Skip to main content

Theory and Modern Applications

Estimates of quantum bounds pertaining to new q-integral identity with applications

Abstract

In this article, we establish a new generalized q-integral identity involving a q-differentiable function. Using this new auxiliary result, we obtain some new associated quantum bounds essentially using the class of preinvex functions. At the end, we present some applications to the special bivariate means to show the significance of the obtained results. Our approaches and obtained results may lead to further applications in physics.

1 Introduction and preliminaries

The quantum calculus, which is often regarded as calculus without limits, has emerged as a bridge between mathematics and physics. Although very old, it has experienced a rapid development during the previous century with the research work of Jackson [16]. In recent years many researchers have shown great interest in studying and investigating quantum calculus since it emerged as an interdisciplinary subject. This is, of course, because of the fact that quantum analysis is very helpful in several fields and has huge applications in various areas of natural and applied sciences, such as computer science and particle physics, and additionally acts as a critical tool for researchers working in analytic number theory or in theoretical physics. Many scientists who use quantum calculus are physicists, as quantum calculus has many applications in quantum group theory. For some recent trends in quantum calculus, the interested readers are referred to [1214, 16, 17, 35]. Recently, Tariboon and Ntouyas [36] introduced the notions of quantum derivative and quantum integral on finite intervals and developed various q-analogues of classical integral inequalities, such as Hölder inequality [49], Hermite–Hadamard inequality [3, 7, 9, 15, 20, 21, 33], Petrović inequality [1], Pólya–Szegö and Čebyšev inequalities [32], Jensen inequality [2, 5, 18].

We now recall some useful concepts and results relating to quantum calculus on finite intervals.

Definition 1.1

([36])

Let \(0< q<1\), \(J=[\alpha ,\beta ]\subset \mathbb{R}\) be an interval, \({f}:J\rightarrow \mathbb{R}\) be a continuous function and \(\tau \in J\). Then the q-derivative \({}_{{\alpha }}D_{q}{f} ({\tau } )\) on J of f at τ is defined by

$$ _{{\alpha }}D_{q}{f} ({\tau } )= \frac{{f} ({\tau } )-{f} (q{\tau }+ (1-q ){\alpha } )}{ (1-q ) ({\tau }-{\alpha } )}\quad ( \tau \neq \alpha ) $$

and

$$ {}_{{\alpha }}D_{q}{f} ({\alpha } )= \lim_{{\tau } \rightarrow {\alpha }} {}_{{\alpha }}D_{q}{f} ({\tau } ). $$

Definition 1.2

([36])

Let \({f}:J\rightarrow \mathbb{R}\) be a continuous function. Then the q-integral (Riemann-type q-integral) \(\int_{\alpha }^{x} {f} ({\tau } )\,{}_{{ \alpha }}\mathrm{d}_{q}{\tau }\) on J is defined by

$$ \int_{\alpha }^{x} {f} ({\tau } ){} {{ \alpha }}\,\mathrm{d}_{q}{\tau } = (1-q ) ( x-{\alpha } ) \sum_{n=0}^{\infty } q^{n}{f} \bigl( q^{n}x+ \bigl( 1-q^{n} \bigr) {\alpha } \bigr) $$

if \(x\in J\). Moreover, if \(c\in ({\alpha }, x)\), then the definite q-integral \(\int_{c}^{x} {f} ( {\tau } )\,{}_{{\alpha }}\mathrm{d}_{q}{ \tau }\) on J is defined by

$$ \int_{c}^{x} {f} ({\tau } )\,{}_{{\alpha }}\mathrm{d}_{q}{ \tau } = \int_{\alpha }^{x} {f} ({\tau } )\,{} _{{\alpha }}\mathrm{d}_{q}{\tau } - \int_{\alpha }^{c} {f} ({\tau } )\,{}_{{\alpha }}\mathrm{d}_{q}{\tau }. $$

In recent years several researchers successfully obtained numerous new quantum analogues of different classical inequalities. For instance, Noor et al. [25] and Sudsutad et al. [34] obtained q-analogues of Hermite–Hadamard’s inequality using the class of convex functions. Noor et al. [24] obtained q-Hermite–Hadamard’s inequality using the class of preinvex functions. Alp et al. [6] gave a corrected q-analogue of Hermite–Hadamard’s inequality. Noor et al. [23] obtained quantum analogues of Ostrowski’s inequality using the convexity property of functions. Tunç et al. [37] obtained quantum analogues of Simpson’s inequality using convex functions and discussed some applications to means. Liu and Zhuang [22] obtained new q-analogues of Hermite–Hadamard’s inequality using two times q-differentiable convex functions. Zhang et al. [48] obtained a more generalized and interesting new q-integral identity and obtained several new q-analogues of trapezoid inequalities. Recently, Erden et al. [11] obtained some more new quantum analogues of integral inequalities using convex functions. For more details on recent works regarding q-analogues of integral inequalities, see [4, 3842].

The aim of this paper is to derive a new generalized quantum integral identity and, applying it as an auxiliary result, we will establish some new estimates of q-bounds using the class of preinvex functions. We will discuss also some new special cases of the obtained results. Finally, we will present some new applications of the main results to special means for different positive real numbers. We hope that the ideas and techniques of this paper will inspire the interested readers working in this fascinating field.

2 Results and discussions

Before we discuss our main results, let us recall the definitions of an invex set and preinvex function.

In what follows, we denote by \(\mathcal{X}\subset \mathbb{R}\) a nonempty set, \(f:\mathcal{X}\to \mathbb{R}\) is a continuous function, and \(\xi :\mathcal{X}\times \mathcal{X}\to \mathbb{R}\) is a continuous bifunction.

Definition 2.1

([10])

A set \({\mathcal{X}}\subset \mathbb{R}\) is said to be invex with respect to the bifunction \(\xi (\cdot ,\cdot )\) if \({\alpha }+\tau \xi ({\beta },{\alpha })\in {\mathcal{X}} \) for all \(\alpha , \beta \in \mathcal{X}\) and \(\tau \in [0,1]\).

Definition 2.2

([46])

A real-valued function \(f:{\mathcal{X}}\to \mathbb{R}\) is said to be preinvex with respect to the bifunction \(\xi (\cdot ,\cdot )\) if the inequality

$$ f \bigl({\alpha }+{\tau }\xi ({\beta },{\alpha }) \bigr)\leq (1-{\tau })f({ \alpha })+{ \tau }f({\beta }) $$

holds for all \({\alpha },{\beta }\in {\mathcal{X}}\) and \({\tau }\in [0,1]\).

2.1 A key lemma

The following Lemma 2.3 plays a crucial role in deriving our main results.

Lemma 2.3

Let \(q\in (0,1)\), \(\xi ({\beta },{\alpha })>0\)and \({f}: \mathcal{B}=[{\alpha },{\alpha }+\xi ({\beta },{\alpha })]\to \mathbb{R}\)be a q-differentiable function on \(\mathcal{B^{\circ }}\) (the interior of \(\mathcal{B}\)) such that \({}_{{\alpha }}\mathrm{D}_{q}{f}\)is q-integrable on \(\mathcal{B}\). Then we have the identity

$$\begin{aligned}& \frac{1}{8} \biggl[{f}({\alpha })+3{f} \biggl( \frac{3{\alpha }+\xi ({\beta },{\alpha })}{3} \biggr) +3{f} \biggl( \frac{3{\alpha }+2\xi ({\beta },{\alpha })}{3} \biggr)+{f} \bigl({\alpha }+\xi ({ \beta },{\alpha }) \bigr) \biggr] \\& \qquad {}-\frac{1}{\xi ({\beta },{\alpha })} \int _{{\alpha }}^{{\alpha }+\xi ({ \beta },{\alpha })}{f}(x)\,{}_{{\alpha }} \mathrm{d}_{q}x \\& \quad =\xi ({\beta },{\alpha }) \int _{0}^{1}\varPhi ({\tau }){}_{{\alpha }} \mathrm{D}_{q}{f} \bigl({\alpha }+{\tau }\xi ({\beta },{\alpha }) \bigr)\,{}_{0}\mathrm{d}_{q}{\tau }, \end{aligned}$$
(2.1)

where

$$ \varPhi ({\tau }) = \textstyle\begin{cases} q{\tau }-\frac{1}{8}, & {\tau }\in [0,\frac{1}{3} ), \\ q{\tau }-\frac{1}{2}, & {\tau }\in [\frac{1}{3},\frac{2}{3} ), \\ q{\tau }-\frac{7}{8}, & {\tau }\in [\frac{2}{3},1 ]. \end{cases} $$

Proof

Let

$$\begin{aligned}& \mathcal{S}_{1}= \int _{0}^{\frac{1}{3}} \biggl(q{\tau }- \frac{1}{8} \biggr){}_{{\alpha }}\mathrm{D}_{q}{f} \bigl({\alpha } +{\tau }\xi ({\beta },{ \alpha }) \bigr)\,{}_{0} \mathrm{d}_{q}{\tau }, \\& \mathcal{S}_{2}= \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl(q{\tau }- \frac{1}{2} \biggr) {}_{{\alpha }}\mathrm{D}_{q}{f} \bigl({\alpha }+{\tau } \xi ({\beta },{\alpha }) \bigr)\,{}_{0} \mathrm{d}_{q}{\tau }, \end{aligned}$$

and

$$ \mathcal{S}_{3}= \int _{\frac{2}{3}}^{1} \biggl(q{\tau }- \frac{7}{8} \biggr) {}_{{\alpha }}\mathrm{D}_{q}{f} \bigl({\alpha }+{\tau }\xi ({\beta },{ \alpha }) \bigr)\,{}_{0} \mathrm{d}_{q}{\tau }. $$

