Skip to main content

A fractional derivative with two singular kernels and application to a heat conduction problem

Abstract

In this article, we suggest a new notion of fractional derivative involving two singular kernels. Some properties related to this new operator are established and some examples are provided. We also present some applications to fractional differential equations and propose a numerical algorithm based on a Picard iteration for approximating the solutions. Finally, an application to a heat conduction problem is given.

Introduction

In many applications in applied sciences, the use of fractional derivatives with singular kernels allows us to obtain more realistic models than those derived using the standard derivative (see e.g. [27, 10, 11, 13, 14]). The literature contains various notions of fractional derivatives with singular kernels. The best known are the Riemann–Liouville fractional derivative and the Caputo fractional derivative (see e.g. [12, 22]). For other definitions, see, for example [1, 8, 1521] and the references therein.

In [1], Almeida introduced the notion of ψ-Caputo fractional derivative as a generalization of the Caputo derivative. Namely, given \(\psi \in C^{n}([a,b],\mathbb{R})\) with \(\psi '>0\), and \(f\in C^{n}([a,b],\mathbb{R})\), the left-sided fractional derivative order \(\alpha \in (n-1,n)\) of f with respect to ψ is defined by

$$ \bigl({}^{C}\!D_{a}^{\alpha ,\psi }f \bigr) (t)= \biggl(I_{a}^{n- \alpha ,\psi } \biggl(\frac{1}{\psi '(t)} \frac{d}{dt} \biggr)^{n}f \biggr) (t),\quad a< t\leq b, $$

where

$$ \bigl(I_{a}^{\theta ,\psi }h \bigr) (t)=\frac{1}{\varGamma (\theta )} \int _{a}^{t} \psi '(s) \bigl( \psi (t)-\psi (s)\bigr)^{\theta -1}h(s) \,ds,\quad \theta >0. $$

The right-sided fractional derivative of order α of f with respect to ψ is defined by

$$ \bigl({}^{C}\!D_{b}^{\alpha ,\psi }f \bigr) (t)= \biggl(I_{b}^{n- \alpha ,\psi } \biggl(\frac{-1}{\psi '(t)} \frac{d}{dt} \biggr)^{n}f \biggr) (t),\quad a\leq t< b, $$

where

$$ \bigl(I_{b}^{\theta ,\psi }h \bigr) (t)=\frac{1}{\varGamma (\theta )} \int _{t}^{b} \psi '(s) \bigl(\psi (s)-\psi (t)\bigr)^{\theta -1}h(s) \,ds, \quad \theta >0. $$

In the particular case \(\psi (t)=t\), \({}^{C}\!D_{a}^{\alpha ,\psi }\) reduces to the left-sided Caputo fractional derivative, and \({}^{C}\!D_{b}^{\alpha ,\psi }\) reduces to the right-sided Caputo fractional derivative. For other examples of ψ, one obtains other known fractional operators, as for example the fractional derivative of Caputo–Hadamard (see [7]) and the fractional derivative of Caputo–Erdélyi–Kober (see [9]). In all the above notions, the fractional derivatives involve only one singular kernel.

In this paper, a new concept of fractional derivative with two singular kernels \(k_{1}(t,s)=\frac{1}{\varGamma (\theta +1)}\varphi '(s)(\varphi (t)- \varphi (s))^{\theta }\) and \(k_{2}(s,\tau )=\frac{1}{\varGamma (\mu +1)}\psi '(\tau )(\psi (s)-\psi ( \tau ))^{\mu }\), where \(-1<\theta \), \(\mu <0\), is proposed. We establish some properties related to this introduced operator and present some applications to fractional differential equations. Namely, we investigate the existence and uniqueness of solutions of a nonlinear fractional boundary value problem of a higher order, and provide a numerical technique based on a Picard iteration for approximating solutions. An application to a heat conduction problem is also provided.

In Sect. 2, the fractional derivative operator with two singular kernels is introduced and some properties are established. The special case \(\varphi =\psi \) is discussed in Sect. 3. In Sect. 4, we study a nonlinear fractional boundary value problem of a higher order. Namely, using Banach fixed point theorem, we establish the existence and uniqueness of solutions, and provide a numerical algorithm based on Picard iterations for approximating the solution. In Sect. 5, an application to a heat conduction problem is given.

