trophic interaction. Ecology 56, 881–892 (1975)

    Article  Google Scholar 

  4. 4.

    Deng, Y., Liu, M.: Analysis of a stochastic tumor-immune model with regime switching and impulsive perturbations. Appl. Math. Model. 78, 482–504 (2020)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Feng, C., Zhao, H.: Random periodic processes, periodic measures and ergodicity. arXiv:1408.1897

  6. 6.

    Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland, New York (1989)

    MATH  Google Scholar 

  7. 7.

    Li, D., Liu, M.: Invariant measure of a stochastic food-limited population model with regime switching. Math. Comput. Simul. 178, 16–26 (2020)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Li, S., Zhang, X.: Dynamics of a stochastic non-autonomous predator–prey system with Beddington–DeAngelis functional response. Adv. Differ. Equ. 2013, 19 (2013)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Li, X., Mao, X.: Population dynamical behavior of non-autonomous Lotka–Volterra competitive system with random perturbation. Discrete Contin. Dyn. Syst. 24, 523–545 (2009)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Liptser, R.: A strong law of large numbers for local martingales. Stochastics 3, 217–228 (1980)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Liu, M., Bai, C.: Optimal harvesting of a stochastic mutualism model with regime-switching. Appl. Math. Comput. 375, 125040 (2020)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Liu, M., Fan, M.: Stability in distribution of a three-species stochastic cascade predator–prey system with time delays. IMA J. Appl. Math. 82, 396–423 (2017)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Liu, M., Wang, K.: Extinction and permanence in a stochastic non-autonomous population system. Appl. Math. Lett. 23, 1464–1467 (2010)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Liu, M., Wang, K.: Persistence and extinction in stochastic non-autonomous logistic systems. J. Math. Anal. Appl. 375, 443–457 (2011)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Liu, M., Wang, K., Wu, Q.: Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle. Bull. Math. Biol. 73, 1969–2012 (2011)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Mao, X.: Stochastic Differential Equations and Applications. Horwood, Chichester (1997)

    MATH  Google Scholar 

  17. 17.

    May, R.: Limit cycles in predator–prey communities. Science 177, 900–902 (1972)

    Article  Google Scholar 

  18. 18.

    Wang, K.: Stochastic Biomathematical Models. Science Press, Beijing (2010)

    Google Scholar 

  19. 19.

    Xu, Y., Gao, S., Chen, D.: Persistence and extinction of a nonautonomous switching single-species population model. Appl. Math. Lett. 103, 106187 (2020)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Zu, L., Jiang, D., O’Regan, D., Ge, B.: Periodic solution for a non-autonomous Lotka–Volterra predator–prey model with random perturbation. J. Math. Anal. Appl. 430, 428–437 (2015)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and referees for their careful reading and valuable comments.

Availability of data and materials

All data generated or analyzed during this study are included in this article.

Funding

Not applicable.

Author information

Affiliations

Authors

Contributions

WMJ mainly wrote the whole content of the paper. WMJ and MLD mainly established the model and completed its development. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Weiming Ji.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ji, W., Deng, M. Coexistence and extinction of a periodic stochastic predator–prey model with general functional response. Adv Differ Equ 2020, 436 (2020). https://doi.org/10.1186/s13662-020-02898-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-020-02898-1

MSC

  • 60H10
  • 60H30
  • 92D25

Keywords

  • Predator–prey model
  • Stochasticity
  • Periodic
  • Coexistence-and-extinction threshold