Then elaborated computations lead to

$$\begin{aligned}& \mathcal{S}_{1}= \int _{0}^{\frac{1}{3}}q{\tau } {}_{{\alpha }} \mathrm{D}_{q}{f} \bigl({ \alpha }+{\tau }\xi ({\beta },{\alpha }) \bigr)\,{}_{0}\mathrm{d}_{q}{\tau } - \frac{1}{8} \int _{0}^{\frac{1}{3}}{}_{{\alpha }} \mathrm{D}_{q}{f} \bigl({ \alpha }+{\tau }\xi ({\beta },{\alpha }) \bigr)\,{}_{0}\mathrm{d}_{q}{\tau } \\& \hphantom{\mathcal{S}_{1}}= \int _{0}^{\frac{1}{3}}q \frac{{f}({\alpha }+{\tau }\xi ({\beta },{\alpha }))-{f}({\alpha } +q{\tau }\xi ({\beta },{\alpha }))}{(1-q)\xi ({\beta },{\alpha })}\,{}_{0}\mathrm{d}_{q}{\tau } \\& \hphantom{\mathcal{S}_{1}={}}{}-\frac{1}{8} \int _{0}^{\frac{1}{3}} \frac{{f}({\alpha }+{\tau }\xi ({\beta },{\alpha }))-{f}({\alpha } +q{\tau }\xi ({\beta },{\alpha }))}{{\tau }(1-q)\xi ({\beta },{\alpha })}\,{}_{0}\mathrm{d}_{q}{\tau } \\& \hphantom{\mathcal{S}_{1}}=\frac{1}{3}\sum_{n=0}^{\infty }q^{n+1} \frac{{f} ({\alpha }+\frac{1}{3}q^{n}\xi ({\beta },{\alpha }) ) -{f} ({\alpha }+\frac{1}{3}q^{n+1}\xi ({\beta },{\alpha }) )}{\xi ({\beta },{\alpha })} \\& \hphantom{\mathcal{S}_{1}={}}{}-\frac{1}{8}\sum_{n=0}^{\infty } \frac{{f} ({\alpha }+\frac{1}{3}q^{n}\xi ({\beta },{\alpha }) ) -{f} ({\alpha }+\frac{1}{3}q^{n+1}\xi ({\beta },{\alpha }) )}{\xi ({\beta },{\alpha })} \\& \hphantom{\mathcal{S}_{1}}= \frac{q\sum_{n=0}^{\infty }q^{n}{f} ({\alpha }+\frac{1}{3}q^{n}\xi ({\beta },{\alpha }) ) -\sum_{n=1}^{\infty }q^{n}{f} ({\alpha }+\frac{1}{3}q^{n}\xi ({\beta },{\alpha }) )}{3\xi ({\beta },{\alpha })} \\& \hphantom{\mathcal{S}_{1}={}}{}-\frac{1}{8} \frac{\sum_{n=0}^{\infty }{f} ({\alpha }+\frac{1}{3}q^{n}\xi ({\beta },{\alpha }) ) -\sum_{n=1}^{\infty }{f} ({\alpha }+\frac{1}{3}q^{n}\xi ({\beta },{\alpha }) )}{\xi ({\beta },{\alpha })} \\& \hphantom{\mathcal{S}_{1}}=\frac{1}{3} \Biggl[ \frac{{f} (\frac{3{\alpha }+\xi ({\beta },{\alpha })}{3} )}{\xi ({\beta },{\alpha })} -(1-q)\sum _{n=0}^{\infty }q^{n} \frac{{f} ({\alpha }+\frac{1}{3}q^{n}\xi ({\beta },{\alpha }) )}{\xi ({\beta },{\alpha })} \Biggr] -\frac{1}{8}\cdot \frac{{f} (\frac{3{\alpha }+\xi ({\beta },{\alpha })}{3} )-{f}({\alpha })}{\xi ({\beta },{\alpha })} \\& \hphantom{\mathcal{S}_{1}}=\frac{5}{24}\cdot \frac{{f} (\frac{3{\alpha }+\xi ({\beta },{\alpha })}{3} )}{\xi ({\beta },{\alpha })}+ \frac{1}{8\xi ({\beta },{\alpha })}{f}({ \alpha }) -\frac{1}{3}(1-q)\sum_{n=0}^{\infty }q^{n} \frac{{f} ({\alpha }+\frac{1}{3}q^{n}\xi ({\beta },{\alpha }) )}{\xi ({\beta },{\alpha })} \\& \hphantom{\mathcal{S}_{1}}=\frac{5}{24}\cdot \frac{{f} (\frac{3{\alpha }+\xi ({\beta },{\alpha })}{3} )}{\xi ({\beta },{\alpha })}+ \frac{1}{8\xi ({\beta },{\alpha })}{f}({ \alpha }) - \frac{1}{\xi ^{2}({\beta },{\alpha })} \int _{{\alpha }}^{{\alpha }+ \frac{1}{3}\xi ({\beta },{\alpha })}{f}(x){}_{\alpha } \,\mathrm{d}_{q}x, \\& \mathcal{S}_{2}= \int _{0}^{\frac{2}{3}} \biggl(q{\tau }- \frac{1}{2} \biggr){}_{{\alpha }}\mathrm{D}_{q}{f} \bigl({\alpha } +{\tau }\xi ({\beta },{ \alpha }) \bigr)\,{}_{0}\mathrm{d}_{q}{\tau }- \int _{0}^{\frac{1}{3}} \biggl(q{ \tau } - \frac{1}{2} \biggr){}_{{\alpha }}\mathrm{D}_{q}{f} \bigl({\alpha }+{ \tau }\xi ({\beta },{\alpha }) \bigr)\,{}_{0}\mathrm{d}_{q}{\tau } \\& \hphantom{\mathcal{S}_{2}}=\frac{1}{6}\cdot \frac{{f} (\frac{3{\alpha }+\xi ({\beta },{\alpha })}{3} )}{\xi ({\beta },{\alpha })} +\frac{1}{6\xi ({\beta },{\alpha })}{f} \biggl( \frac{3{\alpha }+2\xi ({\beta },{\alpha })}{3} \biggr) - \frac{1}{\xi ^{2}({\beta },{\alpha })} \int _{{\alpha }+\frac{1}{3}\xi ({ \beta },{\alpha })}^{{\alpha } +\frac{2}{3}\xi ({\beta },{\alpha })}{f}(x) \,{}_{\alpha } \mathrm{d}_{q}x, \end{aligned}$$

and

$$\begin{aligned} \mathcal{S}_{3} =& \int _{0}^{1} \biggl(q{\tau }- \frac{7}{8} \biggr){}_{{ \alpha }}\mathrm{D}_{q}{f} \bigl({\alpha } +{\tau }\xi ({\beta },{\alpha }) \bigr)\,{}_{0}\mathrm{d}_{q}{\tau }- \int _{0}^{\frac{2}{3}} \biggl(q{\tau } - \frac{7}{8} \biggr){}_{{\alpha }}\mathrm{D}_{q}{f} \bigl({\alpha }+{\tau }\xi ({ \beta },{\alpha }) \bigr)\,{}_{0}\mathrm{d}_{q}{\tau } \\ =&\frac{5}{24}\cdot \frac{{f} (\frac{3{\alpha }+2\xi ({\beta },{\alpha })}{3} )}{\xi ({\beta },{\alpha })} +\frac{1}{8\xi ({\beta },{\alpha })}{f} \bigl({\alpha }+\xi ({\beta },{ \alpha }) \bigr) -\frac{1}{\xi ^{2}({\beta },{\alpha })} \int _{{\alpha }+ \frac{2}{3}\xi ({\beta },{\alpha })}^{{\alpha }+\xi ({\beta },{\alpha })}{f}(x) \,{}_{\alpha } \mathrm{d}_{q}x. \end{aligned}$$

Therefore, we get

$$\begin{aligned}& \int _{0}^{1}\varPhi ({\tau }){}_{{\alpha }} \mathrm{D}_{q}{f} \bigl({\alpha }+{ \tau }\xi ({\beta },{\alpha }) \bigr)\,{}_{0}\mathrm{d}_{q}{\tau } \\& \quad =\frac{1}{8\xi ({\beta },{\alpha })} \biggl[{f}({\alpha })+3{f} \biggl( \frac{3{\alpha } +\xi ({\beta },{\alpha })}{3} \biggr)+3{f} \biggl( \frac{3{\alpha }+2\xi ({\beta },{\alpha })}{3} \biggr) +{f} \bigl({\alpha }+ \xi ({ \beta },{\alpha }) \bigr) \biggr] \\& \qquad {}-\frac{1}{\xi ^{2}({\beta },{\alpha })} \int _{{\alpha }}^{{\alpha }+\xi ({ \beta },{\alpha })}{f}(x)\,{}_{{\alpha }} \mathrm{d}_{q}x. \end{aligned}$$

Multiplying both sides of the the above last equality by \(\xi ({\beta },{\alpha })\) leads to the desired result (2.1). □

Corollary 2.4

Let \(q\to 1^{-}\). Then Lemma 2.3leads to the conclusion that

$$\begin{aligned}& \frac{1}{8} \biggl[{f}({\alpha })+3{f} \biggl( \frac{3{\alpha }+\xi ({\beta },{\alpha })}{3} \biggr)+3{f} \biggl( \frac{3{\alpha } +2\xi ({\beta },{\alpha })}{3} \biggr)+{f} \bigl({\alpha }+\xi ({\beta },{ \alpha }) \bigr) \biggr] \\& \qquad {}-\frac{1}{\xi ({\beta },{\alpha })} \int _{{\alpha }}^{{\alpha }+\xi ({ \beta },{\alpha })}{f}(x)\,\mathrm{d}x \\& \quad =\xi ({\beta },{\alpha }) \int _{0}^{1}\varPsi ({\tau }){f}^{\prime } \bigl({\alpha }+{ \tau }\xi ({\beta },{\alpha }) \bigr)\,\mathrm{d} {\tau }, \end{aligned}$$

where

$$ \varPsi ({\tau }) = \textstyle\begin{cases} {\tau }-\frac{1}{8}, & {\tau }\in [0,\frac{1}{3} ), \\ {\tau }-\frac{1}{2}, & {\tau }\in [\frac{1}{3},\frac{2}{3} ), \\ {\tau }-\frac{7}{8}, & {\tau }\in [\frac{2}{3},1 ]. \end{cases} $$