Fractional derivative with two singular kernels

First, we fix some notations. We denote by \(\mathbb{N}\) the set of positive integers. Let \(n\in \mathbb{N}\) and \(a,b\in \mathbb{R}\) with \(a< b\). Let

$$ \varPhi ^{(n)}= \bigl\{ \varphi \in C^{n}\bigl([a,b], \mathbb{R}\bigr): \varphi '(t)>0, a\leq t\leq b \bigr\} . $$

For \(\varphi \in \varPhi ^{(n)}\), let

$$ L_{\varphi }^{(n)}= \biggl(\frac{1}{\varphi '(t)} \frac{d}{dt} \biggr)^{n}. $$

Definition 2.1

Let \(\alpha ,\beta \in (n-1,n)\), \(\varphi \in \varPhi ^{(1)}\), \(\psi \in \varPhi ^{(n)}\) and \(f\in C^{n}([a,b],\mathbb{R})\). The left-sided \((\varphi ,\psi )\)-fractional derivative of f with parameters \((\alpha ,\beta )\) is defined by

$$ \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t)=I_{a}^{n- \alpha ,\varphi } \bigl({}^{C}D_{a}^{\beta ,\psi }f \bigr) (t),\quad a< t \leq b. $$
(1)

The right-sided \((\varphi ,\psi )\)-fractional derivative of f with parameters \((\alpha ,\beta )\) is defined by

$$ \bigl(D_{b}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t)=I_{b}^{n- \alpha ,\varphi } \bigl({}^{C}D_{b}^{\beta ,\psi }f \bigr) (t),\quad a \leq t< b. $$
(2)

Remark 2.1

From (1), for all \(a< t\leq b\), one has

$$ \begin{aligned} \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t)&= \frac{1}{\varGamma (n-\alpha )\varGamma (n-\beta )}\int _{a}^{t} \varphi '(s) \bigl( \varphi (t)-\varphi (s)\bigr)^{n- \alpha -1} \\ &\quad {} \times \biggl( \int _{a}^{s} \psi '(\tau ) \bigl(\psi (s)-\psi (\tau )\bigr)^{n- \beta -1} \bigl(L_{\psi }^{(n)}f \bigr) (\tau ) \,d\tau \biggr) \,ds. \end{aligned} $$

Similarly, from (2), for all \(a\leq t< b\), one has

$$ \begin{aligned} \bigl(D_{b}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t)&= \frac{1}{\varGamma (n-\alpha )\varGamma (n-\beta )}\int _{t}^{b} \varphi '(s) \bigl( \varphi (s)-\varphi (t)\bigr)^{n- \alpha -1} \\ &\quad {}\times \biggl( \int _{s}^{b} \psi '(\tau ) \bigl(\psi (\tau )-\psi (s)\bigr)^{n- \beta -1} (-1)^{n} \bigl(L_{\psi }^{(n)}f \bigr) (\tau ) \,d\tau \biggr) \,ds. \end{aligned} $$

In \(C([a,b],\mathbb{R})\) we consider the norm

$$ \Vert f \Vert _{\infty }=\max \bigl\{ \bigl\vert f(t) \bigr\vert : a\leq t\leq b\bigr\} ,\quad f\in C\bigl([a,b], \mathbb{R}\bigr). $$

We endow \(C^{n}([a,b],\mathbb{R})\) with the norm

$$ \Vert f \Vert =\sum_{K=0}^{n} \bigl\Vert L_{\psi }^{(k)}f \bigr\Vert _{\infty },\quad f\in C^{n}\bigl([a,b],\mathbb{R}\bigr), $$

where \(\psi \in \varPhi ^{(n)}\).

Theorem 2.1

Let\(\alpha ,\beta \in (n-1,n)\), \(\varphi \in \varPhi ^{(1)}\), \(\psi \in \varPhi ^{(n)}\)and\(f\in C^{n}([a,b],\mathbb{R})\). Then

$$ \bigl\vert \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t) \bigr\vert \leq \frac{(\varphi (t)-\varphi (a))^{n-\alpha }}{\varGamma (n-\alpha +1)} \frac{(\psi (t)-\psi (a))^{n-\beta }}{\varGamma (n-\beta +1)} \Vert f \Vert ,\quad a< t\leq b, $$
(3)

and

$$ \bigl\vert \bigl(D_{b}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t) \bigr\vert \leq \frac{(\varphi (b)-\varphi (t))^{n-\alpha }}{\varGamma (n-\alpha +1)} \frac{(\psi (b)-\psi (t))^{n-\beta }}{\varGamma (n-\beta +1)} \Vert f \Vert , \quad a\leq t< b. $$
(4)

Proof

Let \(a< t\leq b\). Then

$$ \begin{aligned} & \bigl\vert \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t) \bigr\vert \\ &\quad \leq \frac{ \Vert f \Vert }{\varGamma (n-\alpha )\varGamma (n-\beta )} \int _{a}^{t} \varphi '(s) \bigl( \varphi (t)-\varphi (s)\bigr)^{n-\alpha -1} \biggl( \int _{a}^{s} \psi '(\tau ) \bigl(\psi (s)-\psi (\tau )\bigr)^{n-\beta -1} \,d\tau \biggr) \,ds \\ &\quad \leq \frac{ \Vert f \Vert }{\varGamma (n-\alpha )\varGamma (n-\beta +1)} \int _{a}^{t} \varphi '(s) \bigl( \varphi (t)-\varphi (s)\bigr)^{n-\alpha -1} \bigl(\psi (s)-\psi (a) \bigr)^{n- \beta } \,ds \\ &\quad \leq \frac{(\psi (t)-\psi (a))^{n-\beta } (\varphi (t)-\varphi (a))^{n-\alpha }}{\varGamma (n-\alpha +1)\varGamma (n-\beta +1)} \Vert f \Vert , \end{aligned} $$

