Skip to main content

Table 3 \(C_{2}\)-order of convergence for Test problem 1

From: High-order compact scheme for the two-dimensional fractional Rayleigh–Stokes problem for a heated generalized second-grade fluid

γ = 0.4
h/τMax error\(C_{2}\)-order
\(h =\tau =\frac{1}{2}\)3.750 × 10−2
\(h =\frac{1}{4} \), \(\tau =\frac{1}{32}\)2.612 × 10−33.84
\(h = \tau =\frac{1}{4}\)1.966 × 10−2
\(h =\frac{1}{8} \), \(\tau =\frac{1}{64}\)1.341 × 10−33.87
γ = 0.5
h/τMax error\(C_{2}\)-order
\(h =\tau =\frac{1}{2}\)4.207 × 10−2
\(h =\frac{1}{4} \), \(\tau =\frac{1}{32}\)2.390 × 10−34.13
\(h = \tau =\frac{1}{4}\)1.931 × 10−2
\(h =\frac{1}{8} \), \(\tau =\frac{1}{64}\)1.229 × 10−33.97
γ = 0.6
h/τMax error\(C_{2}\)-order
\(h = \tau =\frac{1}{2}\)4.065 × 10−2
\(h =\frac{1}{4} \), \(\tau =\frac{1}{32}\)2.047 × 10−34.31
\(h =\tau =\frac{1}{4}\)1.665 × 10−2
\(h =\frac{1}{8} \), \(\tau =\frac{1}{64}\)1.050 × 10−33.98
γ = 0.8
h/τMax error\(C_{2}\)-order
\(h =\tau =\frac{1}{2}\)2.258 × 10−2
\(h =\frac{1}{4} \), \(\tau =\frac{1}{32}\)1.105 × 10−34.35
\(h = \tau =\frac{1}{4}\)6.946 × 10−3
\(h =\frac{1}{8} \), \(\tau =\frac{1}{64}\)4.7880 × 10−43.85