2.2 Estimations of quantum bounds

Theorem 2.5

Let \(q\in (0,1)\), \(\xi ({\beta },{\alpha })>0\)and \({f}:\mathcal{B}=[{\alpha },{\alpha }+\xi ({\beta },{\alpha })]\to \mathbb{R}\)be a q-differentiable function on \(\mathcal{B}^{\circ }\) (the interior of \(\mathcal{B}\)) such that \(|{}_{{\alpha }}\mathrm{D}_{q}{f}|\)is a q-integrable preinvex function. Then one has

$$\begin{aligned}& \biggl\vert \frac{1}{8} \biggl[{f}({\alpha })+3{f} \biggl( \frac{3{\alpha }+\xi ({\beta },{\alpha })}{3} \biggr) +3{f} \biggl( \frac{3{\alpha }+2\xi ({\beta },{\alpha })}{3} \biggr)+{f} \bigl({\alpha }+\xi ({ \beta },{\alpha }) \bigr) \biggr] \\& \qquad {}-\frac{1}{\xi ({\beta },{\alpha })} \int _{{\alpha }}^{{\alpha }+\xi ({ \beta },{\alpha })}{f}(x)\,{}_{{\alpha }} \mathrm{d}_{q}x \biggr\vert \\& \quad \leq \xi ({\beta },{\alpha }) \biggl[ \frac{768q^{3}+432q^{2}+432q+168}{6912(1+q)(1+q+q^{2})} \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({\alpha }) \bigr\vert \\& \qquad {}+\frac{768q^{2}+768q+432q+264}{6912(1+q)(1+q+q^{2})} \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({ \beta }) \bigr\vert \biggr]. \end{aligned}$$
(2.2)

Proof

It follows from Lemma 2.3 and the preinvexity of the function \(|{}_{{\alpha }}\mathrm{D}_{q}{f}|\), together with the properties of the modulus, that

$$\begin{aligned}& \biggl\vert \frac{1}{8} \biggl[{f}({\alpha })+3{f} \biggl( \frac{3{\alpha }+\xi ({\beta },{\alpha })}{3} \biggr)+3{f} \biggl( \frac{3{\alpha } +2\xi ({\beta },{\alpha })}{3} \biggr)+{f} \bigl({\alpha }+\xi ({\beta },{ \alpha }) \bigr) \biggr] \\& \qquad {}-\frac{1}{\xi ({\beta },{\alpha })} \int _{{\alpha }}^{{\alpha }+\xi ({ \beta },{\alpha })}{f}(x)\,{}_{{\alpha }} \mathrm{d}_{q}x \biggr\vert \\& \quad =\xi ({\beta },{\alpha }) \biggl\vert \int _{0}^{\frac{1}{3}} \biggl(q{\tau }- \frac{1}{8} \biggr){}_{{\alpha }}\mathrm{D}_{q}{f} \bigl({\alpha } +{\tau } \xi ({\beta },{\alpha }) \bigr)\,{}_{0}\mathrm{d}_{q}{\tau } \\& \qquad {}+ \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl(q{\tau }- \frac{1}{2} \biggr){}_{{\alpha }}\mathrm{D}_{q}{f} \bigl({\alpha } +{\tau }\xi ({\beta },{ \alpha }) \bigr)\,{}_{0}\mathrm{d}_{q}{\tau } \\& \qquad {}+ \int _{\frac{2}{3}}^{1} \biggl(q{\tau }- \frac{7}{8} \biggr){}_{{ \alpha }}\mathrm{D}_{q}{f} \bigl({\alpha } +{\tau }\xi ({\beta },{\alpha }) \bigr)\,{}_{0}\mathrm{d}_{q}{\tau } \biggr\vert \\& \quad \leq \xi ({\beta },{\alpha }) \biggl[ \int _{0}^{\frac{1}{3}} \biggl\vert q{\tau }- \frac{1}{8} \biggr\vert \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f} \bigl({\alpha }+{\tau } \xi ({\beta },{\alpha }) \bigr) \bigr\vert \,{}_{0}\mathrm{d}_{q}{\tau } \\& \qquad {}+ \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl\vert q{\tau }- \frac{1}{2} \biggr\vert \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f} \bigl({\alpha }+{\tau }\xi ({\beta },{\alpha }) \bigr) \bigr\vert \,{}_{0}\mathrm{d}_{q}{\tau } \\& \qquad {}+ \int _{\frac{2}{3}}^{1} \biggl\vert q{\tau }- \frac{7}{8} \biggr\vert \bigl\vert {}_{{ \alpha }} \mathrm{D}_{q}{f} \bigl({\alpha } +{\tau }\xi ({\beta },{\alpha }) \bigr) \bigr\vert \,{}_{0}\mathrm{d}_{q}{\tau } \biggr] \\& \quad \leq \xi ({\beta },{\alpha }) \biggl[ \int _{0}^{\frac{1}{3}} \biggl\vert q{\tau }- \frac{1}{8} \biggr\vert \bigl((1-t) \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({ \alpha }) \bigr\vert +t \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({\beta }) \bigr\vert \bigr)\,{}_{0}\mathrm{d}_{q}{\tau } \\& \qquad {}+ \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl\vert q{\tau }- \frac{1}{2} \biggr\vert \bigl((1-t) \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({\alpha }) \bigr\vert +t \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({\beta }) \bigr\vert \bigr)\,{}_{0}\mathrm{d}_{q}{\tau } \\& \qquad {}+ \int _{\frac{2}{3}}^{1} \biggl\vert q{\tau }- \frac{7}{8} \biggr\vert \bigl((1-t) \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({\alpha }) \bigr\vert +t \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({ \beta }) \bigr\vert \bigr)\,{}_{0}\mathrm{d}_{q}{\tau } \biggr] \\& \quad =\xi ({\beta },{\alpha }) \biggl( \frac{480q^{3}+248q^{2}+248q-3}{6912(1+q)(1+q+q^{2})} \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({\alpha }) \bigr\vert \\& \qquad {}+\frac{160q^{2}+160q-69}{6912(1+q)(1+q+q^{2})} \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({ \beta }) \bigr\vert \biggr) \\& \qquad {}+\xi ({\beta },{\alpha }) \biggl(\frac{6q^{3}+3}{108(1+q)(1+q+q^{2})} \bigl\vert {}_{{ \alpha }} \mathrm{D}_{q}{f}({\alpha }) \bigr\vert \\& \qquad {}+\frac{6q^{2}+6q-3}{108(1+q)(1+q+q^{2})} \bigl\vert {}_{{\alpha }}\mathrm{D}_{q}{f}({ \beta }) \bigr\vert \biggr) \\& \qquad {}+\xi ({\beta },{\alpha }) \biggl( \frac{-96q^{3}+184q^{2}+184q-21}{6912(1+q)(1+q+q^{2})} \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({\alpha }) \bigr\vert \\& \qquad {}+\frac{224q^{2}+224q+525}{6912(1+q)(1+q+q^{2})} \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({ \beta }) \bigr\vert \biggr) \\& \quad =\xi ({\beta },{\alpha }) \biggl[ \frac{768q^{3}+432q^{2}+432q+168}{6912(1+q)(1+q+q^{2})} \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({\alpha }) \bigr\vert \\& \qquad {}+\frac{768q^{2}+768q+432q+264}{6912(1+q)(1+q+q^{2})} \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({ \beta }) \bigr\vert \biggr], \end{aligned}$$

which completes the proof of Theorem 2.5. □

Corollary 2.6

Let \(q\to 1^{-}\). Then

$$\begin{aligned}& \biggl\vert \frac{1}{8} \biggl[{f}({\alpha })+3{f} \biggl( \frac{3{\alpha }+\xi ({\beta },{\alpha })}{3} \biggr)+3{f} \biggl( \frac{3{\alpha } +2\xi ({\beta },{\alpha })}{3} \biggr)+{f} \bigl({\alpha }+\xi ({\beta },{ \alpha }) \bigr) \biggr] \\& \qquad {}-\frac{1}{\xi ({\beta },{\alpha })} \int _{{\alpha }}^{{\alpha }+\xi ({ \beta },{\alpha })}{f}(x)\,\mathrm{d}x \biggr\vert \\& \quad \leq \frac{25\xi ({\beta },{\alpha })}{576} \bigl[ \bigl\vert {f}^{\prime }({\alpha }) \bigr\vert + \bigl\vert {f}^{ \prime }({\beta }) \bigr\vert \bigr]. \end{aligned}$$