which proves (3). Using similar estimates, one obtains (4). □

Corollary 2.1

Let\(\alpha ,\beta \in (n-1,n)\), \(\varphi \in \varPhi ^{(1)}\), \(\psi \in \varPhi ^{(n)}\)and\(f\in C^{n}([a,b],\mathbb{R})\). Then

$$ \lim_{t\to a^{+}} \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t)=0 $$
(5)

and

$$ \lim_{t\to b^{-}} \bigl(D_{b}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t)=0. $$
(6)

Proof

Taking the limit as \(t\to a^{+}\) in (3), (5) follows. Similarly, taking the limit as \(t\to b^{-}\) in (4), (6) follows. □

Taking

$$ \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (a)=0, $$

one deduces from (5) that \(D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )}f\in C([a,b],\mathbb{R})\). Similarly, taking

$$ \bigl(D_{b}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (b)=0, $$

one deduces from (6) that \(D_{b}^{(\alpha ,\beta ),(\varphi ,\psi )}f\in C([a,b],\mathbb{R})\). Therefore, by Theorem 3.1, one obtains the following.

Corollary 2.2

Let\(\alpha ,\beta \in (n-1,n)\), \(\varphi \in \varPhi ^{(1)}\)and\(\psi \in \varPhi ^{(n)}\). Then, for any\(g\in C^{n}([a,b],\mathbb{R})\), we have

$$ \bigl\Vert D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )}g \bigr\Vert _{\infty } \leq C \Vert g \Vert \quad \textit{and} \quad \bigl\Vert D_{b}^{(\alpha ,\beta ),( \varphi ,\psi )}g \bigr\Vert _{\infty }\leq C \Vert g \Vert , $$

where

$$ C=\frac{(\varphi (b)-\varphi (a))^{n-\alpha }}{\varGamma (n-\alpha +1)} \frac{(\psi (b)-\psi (a))^{n-\beta }}{\varGamma (n-\beta +1)}. $$

Lemma 2.1

Let\(\varphi \in \varPhi ^{(1)}\)and\(f\in C^{1}([a,b],\mathbb{R})\). Then

$$ \lim_{\theta \to 0^{+}} \bigl(I_{a}^{\theta ,\varphi }f \bigr) (t)=f(t),\quad a< t\leq b, $$
(7)

and

$$ \lim_{\theta \to 0^{+}} \bigl(I_{b}^{\theta ,\varphi }f \bigr) (t)=f(t),\quad a\leq t< b. $$
(8)

Proof

Let \(\theta >0\). One has

$$ \bigl(I_{a}^{\theta ,\varphi }f \bigr) (t)= \frac{1}{\varGamma (\theta )} \int _{a}^{t} \varphi '(s) \bigl( \varphi (t)- \varphi (s)\bigr)^{\theta -1} f(s) \,ds. $$

Integrating by parts, one obtains

$$ \bigl(I_{a}^{\theta ,\varphi }f \bigr) (t)= \frac{1}{\varGamma (\theta +1)} \biggl(\bigl(\varphi (t)-\varphi (a)\bigr)^{\theta }f(a) + \int _{a}^{t} \bigl(\varphi (t)-\varphi (s) \bigr)^{\theta }f'(s) \,ds \biggr). $$

Passing to the limit as \(\theta \to 0^{+}\) in the above equality, (7) follows. Similarly, one has

$$ \bigl(I_{b}^{\theta ,\varphi }f \bigr) (t)= \frac{1}{\varGamma (\theta )} \int _{t}^{b} \varphi '(s) \bigl( \varphi (s)- \varphi (t)\bigr)^{\theta -1} f(s) \,ds. $$

Integrating by parts, one obtains

$$ \bigl(I_{b}^{\theta ,\varphi }f \bigr) (t)= \frac{1}{\varGamma (\theta +1)} \biggl(\bigl(\varphi (b)-\varphi (\theta )\bigr)^{\theta }f(b) - \int _{t}^{b} \bigl(\varphi (s)-\varphi (t) \bigr)^{\theta }f'(s) \,ds \biggr). $$

Passing to the limit as \(\theta \to 0^{+}\) in the above equality, (8) follows. □

Theorem 2.2

Let\(n-1<\beta <n\), \(\varphi \in \varPhi ^{(1)}\), \(\psi \in \varPhi ^{(n)}\)and\(f\in C^{n}([a,b],\mathbb{R})\).

  1. (I)

    If\({}^{C}D_{a}^{\beta ,\psi }f\in C^{1}([a,b],\mathbb{R})\), then

    $$ \lim_{\alpha \to n^{-}} \bigl(D_{a}^{(\alpha ,\beta ),(\varphi , \psi )}f \bigr) (t) = \bigl({}^{C}D_{a}^{\beta ,\psi }f \bigr) (t),\quad a< t\leq b. $$
  2. (II)

    If\({}^{C}D_{b}^{\beta ,\psi }f\in C^{1}([a,b],\mathbb{R})\), then

    $$ \lim_{\alpha \to n^{-}} \bigl(D_{b}^{(\alpha ,\beta ),(\varphi , \psi )}f \bigr) (t) = \bigl({}^{C}D_{b}^{\beta ,\psi }f \bigr) (t),\quad a \leq t< b. $$

Proof

Using (1) and (7), (I) follows. Similarly, using (2) and (8), (II) follows. □

Theorem 2.3

Let\(\alpha ,\beta \in (n-1,n)\), \(\varphi \in \varPhi ^{(1)}\), \(\psi \in \varPhi ^{(n+1)}\)and\(f\in C^{n+1}([a,b],\mathbb{R})\). For all\(a< t\leq b\),

$$\begin{aligned}& \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t) \\& \quad = \frac{ (L_{\psi }^{(n)}f )(a)}{\varGamma (n-\alpha )\varGamma (n+1-\beta )} \int _{a}^{t} \varphi '(s) \bigl( \varphi (t)-\varphi (s)\bigr)^{n-\alpha -1} \bigl( \psi (s)-\psi (a) \bigr)^{n-\beta } \,ds \\& \qquad {} + \frac{1}{\varGamma (n-\alpha )\varGamma (n+1-\beta )}\int _{a}^{t} \varphi '(s) \bigl( \varphi (t)-\varphi (s)\bigr)^{n- \alpha -1} \\& \qquad {} \times \biggl( \int _{a}^{s} \bigl(\psi (s)-\psi (\tau ) \bigr)^{n-\beta } \frac{d}{d\tau } \bigl(L_{\psi }^{(n)}f \bigr) (\tau ) \,d\tau \biggr) \,ds. \end{aligned}$$
(9)

For all\(a\leq t< b\),

$$\begin{aligned}& \bigl(D_{b}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t) \\& \quad = \frac{(-1)^{n} (L_{\psi }^{(n)}f )(b)}{\varGamma (n-\alpha )\varGamma (n+1-\beta )} \int _{t}^{b} \varphi '(s) \bigl( \varphi (s)-\varphi (t)\bigr)^{n-\alpha -1} \bigl( \psi (b)-\psi (s) \bigr)^{n-\beta } \,ds \\& \qquad {}- \frac{1}{\varGamma (n-\alpha )\varGamma (n+1-\beta )}\int _{t}^{b} \varphi '(s) \bigl( \varphi (s)-\varphi (t)\bigr)^{n- \alpha -1} \\& \qquad {} \times \biggl( \int _{s}^{b} \bigl(\psi (\tau )-\psi (s) \bigr)^{n-\beta }(-1)^{n} \frac{d}{d\tau } \bigl(L_{\psi }^{(n)}f \bigr) (\tau ) \,d\tau \biggr) \,ds. \end{aligned}$$
(10)

Proof

Equation (9) follows from (1) and [1, Theorem 1]. (10) follows from (2) and [1, Theorem 1]. □

Corollary 2.3

Let\(\varphi \in \varPhi ^{(1)}\), \(\psi \in \varPhi ^{(n+1)}\)and\(f\in C^{n+1}([a,b],\mathbb{R})\). Then

$$ \lim_{\alpha \to n^{-}} \Bigl(\lim_{\beta \to n^{-}} \bigl(D_{a}^{( \alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t) \Bigr)= \bigl(L_{\psi }^{(n)}f \bigr) (t),\quad a< t\leq b, $$
(11)

and

$$ \lim_{\alpha \to n^{-}} \Bigl(\lim_{\beta \to n^{-}} \bigl(D_{b}^{( \alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t) \Bigr)=(-1)^{n} \bigl(L_{ \psi }^{(n)}f \bigr) (t),\quad a\leq t< b. $$
(12)