Theorem 2.7

Let \(q\in (0,1)\), \(p, r>1\)with \(p^{-1}+r^{-1}=1\), \(\xi ({\beta },{\alpha })>0\)and \({f}:\mathcal{B}=[{\alpha },{\alpha }+\xi ({\beta },{\alpha })]\to \mathbb{R}\)be a q-differentiable function on \(\mathcal{B}^{\circ }\) (the interior of \(\mathcal{B}\)) such that \(|{}_{{\alpha }}\mathrm{D}_{q}{f}|^{r}\)is a q-integrable preinvex function. Then one has

$$\begin{aligned}& \biggl\vert \frac{1}{8} \biggl[{f}({\alpha })+3{f} \biggl( \frac{3{\alpha }+\xi ({\beta },{\alpha })}{3} \biggr) +3{f} \biggl( \frac{3{\alpha }+2\xi ({\beta },{\alpha })}{3} \biggr)+{f} \bigl({\alpha }+\xi ({ \beta },{\alpha }) \bigr) \biggr] \\& \qquad {}-\frac{1}{\xi ({\beta },{\alpha })} \int _{{\alpha }}^{{\alpha }+\xi ({ \beta },{\alpha })}{f}(x)\,{}_{{\alpha }} \mathrm{d}_{q}x \biggr\vert \\& \quad \leq \xi ({\beta },{\alpha }) \biggl[ \biggl( \frac{[3^{p+1}+(8q-3)^{p+1}](1-q)}{24^{p+1}q(1-q^{p+1})} \biggr)^{ \frac{1}{p}} \\& \qquad {}\times \biggl( \frac{(3q+2) \vert {}_{{\alpha }}\mathrm{D}_{q}{f}({\alpha }) \vert ^{r}+ \vert {}_{{\alpha }}\mathrm{D}_{q}{f}({\beta }) \vert ^{r}}{9(1+q)} \biggr)^{\frac{1}{r}} \\& \qquad {}+ \biggl(\frac{[(3-2q)^{p+1}+(6q-5)^{p+1}](1-q)}{6^{p+1}q(1-q^{p+1})} \biggr)^{\frac{1}{p}} \\& \qquad {}\times \biggl( \frac{q \vert {}_{{\alpha }}\mathrm{D}_{q}{f}({\alpha }) \vert ^{r}+ \vert {}_{{\alpha }}\mathrm{D}_{q}{f}({\beta }) \vert ^{r}}{3(1+q)} \biggr)^{\frac{1}{r}} \\& \qquad {}+ \biggl( \frac{[(21-16q)^{p+1}+(24q-21)^{p+1}](1-q)}{24^{p+1}q(1-q^{p+1})} \biggr)^{\frac{1}{p}} \\& \qquad {}\times \biggl( \frac{(3q-2) \vert {}_{{\alpha }}\mathrm{D}_{q}{f}({\alpha }) \vert ^{r}+5 \vert {}_{{\alpha }}\mathrm{D}_{q}{f}({\beta }) \vert ^{r}}{9(1+q)} \biggr)^{\frac{1}{r}} \biggr]. \end{aligned}$$
(2.3)

Proof

It follows from Lemma 2.3, Hölder inequality, the preinvexity of the function \(|{}_{{\alpha }}\mathrm{D}_{q}{f}|^{r}\), and the properties of the modulus that

$$\begin{aligned}& \biggl\vert \frac{1}{8} \biggl[{f}({\alpha })+3{f} \biggl( \frac{3{\alpha }+\xi ({\beta },{\alpha })}{3} \biggr)+3{f} \biggl( \frac{3{\alpha } +2\xi ({\beta },{\alpha })}{3} \biggr)+{f} \bigl({\alpha }+\xi ({\beta },{ \alpha }) \bigr) \biggr] \\& \qquad {}-\frac{1}{\xi ({\beta },{\alpha })} \int _{{\alpha }}^{{\alpha }+\xi ({ \beta },{\alpha })}{f}(x)\,{}_{{\alpha }} \mathrm{d}_{q}x \biggr\vert \\& \quad =\xi ({\beta },{\alpha }) \biggl\vert \int _{0}^{\frac{1}{3}} \biggl(q{\tau }- \frac{1}{8} \biggr) {}_{{\alpha }}\mathrm{D}_{q}{f} \bigl({\alpha }+{\tau } \xi ({\beta },{\alpha }) \bigr)\,{}_{0}\mathrm{d}_{q}{\tau } \\& \qquad {}+ \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl(q{\tau }- \frac{1}{2} \biggr) {}_{{\alpha }}\mathrm{D}_{q}{f} \bigl({\alpha }+{\tau }\xi ({\beta },{ \alpha }) \bigr)\,{}_{0}\mathrm{d}_{q}{\tau } \\& \qquad {}+ \int _{\frac{2}{3}}^{1} \biggl(q{\tau }- \frac{7}{8} \biggr){}_{{ \alpha }}\mathrm{D}_{q} {f} \bigl({\alpha }+{\tau }\xi ({\beta },{\alpha }) \bigr)\,{}_{0}\mathrm{d}_{q}{\tau } \biggr\vert \\& \quad \leq \xi ({\beta },{\alpha }) \biggl[ \biggl( \int _{0}^{\frac{1}{3}} \biggl\vert q{ \tau }- \frac{1}{8} \biggr\vert ^{p} \,{}_{0}\mathrm{d}_{q}{\tau } \biggr)^{ \frac{1}{p}} \biggl( \int _{0}^{\frac{1}{3}} \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f} \bigl({ \alpha }+{\tau }\xi ({\beta },{\alpha }) \bigr) \bigr\vert ^{r}\,{}_{0}\mathrm{d}_{q}{ \tau } \biggr)^{\frac{1}{r}} \\& \qquad {}+ \biggl( \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl\vert q{\tau }- \frac{1}{2} \biggr\vert ^{p}\,{}_{0}\mathrm{d}_{q}{\tau } \biggr)^{\frac{1}{p}} \biggl( \int _{\frac{1}{3}}^{\frac{2}{3}} \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f} \bigl({ \alpha } +{\tau }\xi ({\beta },{\alpha }) \bigr) \bigr\vert ^{r}\,{}_{0}\mathrm{d}_{q}{ \tau } \biggr)^{\frac{1}{r}} \\& \qquad {}+ \biggl( \int _{\frac{2}{3}}^{1} \biggl\vert q{\tau }- \frac{7}{8} \biggr\vert ^{p} \,{}_{0}\mathrm{d}_{q}{\tau } \biggr)^{\frac{1}{p}} \biggl( \int _{ \frac{2}{3}}^{1} \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f} \bigl({\alpha }+{\tau }\xi ({ \beta },{\alpha }) \bigr) \bigr\vert ^{r} \,{}_{0}\mathrm{d}_{q}{ \tau } \biggr)^{ \frac{1}{r}} \biggr] \\& \quad \leq \xi ({\beta },{\alpha }) \biggl[ \biggl( \int _{0}^{\frac{1}{3}} \biggl\vert q{ \tau }- \frac{1}{8} \biggr\vert ^{p}\,{}_{0}\mathrm{d}_{q}{\tau } \biggr)^{ \frac{1}{p}} \\& \qquad {}\times \biggl( \bigl\vert {}_{{\alpha }}\mathrm{D}_{q}{f}({ \alpha }) \bigr\vert ^{r} \int _{0}^{ \frac{1}{3}}(1-{\tau })\,{}_{0}\mathrm{d}_{q}{\tau } + \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({ \beta }) \bigr\vert ^{r} \int _{0}^{\frac{1}{3}}{\tau } \,{}_{0}\mathrm{d}_{q}{\tau } \biggr)^{\frac{1}{r}} \\& \qquad {}+ \biggl( \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl\vert q{\tau }- \frac{1}{2} \biggr\vert ^{p}\,{}_{0}\mathrm{d}_{q}{\tau } \biggr)^{\frac{1}{p}} \\& \qquad {}\times \biggl( \bigl\vert {}_{{\alpha }}\mathrm{D}_{q}{f}({ \alpha }) \bigr\vert ^{r} \int _{ \frac{1}{3}}^{\frac{2}{3}}(1-{\tau })\,{}_{0}\mathrm{d}_{q}{\tau } + \bigl\vert {}_{{ \alpha }} \mathrm{D}_{q}{f}({ \beta }) \bigr\vert ^{r} \int _{\frac{1}{3}}^{ \frac{2}{3}}{\tau } \,{}_{0}\mathrm{d}_{q}{\tau } \biggr)^{\frac{1}{r}} \\& \qquad {}+ \biggl( \int _{\frac{2}{3}}^{1} \biggl\vert q{\tau }- \frac{7}{8} \biggr\vert ^{p} \,{}_{0}\mathrm{d}_{q}{\tau } \biggr)^{\frac{1}{p}} \\& \qquad {}\times \biggl( \bigl\vert {}_{{\alpha }}\mathrm{D}_{q}{f}({ \alpha }) \bigr\vert ^{r} \int _{ \frac{2}{3}}^{1}(1-{\tau }) \,{}_{0}\mathrm{d}_{q}{\tau }+ \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({ \beta }) \bigr\vert ^{r} \int _{\frac{2}{3}}^{1}{\tau } \,{}_{0}\mathrm{d}_{q}{\tau } \biggr)^{\frac{1}{r}} \biggr]. \end{aligned}$$

Making use of the binomial expansion, we get

$$\begin{aligned}& \int _{0}^{\frac{1}{3}} \biggl\vert q{\tau }- \frac{1}{8} \biggr\vert ^{p}\,{}_{0}\mathrm{d}_{q}{\tau } \\& \quad = \bigl[(-1)^{p}-1 \bigr]q^{p} \int _{0}^{\frac{1}{8q}} \biggl({\tau }- \frac{1}{8q} \biggr)^{p}\,{}_{0}\mathrm{d}_{q}{\tau } + \int _{0}^{\frac{1}{3}} \biggl({ \tau }- \frac{1}{8q} \biggr)^{p}\,{}_{0}\mathrm{d}_{q}{\tau } \\& \quad = \bigl[(-1)^{p}-1 \bigr]q^{p}\frac{1-q}{1-q^{p+1}}(-1)^{p} \biggl(\frac{1}{8q} \biggr)^{p+1} \\& \qquad {}+q^{p}\frac{1-q}{1-q^{p+1}} \biggl[ \biggl(\frac{1}{3}- \frac{1}{8q} \biggr)^{p+1}+(-1)^{p} \biggl( \frac{1}{8q} \biggr)^{p+1} \biggr] \\& \quad =\frac{[3^{p+1}+(8q-3)^{p+1}](1-q)}{24^{p+1}q(1-q^{p+1})}. \end{aligned}$$

Similarly,

$$ \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl\vert q{\tau }- \frac{1}{2} \biggr\vert ^{p} \,{}_{0}\mathrm{d}_{q}{\tau } = \frac{[(3-2q)^{p+1}+(6q-5)^{p+1}](1-q)}{6^{p+1}q(1-q^{p+1})} $$

and

$$ \int _{\frac{2}{3}}^{1} \biggl\vert q{\tau }- \frac{7}{8} \biggr\vert ^{p}\,{}_{0}\mathrm{d}_{q}{\tau } = \frac{[(21-16q)^{p+1}+(24q-21)^{p+1}](1-q)}{24^{p+1}q(1-q^{p+1})}. $$