Proof

Let \(a< t\leq b\). From (9), for \(n-1<\alpha <n\), one has

$$ \begin{aligned} &\lim_{\beta \to n^{-}} \bigl(D_{a}^{(\alpha ,\beta ),(\varphi , \psi )}f \bigr) (t) \\ &\quad = \frac{1}{\varGamma (n-\alpha )} \bigl(L_{\psi }^{(n)}f \bigr) (a) \int _{a}^{t} \varphi '(s) \bigl( \varphi (t)-\varphi (s)\bigr)^{n-\alpha -1} \,ds \\ &\qquad {}+ \frac{1}{\varGamma (n-\alpha )} \int _{a}^{t} \varphi '(s) \bigl( \varphi (t)- \varphi (s)\bigr)^{n-\alpha -1} \biggl( \int _{a}^{s} \frac{d}{d\tau } \bigl(L_{\psi }^{(n)}f \bigr) (\tau ) \,d\tau \biggr) \,ds \\ &\quad =\frac{(\varphi (t)-\varphi (a))^{n-\alpha }}{\varGamma (n-\alpha +1)} \bigl(L_{\psi }^{(n)}f \bigr) (a) \\ &\qquad {} +\frac{1}{\varGamma (n-\alpha )} \int _{a}^{t} \varphi '(s) \bigl( \varphi (t)- \varphi (s)\bigr)^{n-\alpha -1} \bigl( \bigl(L_{\psi }^{(n)}f \bigr) (s)- \bigl(L_{\psi }^{(n)}f \bigr) (a) \bigr) \,ds. \end{aligned} $$

Hence, taking the limit as \(\alpha \to n^{-}\), and using (7), (11) follows. Similarly, for \(a\leq t< b\), using (10) and (8), (12) follows. □

The case \(\varphi =\psi \)

Let \(\alpha ,\beta \in (n-1,n)\), \(\psi =\varphi \in \varPhi ^{(n)}\) and \(f\in C^{n}([a,b],\mathbb{R})\). In this case, by (1), for all \(a< t\leq b\), one obtains

$$ \begin{aligned} \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t)&= \bigl(D_{a}^{( \alpha ,\beta ),(\varphi ,\varphi )}f \bigr) (t)=I_{a}^{n-\alpha , \varphi } \bigl({}^{C}D_{a}^{\beta ,\varphi }f \bigr) (t) \\ &=I_{a}^{n-\alpha ,\varphi } \bigl(I_{a}^{n-\beta ,\varphi }L_{ \varphi }^{(n)}f \bigr) (t). \end{aligned} $$

Using the semigroup property (see [1]), we have

$$ \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t)= \bigl(I_{a}^{2n-( \alpha +\beta ),\varphi }L_{\varphi }^{(n)}f \bigr) (t),\quad a< t \leq b. $$
(13)

Similarly, by (2), one obtains

$$ \bigl(D_{b}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t)= \bigl(I_{b}^{2n-( \alpha +\beta ),\varphi }(-1)^{n}L_{\varphi }^{(n)}f \bigr) (t),\quad a\leq t< b. $$
(14)

The case \(2n-1< \alpha +\beta <2n\)

In this case, using (13), one has

$$ \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t)= \bigl(I_{a}^{n-( \alpha +\beta -n),\varphi }L_{\varphi }^{(n)}f \bigr) (t),\quad a< t \leq b, $$

i.e.

$$ \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t)= \bigl({}^{C}D_{a}^{ \alpha +\beta -n,\varphi }f \bigr) (t),\quad a< t\leq b. $$

Similarly, using (14), one obtains

$$ \bigl(D_{b}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t)= \bigl({}^{C}D_{b}^{ \alpha +\beta -n,\varphi }f \bigr) (t),\quad a\leq t< b. $$

Hence, the following result holds.

Theorem 3.1

Let\(\alpha ,\beta \in (n-1,n)\), \(\varphi \in \varPhi ^{(n)}\)and\(f\in C^{n}([a,b],\mathbb{R})\). Suppose that\(2n-1< \alpha +\beta <2n\). Then

$$ \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\varphi )}f \bigr) (t)= \bigl({}^{C}D_{a}^{\alpha +\beta -n,\varphi }f \bigr) (t)= \bigl(D_{a}^{( \beta ,\alpha ),(\varphi ,\varphi )}f \bigr) (t),\quad a< t\leq b, $$

and

$$ \bigl(D_{b}^{(\alpha ,\beta ),(\varphi ,\varphi )}f \bigr) (t)= \bigl({}^{C}D_{b}^{\alpha +\beta -n,\varphi }f \bigr) (t)= \bigl(D_{b}^{( \beta ,\alpha ),(\varphi ,\varphi )}f \bigr) (t),\quad a\leq t< b. $$

The case \(2n-2< \alpha +\beta <2n-1\)

In this case, using (13), for \(a< t\leq b\), one has

$$ \begin{aligned} & \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t) \\ &\quad = \bigl(I_{a}^{2n-(\alpha +\beta ),\varphi }L_{\varphi }^{(n)}f \bigr) (t) \\ &\quad =\frac{1}{\varGamma (2n-\alpha -\beta )} \int _{a}^{t} \varphi '(s) \bigl( \varphi (t)-\varphi (s)\bigr)^{2n-\alpha -\beta -1} \bigl(L_{\varphi }^{(n)}f \bigr) (s) \,ds \\ &\quad = \frac{1}{\varGamma (2n-\alpha -\beta )} \int _{a}^{t} \bigl(\varphi (t)- \varphi (s) \bigr)^{2n-\alpha -\beta -1} \frac{d}{ds} \bigl(L_{\varphi }^{(n-1)}f \bigr) (s) \,ds. \end{aligned} $$