Therefore,

$$\begin{aligned}& \biggl\vert \frac{1}{8} \biggl[{f}({\alpha })+3{f} \biggl( \frac{3{\alpha }+\xi ({\beta },{\alpha })}{3} \biggr) +3{f} \biggl( \frac{3{\alpha } +2\xi ({\beta },{\alpha })}{3} \biggr)+{f} \bigl({\alpha }+\xi ({ \beta },{\alpha }) \bigr) \biggr] \\& \qquad {}-\frac{1}{\xi ({\beta },{\alpha })} \int _{{\alpha }}^{{\alpha }+\xi ({ \beta },{\alpha })}{f}(x)\,{}_{{\alpha }} \mathrm{d}_{q}x \biggr\vert \\& \quad \leq \xi ({\beta },{\alpha }) \biggl[ \biggl( \frac{[3^{p+1}+(8q-3)^{p+1}](1-q)}{24^{p+1}q(1-q^{p+1})} \biggr)^{ \frac{1}{p}} \\& \qquad {}\times \biggl( \frac{(3q+2) \vert {}_{{\alpha }}\mathrm{D}_{q}{f}({\alpha }) \vert ^{r}+ \vert {}_{{\alpha }}\mathrm{D}_{q}{f}({\beta }) \vert ^{r}}{9(1+q)} \biggr)^{\frac{1}{r}} \\& \qquad {}+ \biggl(\frac{[(3-2q)^{p+1}+(6q-5)^{p+1}](1-q)}{6^{p+1}q(1-q^{p+1})} \biggr)^{\frac{1}{p}} \\& \qquad {}\times \biggl( \frac{q \vert {}_{{\alpha }}\mathrm{D}_{q}{f}({\alpha }) \vert ^{r}+ \vert {}_{{\alpha }}\mathrm{D}_{q}{f}({\beta }) \vert ^{r}}{3(1+q)} \biggr)^{\frac{1}{r}} \\& \qquad {}+ \biggl( \frac{[(21-16q)^{p+1}+(24q-21)^{p+1}](1-q)}{24^{p+1}q(1-q^{p+1})} \biggr)^{\frac{1}{p}} \\& \qquad {}\times \biggl( \frac{(3q-2) \vert {}_{{\alpha }}\mathrm{D}_{q}{f}({\alpha }) \vert ^{r}+5 \vert {}_{{\alpha }}\mathrm{D}_{q}{f}({\beta }) \vert ^{r}}{9(1+q)} \biggr)^{\frac{1}{r}} \biggr], \end{aligned}$$

and the proof of Theorem 2.7 is completed. □

Corollary 2.8

Let \(q\to 1^{-}\). Then

$$\begin{aligned}& \biggl\vert \frac{1}{8} \biggl[{f}({\alpha })+3{f} \biggl( \frac{3{\alpha }+\xi ({\beta },{\alpha })}{3} \biggr)+3{f} \biggl( \frac{3{\alpha } +2\xi ({\beta },{\alpha })}{3} \biggr)+{f} \bigl({\alpha }+\xi ({\beta },{ \alpha }) \bigr) \biggr] \\& \qquad {}-\frac{1}{\xi ({\beta },{\alpha })} \int _{{\alpha }}^{{\alpha }+\xi ({ \beta },{\alpha })}{f}(x)\,\mathrm{d}x \biggr\vert \\& \quad \leq \xi ({\beta },{\alpha }) \biggl[ \biggl( \frac{[3^{p+1}+5^{p+1}]}{24^{p+1}(p+1)} \biggr)^{\frac{1}{p}} \biggl( \frac{5 \vert {f}^{\prime }({\alpha }) \vert ^{r}+ \vert {f}^{\prime }({\beta }) \vert ^{r}}{18} \biggr)^{\frac{1}{r}} \\& \qquad {}+ \biggl(\frac{2}{6^{p+1}(p+1)} \biggr)^{\frac{1}{p}} \biggl( \frac{ \vert {f}^{\prime }({\alpha }) \vert ^{r}+ \vert {f}^{\prime }({\beta }) \vert ^{r}}{6} \biggr)^{\frac{1}{r}} \\& \qquad {}+ \biggl(\frac{(3^{p+1}+5)^{p+1}}{24^{p+1}(p+1)} \biggr)^{\frac{1}{p}} \biggl( \frac{ \vert {f}^{\prime }({\alpha }) \vert ^{r}+5 \vert {f}^{\prime }({\beta }) \vert ^{r}}{18} \biggr)^{\frac{1}{r}} \biggr]. \end{aligned}$$

Theorem 2.9

Let \(q\in (0,1)\), \(r>1\), \(\xi ({\beta },{\alpha })>0\)and \({f}:\mathcal{B}=[{\alpha },{\alpha }+\xi ({\beta },{\alpha })]\to \mathbb{R}\)be a q-differentiable function on \(\mathcal{B}^{\circ }\) (the interior of \(\mathcal{B}\)) such that \(|{}_{{\alpha }}\mathrm{D}_{q}{f}|^{r}\)is a q-integrable preinvex function. Then

$$\begin{aligned}& \biggl\vert \frac{1}{8} \biggl[{f}({\alpha })+3{f} \biggl( \frac{3{\alpha }+\xi ({\beta },{\alpha })}{3} \biggr) +3{f} \biggl( \frac{3{\alpha }+2\xi ({\beta },{\alpha })}{3} \biggr)+{f} \bigl({\alpha }+\xi ({ \beta },{\alpha }) \bigr) \biggr] \\& \qquad {}-\frac{1}{\xi ({\beta },{\alpha })} \int _{{\alpha }}^{{\alpha }+\xi ({ \beta },{\alpha })}{f}(x)\,{}_{{\alpha }} \mathrm{d}_{q}x \biggr\vert \\& \quad \leq \xi ({\beta },{\alpha }) \biggl[ \biggl(\frac{20q-3}{288(1+q)} \biggr)^{1- \frac{1}{r}} \biggl( \frac{480q^{3}+248q^{2}+248q-3}{6912(1+q)(1+q+q^{2})} \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({\alpha }) \bigr\vert ^{r} \\& \qquad {}+\frac{160q^{2}+160q-69}{6912(1+q)(1+q+q^{2})} \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({ \beta }) \bigr\vert ^{r} \biggr)^{\frac{1}{r}} \\& \qquad {}+ \biggl(\frac{q}{18(1+q)} \biggr)^{1-\frac{1}{r}} \biggl( \frac{6q^{3}+3}{108(1+q)(1+q+q^{2})} \bigl\vert {}_{{\alpha }}\mathrm{D}_{q}{f}({ \alpha }) \bigr\vert ^{r} \\& \qquad {}+\frac{6q^{2}+6q-3}{108(1+q)(1+q+q^{2})} \bigl\vert {}_{{\alpha }}\mathrm{D}_{q}{f}({ \beta }) \bigr\vert ^{r} \biggr)^{\frac{1}{r}} \\& \qquad {}+ \biggl(\frac{21-4q}{288(1+q)} \biggr)^{1-\frac{1}{r}} \biggl( \frac{-96q^{3}+184q^{2}+184q-21}{6912(1+q)(1+q+q^{2})} \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({ \alpha }) \bigr\vert ^{r} \\& \qquad {}+\frac{224q^{2}+224q+525}{6912(1+q)(1+q+q^{2})} \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({ \beta }) \bigr\vert ^{r} \biggr)^{\frac{1}{r}} \biggr]. \end{aligned}$$
(2.4)

Proof

It follows from Lemma 2.3, the power mean integral inequality, the preinvexity of the function \(|{}_{{\alpha }}\mathrm{D}_{q}{f}|^{r}\), and the properties of modulus that