Integrating by parts, one obtains

$$ \begin{aligned}[b] & \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t) \\ &\quad =\frac{1}{\varGamma (2n-\alpha -\beta )} \bigl[\bigl(\varphi (t)-\varphi (s)\bigr)^{2n- \alpha -\beta -1} \bigl(L_{\varphi }^{(n-1)}f \bigr) (s) \bigr]_{s=a}^{t} \\ &\qquad {}+ \frac{(2n-\alpha -\beta -1)}{\varGamma (2n-\alpha -\beta )} \int _{a}^{t} \bigl(\varphi (t)-\varphi (s) \bigr)^{2n-\alpha -\beta -2} \varphi '(s) \bigl(L_{ \varphi }^{(n-1)}f \bigr) (s) \,ds \\ &\quad =-\frac{1}{\varGamma (2n-\alpha -\beta )}\bigl(\varphi (t)-\varphi (a)\bigr)^{2n- \alpha -\beta -1} \bigl(L_{\varphi }^{(n-1)}f \bigr) (a)+g_{n}(t), \end{aligned} $$
(15)

where

$$\begin{aligned} g_{n}(t) =&\frac{1}{\varGamma ((n-1)-(\alpha +\beta -n))} \\ &{} \times \int _{a}^{t} \bigl(\varphi (t)-\varphi (s) \bigr)^{(n-1)-(\alpha + \beta -n)-1} \varphi '(s) \bigl(L_{\varphi }^{(n-1)}f \bigr) (s) \,ds. \end{aligned}$$

Now, we discuss two cases.

\(n=1\). In this case, one has

$$\begin{aligned} g_{1}(t) =&\frac{1}{\varGamma (1-(\alpha +\beta ))} \int _{a}^{t} \bigl( \varphi (t)-\varphi (s) \bigr)^{-(\alpha +\beta )} \varphi '(s) f(s) \,ds \\ =& \bigl(I_{a}^{1-(\alpha +\beta ),\varphi }f \bigr) (t). \end{aligned}$$

Hence, by (15), one deduces that

$$ \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t)= \frac{-1}{\varGamma (2-\alpha -\beta )} \bigl(\varphi (t)-\varphi (a)\bigr)^{1- \alpha -\beta }f(a)+ \bigl(I_{a}^{1-(\alpha +\beta ),\varphi }f \bigr) (t). $$

\(n\geq 2\). In this case, one has

$$ g_{n}(t)= \bigl({}^{C}D_{a}^{\alpha +\beta -n,\varphi }f \bigr) (t). $$

Hence, by (15), one deduces that

$$ \begin{aligned} & \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t) \\ &\quad =-\frac{1}{\varGamma (2n-\alpha -\beta )}\bigl(\varphi (t)-\varphi (a)\bigr)^{2n- \alpha -\beta -1} \bigl(L_{\varphi }^{(n-1)}f \bigr) (a)+ \bigl({}^{C}D_{a}^{ \alpha +\beta -n,\varphi }f \bigr) (t). \end{aligned} $$

Similarly, using (14), for \(a\leq t< b\) and \(n\geq 2\), one obtains

$$ \begin{aligned} & \bigl(D_{b}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t) \\ &\quad =\frac{1}{\varGamma (2n-\alpha -\beta )}\bigl(\varphi (b)-\varphi (t)\bigr)^{2n- \alpha -\beta -1}(-1)^{n} \bigl(L_{\varphi }^{(n-1)}f \bigr) (b)+ \bigl({}^{C}D_{b}^{\alpha +\beta -n,\varphi }f \bigr) (t) \end{aligned} $$

and for \(n=1\),

$$ \begin{aligned} & \bigl(D_{b}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t) \\ &\quad =\frac{-1}{\varGamma (2-\alpha -\beta )}\bigl(\varphi (b)-\varphi (t)\bigr)^{1- \alpha -\beta }f(b)+ \bigl(I_{b}^{1-(\alpha +\beta ),\varphi }f \bigr) (t). \end{aligned} $$

Hence, we have the following results.