$$\begin{aligned}& \biggl\vert \frac{1}{8} \biggl[{f}({\alpha })+3{f} \biggl( \frac{3{\alpha }+\xi ({\beta },{\alpha })}{3} \biggr) +3{f} \biggl( \frac{3{\alpha }+2\xi ({\beta },{\alpha })}{3} \biggr)+{f} \bigl({\alpha }+\xi ({ \beta },{\alpha }) \bigr) \biggr] \\& \qquad {}-\frac{1}{\xi ({\beta },{\alpha })} \int _{{\alpha }}^{{\alpha }+\xi ({ \beta },{\alpha })}{f}(x)\,{}_{{\alpha }} \mathrm{d}_{q}x \biggr\vert \\& \quad =\xi ({\beta },{\alpha }) \biggl\vert \int _{0}^{\frac{1}{3}} \biggl(q{\tau }- \frac{1}{8} \biggr){}_{{\alpha }}\mathrm{D}_{q}{f} \bigl({\alpha } +{\tau } \xi ({\beta },{\alpha }) \bigr)\,{}_{0}\mathrm{d}_{q}{\tau } \\& \qquad {}+ \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl(q{\tau }- \frac{1}{2} \biggr){}_{{\alpha }}\mathrm{D}_{q}{f} \bigl({\alpha } +{\tau }\xi ({\beta },{ \alpha }) \bigr)\,{}_{0}\mathrm{d}_{q}{\tau } \\& \qquad {}+ \int _{\frac{2}{3}}^{1} \biggl(q{\tau }- \frac{7}{8} \biggr){}_{{ \alpha }}\mathrm{D}_{q}{f} \bigl({\alpha } +{\tau }\xi ({\beta },{\alpha }) \bigr)\,{}_{0}\mathrm{d}_{q}{\tau } \biggr\vert \\& \quad \leq \xi ({\beta },{\alpha }) \biggl[ \int _{0}^{\frac{1}{3}} \biggl\vert q{\tau }- \frac{1}{8} \biggr\vert \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f} \bigl({\alpha }+{\tau } \xi ({\beta },{\alpha }) \bigr) \bigr\vert \,{}_{0}\mathrm{d}_{q}{\tau } \\& \qquad {}+ \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl\vert q{\tau }- \frac{1}{2} \biggr\vert \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f} \bigl({\alpha } +{\tau }\xi ({\beta },{\alpha }) \bigr) \bigr\vert \,{}_{0}\mathrm{d}_{q}{\tau } \\& \qquad {}+ \int _{\frac{2}{3}}^{1} \biggl\vert q{\tau }- \frac{7}{8} \biggr\vert \bigl\vert {}_{{ \alpha }} \mathrm{D}_{q}{f} \bigl({\alpha }+{\tau }\xi ({\beta },{\alpha }) \bigr) \bigr\vert \,{}_{0}\mathrm{d}_{q}{\tau } \biggr] \\& \quad \leq \xi ({\beta },{\alpha }) \biggl[ \biggl( \int _{0}^{\frac{1}{3}} \biggl\vert q{ \tau }- \frac{1}{8} \biggr\vert \,{}_{0}\mathrm{d}_{q}{ \tau } \biggr)^{1- \frac{1}{r}} \biggl( \int _{0}^{\frac{1}{3}} \biggl\vert q{\tau }- \frac{1}{8} \biggr\vert \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f} \bigl({\alpha }+{\tau }\xi ({\beta },{ \alpha }) \bigr) \bigr\vert ^{r}\,{}_{0}\mathrm{d}_{q}{ \tau } \biggr)^{\frac{1}{r}} \\& \qquad {}+ \biggl( \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl\vert q{\tau }- \frac{1}{2} \biggr\vert \,{}_{0}\mathrm{d}_{q}{ \tau } \biggr)^{1-\frac{1}{r}} \biggl( \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl\vert q{\tau }- \frac{1}{2} \biggr\vert \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f} \bigl({\alpha }+{\tau }\xi ({\beta },{\alpha }) \bigr) \bigr\vert ^{r} \,{}_{0}\mathrm{d}_{q}{ \tau } \biggr)^{\frac{1}{r}} \\& \qquad {}+ \biggl( \int _{\frac{2}{3}}^{1} \biggl\vert q{\tau }- \frac{7}{8} \biggr\vert \,{}_{0}\mathrm{d}_{q}{ \tau } \biggr)^{1-\frac{1}{r}} \biggl( \int _{ \frac{2}{3}}^{1} \biggl\vert q{\tau }- \frac{7}{8} \biggr\vert \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f} \bigl({\alpha }+{\tau }\xi ({\beta },{\alpha }) \bigr) \bigr\vert ^{r} \,{}_{0}\mathrm{d}_{q}{ \tau } \biggr)^{\frac{1}{r}} \biggr] \\& \quad \leq \xi ({\beta },{\alpha }) \biggl[ \biggl(\frac{20q-3}{288(1+q)} \biggr)^{1- \frac{1}{r}} \biggl( \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({ \alpha }) \bigr\vert ^{r} \int _{0}^{\frac{1}{3}}(1-{\tau }) \biggl\vert q{\tau }- \frac{1}{8} \biggr\vert \,{}_{0}\mathrm{d}_{q}{ \tau } \\& \qquad {}+ \bigl\vert {}_{{\alpha }}\mathrm{D}_{q}{f}({\beta }) \bigr\vert ^{r} \int _{0}^{ \frac{1}{3}}{\tau } \biggl\vert q{\tau }- \frac{1}{8} \biggr\vert \,{}_{0}\mathrm{d}_{q}{ \tau } \biggr)^{\frac{1}{r}} \\& \qquad {}+ \biggl(\frac{q}{18(1+q)} \biggr)^{1-\frac{1}{r}} \biggl( \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({\alpha }) \bigr\vert ^{r} \int _{\frac{1}{3}}^{\frac{2}{3}}(1-{ \tau }) \biggl\vert q{\tau }- \frac{1}{2} \biggr\vert \,{}_{0}\mathrm{d}_{q}{ \tau } \\& \qquad {}+ \bigl\vert {}_{{\alpha }}\mathrm{D}_{q}{f}({\beta }) \bigr\vert ^{r} \int _{ \frac{1}{3}}^{\frac{2}{3}}{\tau } \biggl\vert q{\tau }- \frac{1}{2} \biggr\vert \,{}_{0}\mathrm{d}_{q}{ \tau } \biggr)^{\frac{1}{r}} \\& \qquad {}+ \biggl(\frac{21-4q}{288(1+q)} \biggr)^{1-\frac{1}{r}} \biggl( \bigl\vert {}_{{ \alpha }} \mathrm{D}_{q}{f}({\alpha }) \bigr\vert ^{r} \int _{\frac{2}{3}}^{1}(1-{ \tau }) \biggl\vert q{\tau }- \frac{7}{8} \biggr\vert \,{}_{0}\mathrm{d}_{q}{ \tau } \\& \qquad {}+ \bigl\vert {}_{{\alpha }}\mathrm{D}_{q}{f}({\beta }) \bigr\vert ^{r} \int _{ \frac{2}{3}}^{1}{\tau } \biggl\vert q{\tau }- \frac{7}{8} \biggr\vert \,{}_{0}\mathrm{d}_{q}{ \tau } \biggr)^{\frac{1}{r}} \biggr] \\& \quad =\xi ({\beta },{\alpha }) \biggl[ \biggl(\frac{20q-3}{288(1+q)} \biggr)^{1- \frac{1}{r}} \biggl( \frac{480q^{3}+248q^{2}+248q-3}{6912(1+q)(1+q+q^{2})} \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({\alpha }) \bigr\vert ^{r} \\& \qquad {}+\frac{160q^{2}+160q-69}{6912(1+q)(1+q+q^{2})} \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({ \beta }) \bigr\vert ^{r} \biggr)^{\frac{1}{r}} \\& \qquad {}+ \biggl(\frac{q}{18(1+q)} \biggr)^{1-\frac{1}{r}} \biggl( \frac{6q^{3}+3}{108(1+q)(1+q+q^{2})} \bigl\vert {}_{{\alpha }}\mathrm{D}_{q}{f}({ \alpha }) \bigr\vert ^{r} \\& \qquad {}+\frac{6q^{2}+6q-3}{108(1+q)(1+q+q^{2})} \bigl\vert {}_{{\alpha }}\mathrm{D}_{q}{f}({ \beta }) \bigr\vert ^{r} \biggr)^{\frac{1}{r}} \\& \qquad {}+ \biggl(\frac{21-4q}{288(1+q)} \biggr)^{1-\frac{1}{r}} \biggl( \frac{-96q^{3}+184q^{2}+184q-21}{6912(1+q)(1+q+q^{2})} \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({ \alpha }) \bigr\vert ^{r} \\& \qquad {}+\frac{224q^{2}+224q+525}{6912(1+q)(1+q+q^{2})} \bigl\vert {}_{{\alpha }} \mathrm{D}_{q}{f}({ \beta }) \bigr\vert ^{r} \biggr)^{\frac{1}{r}} \biggr], \end{aligned}$$

which completes the proof of Theorem 2.9. □

Corollary 2.10

Let \(q\to 1^{-}\). Then

$$\begin{aligned}& \biggl\vert \frac{1}{8} \biggl[{f}({\alpha })+3{f} \biggl( \frac{3{\alpha }+\xi ({\beta },{\alpha })}{3} \biggr) +3{f} \biggl( \frac{3{\alpha }+2\xi ({\beta },{\alpha })}{3} \biggr)+{f} \bigl({\alpha }+\xi ({ \beta },{\alpha }) \bigr) \biggr] \\& \qquad {}-\frac{1}{\xi ({\beta },{\alpha })} \int _{{\alpha }}^{{\alpha }+\xi ({ \beta },{\alpha })}{f}(x)\,\mathrm{d}x \biggr\vert \\& \quad \leq \xi ({\beta },{\alpha }) \biggl[ \biggl(\frac{17}{576} \biggr)^{1- \frac{1}{r}} \biggl( \frac{973 \vert {f}^{\prime }({\alpha }) \vert ^{r}+251 \vert {f}^{\prime }({\beta }) \vert ^{r}}{41472} \biggr)^{\frac{1}{r}} \\& \qquad {}+ \biggl(\frac{1}{36} \biggr)^{1-\frac{1}{r}} \biggl( \frac{ \vert {f}^{\prime }({\alpha }) \vert ^{r}+ \vert {f}^{\prime }({\beta }) \vert ^{r}}{2} \biggr)^{\frac{1}{r}} \\& \qquad {}+ \biggl(\frac{17}{576} \biggr)^{1-\frac{1}{r}} \biggl( \frac{251 \vert {f}^{\prime }({\alpha }) \vert ^{r} +973 \vert {f}^{\prime }({\beta }) \vert ^{r}}{41472} \biggr)^{\frac{1}{r}} \biggr]. \end{aligned}$$

Remark 2.11

If we assume that \(|{}_{{\alpha }}\mathrm{D}_{q}{f}|\leq K\) in Theorems 2.5, 2.7, 2.9 and their corollaries, then we can obtain some interesting results. We omit the details here and leave them to the interested readers.

2.3 Applications

In this subsection, we give some applications of our obtained results to special bivariate means.

A bivariate real-valued function \(\varUpsilon :(0,\infty )\times (0,\infty )\rightarrow (0,\infty )\) is said to be a bivariate mean if \(\min \{\varepsilon ,\zeta \}\leq \varUpsilon (\varepsilon ,\zeta )\leq \max \{\varepsilon ,\zeta \}\) for all \(\varepsilon ,\zeta \in (0,\infty )\). It is well known that the bivariate means are closely related to many special functions [8, 19, 26, 30, 31, 44, 45]. Recently, the inequalities between different bivariate means have attracted the attention of many researchers [2729, 43, 47, 50].