Theorem 3.2

Let\(\alpha ,\beta \in (n-1,n)\), \(n\geq 2\), \(\varphi \in \varPhi ^{(n)}\)and\(f\in C^{n}([a,b],\mathbb{R})\). Suppose that\(2n-2< \alpha +\beta <2n-1\). Then

$$ \begin{aligned} & \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\varphi )}f \bigr) (t) \\ &\quad =- \frac{(\varphi (t)-\varphi (a))^{2n-\alpha -\beta -1}}{\varGamma (2n-\alpha -\beta )} \bigl(L_{\varphi }^{(n-1)}f \bigr) (a)+ \bigl({}^{C}D_{a}^{\alpha + \beta -n,\varphi }f \bigr) (t) \\ &\quad = \bigl(D_{a}^{(\beta ,\alpha ),(\varphi ,\varphi )}f \bigr) (t),\quad a< t\leq b, \end{aligned} $$

and

$$ \begin{aligned} & \bigl(D_{b}^{(\alpha ,\beta ),(\varphi ,\varphi )}f \bigr) (t) \\ &\quad = \frac{(\varphi (b)-\varphi (t))^{2n-\alpha -\beta -1}}{\varGamma (2n-\alpha -\beta )}(-1)^{n} \bigl(L_{\varphi }^{(n-1)}f \bigr) (b)+ \bigl({}^{C}D_{b}^{\alpha + \beta -n,\varphi }f \bigr) (t) \\ &\quad = \bigl(D_{b}^{(\beta ,\alpha ),(\varphi ,\varphi )}f \bigr) (t),\quad a\leq t< b. \end{aligned} $$

Theorem 3.3

Let\(0<\alpha , \beta <1\), \(\varphi \in \varPhi ^{(1)}\)and\(f\in C^{1}([a,b],\mathbb{R})\). Suppose that\(0< \alpha +\beta <1\). Then

$$ \begin{aligned} & \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\varphi )}f \bigr) (t) \\ &\quad =\frac{-1}{\varGamma (2-\alpha -\beta )}\bigl(\varphi (t)-\varphi (a)\bigr)^{1- \alpha -\beta }f(a)+ \bigl(I_{a}^{1-(\alpha +\beta ),\varphi }f \bigr) (t) \\ &\quad = \bigl(D_{a}^{(\beta ,\alpha ),(\varphi ,\varphi )}f \bigr) (t),\quad a< t\leq b, \end{aligned} $$

and

$$ \begin{aligned} & \bigl(D_{b}^{(\alpha ,\beta ),(\varphi ,\varphi )}f \bigr) (t) \\ &\quad =\frac{-1}{\varGamma (2-\alpha -\beta )}\bigl(\varphi (b)-\varphi (t)\bigr)^{1- \alpha -\beta }f(b)+ \bigl(I_{b}^{1-(\alpha +\beta ),\varphi }f \bigr) (t) \\ &\quad = \bigl(D_{b}^{(\beta ,\alpha ),(\varphi ,\varphi )}f \bigr) (t),\quad a\leq t< b. \end{aligned} $$

The case \(\alpha +\beta =2n-1\)

In this case, using (13), for \(a< t\leq b\), one has

$$\begin{aligned} \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t) =& \bigl(I_{a}^{2n-(\alpha +\beta ),\varphi }L_{\varphi }^{(n)}f \bigr) (t) \\ =& \bigl(I_{a}^{1,\varphi }L_{\varphi }^{(n)}f \bigr) (t) \\ =& \int _{a}^{t} \varphi '(s) \bigl(L_{\varphi }^{(n)}f \bigr) (s) \,ds \\ =& \int _{a}^{t} \frac{d}{ds} \bigl(L_{\varphi }^{(n-1)}f \bigr) (s) \,ds \\ =& \bigl(L_{\varphi }^{(n-1)}f \bigr) (t)- \bigl(L_{\varphi }^{(n-1)}f \bigr) (a). \end{aligned}$$

Similarly, using (14), for \(a\leq t< b\), one obtains

$$ \bigl(D_{b}^{(\alpha ,\beta ),(\varphi ,\psi )}f \bigr) (t)=(-1)^{n} \bigl( \bigl(L_{\varphi }^{(n-1)}f \bigr) (b)- \bigl(L_{\varphi }^{(n-1)}f \bigr) (t) \bigr). $$

Hence, we obtain the following.

Theorem 3.4

Let\(\alpha ,\beta \in (n-1,n)\), \(\varphi \in \varPhi ^{(n)}\)and\(f\in C^{n}([a,b],\mathbb{R})\). Suppose that\(\alpha +\beta =2n-1\). Then

$$ \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\varphi )}f \bigr) (t)= \bigl(L_{\varphi }^{(n-1)}f \bigr) (t)- \bigl(L_{\varphi }^{(n-1)}f \bigr) (a)= \bigl(D_{a}^{(\beta ,\alpha ),(\varphi ,\varphi )}f \bigr) (t),\quad a< t\leq b, $$

and

$$ \begin{aligned} \bigl(D_{b}^{(\alpha ,\beta ),(\varphi ,\varphi )}f \bigr) (t) &=(-1)^{n} \bigl[ \bigl(L_{\varphi }^{(n-1)}f \bigr) (b)- \bigl(L_{\varphi }^{(n-1)}f \bigr) (t) \bigr] \\ &= \bigl(D_{b}^{(\beta ,\alpha ),(\varphi ,\varphi )}f \bigr) (t) ,\quad a\leq t< b. \end{aligned} $$