Let \(\alpha , \beta >0\) with \(\alpha \neq \beta \) and \(p\in \mathbb{R}\setminus \{-1,0\}\). Then the arithmetic mean \(\mathcal{A}(\alpha ,\beta )\) and pth generalized logarithmic mean \(\mathcal{L}_{p}(\alpha ,\beta )\) are defined by

$$ \mathcal{A}(\alpha ,\beta )=\frac{\alpha +\beta }{2} $$

and

$$ \mathcal{L}_{p}(\alpha ,\beta )= \biggl[ \frac{\beta ^{p+1}-\alpha ^{p+1}}{(p+1)(\beta -\alpha )} \biggr]^{ \frac{1}{p}}, $$

respectively.

Proposition 2.12

Let \(q\in (0,1)\)and \(\beta >\alpha >0\). Then the inequality

$$\begin{aligned}& \biggl\vert \frac{1}{4} \biggl[\mathcal{A} \bigl(\alpha ^{n},\beta ^{n} \bigr)+ \biggl( \frac{2}{3} \biggr)^{n-1} \bigl[\mathcal{A}^{n}(2{\alpha },{\beta })+ \mathcal{A}^{n}({\alpha },2{\beta }) \bigr] \biggr] - \frac{(n+1)(1-q)}{1-q^{n+1}}\mathcal{L}_{n}^{n}(\alpha ,\beta ) \biggr\vert \\& \quad \leq ({\beta }-{\alpha }) \biggl[ \frac{768q^{3}+432q^{2}+432q+168}{6912(1+q)(1+q+q^{2})} \bigl(n\alpha ^{n-1} \bigr) \\& \qquad {}+\frac{768q^{2}+768q+432q+264}{6912(1+q)(1+q+q^{2})} \biggl( \frac{\beta ^{n} -(q\beta +(1-q)\alpha )^{n}}{(\beta -\alpha )(1-q)} \biggr) \biggr] \end{aligned}$$

holds for \(n>1\).

Proof

Let \({f}(x)=x^{n}\) and \(\xi (\beta ,\alpha )=\beta -\alpha \). Then Proposition 2.12 follows from Theorem 2.5 immediately. □

Proposition 2.13

Let \(\beta >\alpha >0\), \(q\in (0,1)\), and \(p, r>1\)with \(p^{-1}+r^{-1}=1\). Then the inequality

$$\begin{aligned}& \biggl\vert \frac{1}{4} \biggl[\mathcal{A} \bigl(\alpha ^{n},\beta ^{n} \bigr)+ \biggl( \frac{2}{3} \biggr)^{n-1} \bigl[\mathcal{A}^{n}(2{\alpha },{\beta })+ \mathcal{A}^{n}({\alpha },2{\beta }) \bigr] \biggr] - \frac{(n+1)(1-q)}{1-q^{n+1}}\mathcal{L}_{n}^{n}(\alpha ,\beta ) \biggr\vert \\& \quad \leq ({\beta }-{\alpha }) \biggl[\psi ^{\frac{1}{p}}_{1} \biggl( \frac{(3q+2) (n\alpha ^{n-1} )^{r} + (\frac{\beta ^{n}-(q\beta +(1-q)\alpha )^{n}}{(\beta -\alpha )(1-q)} )^{r}}{9(1+q)} \biggr)^{\frac{1}{r}} \\& \qquad {}+\psi _{2}^{\frac{1}{p}} \biggl( \frac{q (n\alpha ^{n-1} )^{r} + (\frac{\beta ^{n}-(q\beta +(1-q)\alpha )^{n}}{(\beta -\alpha )(1-q)} )^{r}}{3(1+q)} \biggr)^{\frac{1}{r}} \\& \qquad {}+\psi _{3}^{\frac{1}{p}} \biggl( \frac{(3q-2) (n{\alpha }^{n-1} )^{r} +5 (\frac{\beta ^{n}-(q\beta +(1-q)\alpha )^{n}}{(\beta -\alpha )(1-q)} )^{r}}{9(1+q)} \biggr)^{\frac{1}{r}} \biggr] \end{aligned}$$

holds for \(n>1\), where

$$\begin{aligned}& \psi _{1}=\frac{[3^{p+1}+(8q-3)^{p+1}](1-q)}{24^{p+1}q(1-q^{p+1})}, \\& \psi _{2}= \frac{[(3-2q)^{p+1}+(6q-5)^{p+1}](1-q)}{6^{p+1}q(1-q^{p+1})}, \end{aligned}$$

and

$$ \psi _{3}= \frac{[(21-16q)^{p+1}+(24q-21)^{p+1}](1-q)}{24^{p+1}q(1-q^{p+1})}. $$

Proof

Let \({f}(x)=x^{n}\) and \(\xi (\beta ,\alpha )=\beta -\alpha \). Then Proposition 2.13 follows easily from Theorem 2.7. □

Proposition 2.14

Let \(\beta >\alpha >0\), \(n>1\)and \(q\in (0,1)\). Then the inequality

$$\begin{aligned}& \biggl\vert \frac{1}{4} \biggl[\mathcal{A} \bigl(\alpha ^{n},\beta ^{n} \bigr)+ \biggl( \frac{2}{3} \biggr)^{n-1} \bigl[\mathcal{A}^{n}(2{\alpha },{\beta })+ \mathcal{A}^{n}({\alpha },2{\beta }) \bigr] \biggr] - \frac{(n+1)(1-q)}{1-q^{n+1}}\mathcal{L}_{n}^{n}(\alpha ,\beta ) \biggr\vert \\& \quad \leq ({\beta }-{\alpha }) \biggl[ \biggl(\frac{20q-3}{288(1+q)} \biggr)^{1- \frac{1}{r}} \biggl( \frac{480q^{3}+248q^{2}+248q-3}{6912(1+q)(1+q+q^{2})} \bigl(n{\alpha }^{n-1} \bigr)^{r} \\& \qquad {}+\frac{160q^{2}+160q-69}{6912(1+q)(1+q+q^{2})} \biggl( \frac{\beta ^{n}-(q\beta +(1-q)\alpha )^{n}}{(\beta -\alpha )(1-q)} \biggr)^{r} \biggr)^{\frac{1}{r}} \\& \qquad {}+ \biggl(\frac{q}{18(1+q)} \biggr)^{1-\frac{1}{r}} \biggl( \frac{6q^{3}+3}{108(1+q)(1+q+q^{2})} \bigl(n{\alpha }^{n-1} \bigr)^{r} \\& \qquad {}+\frac{6q^{2}+6q-3}{108(1+q)(1+q+q^{2})} \biggl( \frac{\beta ^{n}-(q\beta +(1-q)\alpha )^{n}}{(\beta -\alpha )(1-q)} \biggr)^{r} \biggr)^{\frac{1}{r}} \\& \qquad {}+ \biggl(\frac{21-4q}{288(1+q)} \biggr)^{1-\frac{1}{r}} \biggl( \frac{-96q^{3}+184q^{2}+184q-21}{6912(1+q)(1+q+q^{2})} \bigl(n{\alpha }^{n-1} \bigr)^{r} \\& \qquad {}+\frac{224q^{2}+224q+525}{6912(1+q)(1+q+q^{2})} \biggl( \frac{\beta ^{n}-(q\beta +(1-q)\alpha )^{n}}{(\beta -\alpha )(1-q)} \biggr)^{r} \biggr)^{\frac{1}{r}} \biggr] \end{aligned}$$

holds for all \(r>1\).

Proof

Let \({f}(x)=x^{n}\) and \(\xi (\beta ,\alpha )=\beta -\alpha \). Then Proposition 2.14 follows from Theorem 2.9. □

3 Conclusions

In this paper, we have derived a new q-integral identity involving a q-differentiable function. Using this new identity as an auxiliary result, we have derived new associated quantum bounds essentially using the class of preinvex functions. We also discussed some special cases of the obtained results which show that the main results obtained in the paper are quite unifying. In order to show the significance of the obtained results, we have also presented applications to special means. Since quantum calculus has extensive applications in many mathematical areas, we hope that our results can be applied in convex analysis, to special functions, in quantum mechanics, related optimization theory, to mathematical inequalities, and may stimulate further research in different areas of pure and applied sciences.

References

  1. Abbas Baloch, I., Chu, Y.-M.: Petrović-type inequalities for harmonic h-convex functions. J. Funct. Spaces 2020, Article ID 3075390 (2020)

    MATH  Google Scholar 

  2. Adil Khan, M., Hanif, M., Khan, Z.A., Ahmad, K., Chu, Y.-M.: Association of Jensen’s inequality for s-convex function with Csiszár divergence. J. Inequal. Appl. 2019, Article ID 162 (2019)

    Google Scholar 

  3. Adil Khan, M., Iqbal, A., Suleman, M., Chu, Y.-M.: Hermite–Hadamard type inequalities for fractional integrals via Green’s function. J. Inequal. Appl. 2018, Article ID 161 (2018)

    MathSciNet  Google Scholar 

  4. Adil Khan, M., Mohammad, N., Nwaeze, E.R., Chu, Y.-M.: Quantum Hermite–Hadamard inequality by means of a Green function. Adv. Differ. Equ. 2020, Article ID 99 (2020)

    MathSciNet  Google Scholar 

  5. Adil Khan, M., Pečarić, J., Chu, Y.-M.: Refinements of Jensen’s and McShane’s inequalities with applications. AIMS Math. 5(5), 4931–4945 (2020)

    Google Scholar 

  6. Alp, N., Sarıkaya, M.Z., Kunt, M., İşcan, İ.: q-Hermite–Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ., Sci. 30(2), 193–203 (2018)

    MATH  Google Scholar 

  7. Awan, M.U., Akhtar, N., Iftikhar, S., Noor, M.A., Chu, Y.-M.: New Hermite–Hadamard type inequalities for n-polynomial harmonically convex functions. J. Inequal. Appl. 2020, Article ID 125 (2020)

    MathSciNet  Google Scholar 

  8. Awan, M.U., Akhtar, N., Kashuri, A., Noor, M.A., Chu, Y.-M.: 2D approximately reciprocal ρ-convex functions and associated integral inequalities. AIMS Math. 5(5), 4662–4680 (2020)

    Google Scholar 

  9. Awan, M.U., Talib, S., Chu, Y.-M., Noor, M.A., Noor, K.I.: Some new refinements of Hermite–Hadamard-type inequalities involving \(\varPsi _{k}\)-Riemann–Liouville fractional integrals and applications. Math. Probl. Eng. 2020, Article ID 3051920 (2020)

    MathSciNet  Google Scholar 

  10. Ben-Israel, A., Mond, B.: What is invexity? J. Aust. Math. Soc. 28B(1), 1–9 (1986)

    MathSciNet  MATH  Google Scholar 

  11. Erden, S., Iftikhar, S., Delavar, M.R., Kumam, P., Thounthong, P., Kumam, W.: On generalizations of some inequalities for convex functions via quantum integrals. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114(3), Article ID 110 (2020). https://doi.org/10.1007/s13398-020-00841-3

    Article  MathSciNet  MATH  Google Scholar 

  12. Ernst, T.: The history of q-calculus and new method. UUDM Reoprt 2000: 16, Department of Mathematics, Uppsala University (2000)

  13. Ernst, T.: A Comprehensive Treatment of q-Calculus. Springer, Basel (2012)

    MATH  Google Scholar 

  14. Gauchman, H.: Integral inequalities in q-calculus. Comput. Math. Appl. 47(2–3), 281–300 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Iqbal, A., Adil Khan, M., Ullah, S., Chu, Y.-M.: Some new Hermite–Hadamard-type inequalities associated with conformable fractional integrals and their applications. J. Funct. Spaces 2020, Article ID 9845407 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Jackson, F.H.: On q-definite integrals. Q. J. Pure Appl. Math. 41, 193–203 (1910)

    MATH  Google Scholar 

  17. Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002)

    MATH  Google Scholar 

  18. Khan, S., Adil Khan, M., Chu, Y.-M.: Converses of the Jensen inequality derived from the Green functions with applications in information theory. Math. Methods Appl. Sci. 43(5), 2577–2587 (2020)

    MathSciNet  Google Scholar 

  19. Khurshid, Y., Adil Khan, M., Chu, Y.-M.: Conformable fractional integral inequalities for GG- and GA-convex function. AIMS Math. 5(5), 5012–5030 (2020)

    Google Scholar 

  20. Khurshid, Y., Adil Khan, M., Chu, Y.-M.: Conformable integral version of Hermite–Hadamard–Fejér inequalities via η-convex functions. AIMS Math. 5(5), 5106–5120 (2020)

    Google Scholar 

  21. Latif, M.A., Rashid, S., Dragomir, S.S., Chu, Y.-M.: Hermite–Hadamard type inequalities for coordinated convex and quasi-convex functions and their applications. J. Inequal. Appl. 2019, Article ID 317 (2019)

    Google Scholar 

  22. Liu, W.-J., Zhang, H.-F.: Some quantum estimates of Hermite–Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 7(2), 501–522 (2017)

    MathSciNet  Google Scholar 

  23. Noor, M.A., Awan, M.U., Noor, K.I.: Quantum Ostrowski inequalities for q-differentiable convex functions. J. Math. Inequal. 10(4), 1013–1018 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Noor, M.A., Noor, K.I., Awan, M.U.: Some quantum integral inequalities via preinvex functions. Appl. Math. Comput. 269, 242–251 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Noor, M.A., Noor, K.I., Awan, M.U.: Some quantum estimates for Hermite–Hadamard inequalities. Appl. Math. Comput. 251, 675–679 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Qian, W.-M., He, Z.-Y., Chu, Y.-M.: Approximation for the complete elliptic integral of the first kind. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114(2), Article ID 57 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Qian, W.-M., He, Z.-Y., Zhang, H.-W., Chu, Y.-M.: Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean. J. Inequal. Appl. 2019, Article ID 168 (2019)

    MathSciNet  Google Scholar 

  28. Qian, W.-M., Yang, Y.-Y., Zhang, H.-W., Chu, Y.-M.: Optimal two-parameter geometric and arithmetic mean bounds for the Sándor–Yang mean. J. Inequal. Appl. 2019, Article ID 287 (2019)

    Google Scholar 

  29. Qian, W.-M., Zhang, W., Chu, Y.-M.: Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means. Miskolc Math. Notes 20(2), 1157–1166 (2019)

    MATH  Google Scholar 

  30. Rashid, S., Ashraf, R., Noor, M.A., Noor, K.I., Chu, Y.-M.: New weighted generalizations for differentiable exponentially convex mapping with application. AIMS Math. 5(4), 3525–3546 (2020)

    Google Scholar 

  31. Rashid, S., İşcan, İ., Baleanu, D., Chu, Y.-M.: Generation of new fractional inequalities via n polynomials s-type convexixity with applications. Adv. Differ. Equ. 2020, Article ID 264 (2020)

    Google Scholar 

  32. Rashid, S., Jarad, F., Kalsoom, H., Chu, Y.-M.: On Pólya–Szegö and Čebyšev type inequalities via generalized k-fractional integrals. Adv. Differ. Equ. 2020, Article ID 125 (2020)

    Google Scholar 

  33. Rashid, S., Noor, M.A., Noor, K.I., Safdar, F., Chu, Y.-M.: Hermite–Hadamard type inequalities for the class of convex functions on time scale. Mathematics 7(10), Article ID 956 (2019). https://doi.org/10.3390/math7100956

    Article  Google Scholar 

  34. Sudsutad, W., Ntouyas, S.K., Tariboon, J.: Quantum integral inequalities for convex functions. J. Math. Inequal. 9(3), 781–793 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Tariboon, J., Ntouyas, S.K.: Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, Article ID 282 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Tariboon, J., Ntouyas, S.K.: Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, Article ID 121 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Tunç, M., Göv, E.: Some integral inequalities via \((p,q)\)-calculus on finite intervals. RGMIA Res. Rep. Collect. 19, Article ID 95 (2016)

    Google Scholar 

  38. Vivas-Cortex, M., Kashuri, A., Hernández Hernández, J.E.: Trapezium-type inequalities for Raina’s fractional integrals operator using generalized convex functions. Symmetry 12(6), Article ID 1034 (2020)

    Google Scholar 

  39. Vivas-Cortex, M., Kashuri, A., Liko, R., Hernández Hernández, J.E.: Some new q-integral inequalities using generalized quantum Montgomery identity via preinvex functions. Symmetry 12(4), Article ID 533 (2020)

    Google Scholar 

  40. Vivas-Cortex, M.J., Kashuri, A., Liko, R., Hernández Hernández, J.E.: Quantum estimates of Ostrowski inequalities for generalized ϕ-convex functions. Symmetry 11(2), Article ID 1513 (2019)

    Google Scholar 

  41. Vivas-Cortex, M.J., Kashuri, A., Liko, R., Hernández Hernández, J.E.: Some inequalities using generalized convex functions in quantum analysis. Symmetry 11(11), Article ID 1402 (2019)

    Google Scholar 

  42. Vivas-Cortex, M.J., Kashuri, A., Liko, R., Hernández, J.E.: Quantum trapezium-type inequalities using generalized ϕ-convex functions. Axioms 9(1), Article ID 12 (2020)

    Google Scholar 

  43. Wang, B., Luo, C.-L., Li, S.-H., Chu, Y.-M.: Sharp one-parameter geometric and quadratic means bounds for the Sándor–Yang means. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114(1), Article ID 7 (2020)

    MATH  Google Scholar 

  44. Wang, M.-K., Chu, H.-H., Li, Y.-M., Chu, Y.-M.: Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind. Appl. Anal. Discrete Math. 14(1), 255–271 (2020)

    MathSciNet  Google Scholar 

  45. Wang, M.-K., He, Z.-Y., Chu, Y.-M.: Sharp power mean inequalities for the generalized elliptic integral of the first kind. Comput. Methods Funct. Theory 20(1), 111–124 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Weir, T., Mond, B.: Preinvex functions in multiple objective optimization. J. Math. Anal. Appl. 136(1), 29–38 (1988)

    MathSciNet  MATH  Google Scholar 

  47. Yang, Z.-H., Qian, W.-M., Zhang, W., Chu, Y.-M.: Notes on the complete elliptic integral of the first kind. Math. Inequal. Appl. 23(1), 77–93 (2020)

    MathSciNet  MATH  Google Scholar 

  48. Zhang, Y., Du, T.-S., Wang, H., Shen, Y.-J.: Different types of quantum integral inequalities via \((\alpha , m)\)-convexity. J. Inequal. Appl. 2018, Article ID 264 (2018)

    MathSciNet  Google Scholar 

  49. Zhao, T.-H., Shi, L., Chu, Y.-M.: Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114(2), Article ID 96 (2020). https://doi.org/10.1007/s13398-020-00825-3

    Article  MATH  Google Scholar 

  50. Zhou, S.-S., Rashid, S., Jarad, F., Kalsoom, H., Chu, Y.-M.: New estimates considering the generalized proportional Hadamard fractional integral operators. Adv. Differ. Equ. 2020, Article ID 275 (2020)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the editor and anonymous referee for their valuable comments and suggestions. These suggestions helped us a lot in improving the standard of the paper. First and second authors are thankful to Higher Education Commission of Pakistan.

Availability of data and materials

Not applicable.

Funding

The work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11301127, 11701176, 11626101, 11601485) and the Natural Science Foundation of Huzhou City (Grant No. 2018YZ07).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yu-Ming Chu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awan, M.U., Talib, S., Kashuri, A. et al. Estimates of quantum bounds pertaining to new q-integral identity with applications. Adv Differ Equ 2020, 424 (2020). https://doi.org/10.1186/s13662-020-02878-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-020-02878-5

MSC

Keywords