Example 3.1

Let \(0<\alpha , \beta <1\). Consider the function

$$ f(t)=\bigl(\varphi (t)-\varphi (0)\bigr)^{2},\quad 0 \leq t\leq 1, $$
(16)

where \(\varphi \in \varPhi ^{(1)}\). By (13), one has

$$ \bigl(D_{0}^{(\alpha ,\beta ),(\varphi ,\varphi )}f \bigr) (t)= \bigl(I_{0}^{2-\alpha -\beta ,\varphi }L_{\varphi }^{(1)}f \bigr) (t),\quad 0< t\leq 1, $$

that is,

$$ \begin{aligned} & \bigl(D_{0}^{(\alpha ,\beta ),(\varphi ,\varphi )}f \bigr) (t) \\ &\quad =\frac{1}{\varGamma (2-\alpha -\beta )} \int _{0}^{t} \bigl(\varphi (t)- \varphi (s) \bigr)^{1-\alpha -\beta } f'(s) \,ds \\ &\quad = \frac{2}{\varGamma (2-\alpha -\beta )} \int _{0}^{t} \bigl(\varphi (t)- \varphi (s) \bigr)^{1-\alpha -\beta } \bigl(\varphi (s)-\varphi (0)\bigr) \varphi '(s) \,ds \\ &\quad = \frac{2(\varphi (t)-\varphi (0)^{1-\alpha -\beta }}{\varGamma (2-\alpha -\beta )} \int _{0}^{t} \biggl[1- \frac{\varphi (s)-\varphi (0)}{\varphi (t)-\varphi (0)} \biggr]^{1- \alpha -\beta } \bigl(\varphi (s)-\varphi (0)\bigr)\varphi '(s) \,ds. \end{aligned} $$

Using the change of variable \(z=\frac{\varphi (s)-\varphi (0)}{\varphi (t)-\varphi (0)}\), one obtains

$$\begin{aligned} \bigl(D_{0}^{(\alpha ,\beta ),(\varphi ,\varphi )}f \bigr) (t) =&\frac{2(\varphi (t)-\varphi (0)^{3-\alpha -\beta }}{\varGamma (2-\alpha -\beta )} \int _{0}^{1} (1-z)^{(2-\alpha -\beta )-1} z^{2-1} \,dz \\ =& \frac{2(\varphi (t)-\varphi (0)^{3-\alpha -\beta }}{\varGamma (2-\alpha -\beta )} B(2-\alpha -\beta ,2) \\ =& \frac{2}{\varGamma (4-\alpha -\beta )}\bigl(\varphi (t)-\varphi (0)\bigr)^{3- \alpha -\beta }, \end{aligned}$$

where B is the beta function. Observe that

$$ \lim_{(\alpha ,\beta )\to (1^{-},1^{-})} \bigl(D_{0}^{(\alpha , \beta ),(\varphi ,\varphi )}f \bigr) (t)=2\bigl(\varphi (t)-\varphi (0)\bigr)= \frac{f'(t)}{\varphi '(t)}= \bigl(L_{\varphi }^{(1)}f \bigr) (t), $$

which confirms (11). Figures 13 show some graphs of \((D_{0}^{(\alpha ,\beta ),(\varphi ,\varphi )}f )(t)\) for different functions φ and different values of \((\alpha ,\beta )\).

Figure 1
figure1

Graph of \((D_{0}^{(\alpha ,\beta ),(\varphi ,\varphi )}f )(t)\), f is given by (16) and \(\varphi (t)=t\)

Figure 2
figure2

Graph of \((D_{0}^{(\alpha ,\beta ),(\varphi ,\varphi )}f )(t)\), f is given by (16) and \(\varphi (t)=(t+1)^{2}\)

Figure 3
figure3

Graph of \((D_{0}^{(\alpha ,\beta ),(\varphi ,\varphi )}f )(t)\), f is given by (16) and \(\varphi (t)=\ln (t+1)\)

Following a similar argument to above, one obtains a theorem.

Theorem 3.5

Let\(\alpha ,\beta \in (0,1)\)and\(\theta >0\). Let

$$ f(t)=\bigl(\varphi (t)-\varphi (a)\bigr)^{\theta },\quad a\leq t\leq b, $$

where\(\varphi \in \varPhi ^{(1)}\). Then

$$ \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\varphi )}f \bigr) (t)= \frac{\varGamma (\theta +1)}{\varGamma (2-\alpha -\beta +\theta )} \bigl( \varphi (t)-\varphi (a)\bigr)^{\theta +1-\alpha -\beta },\quad a< t\leq b. $$

The Mittag-Leffler function \(E_{\theta }\), \(\theta >0\), is defined by

$$ E_{\theta }(t)= \sum_{k=0}^{\infty } \frac{t^{k}}{\varGamma (\theta k+1)},\quad t\geq 0. $$

Theorem 3.6

Let\(\rho >0\)and\(0<\alpha , \beta <1\)with\(1< \alpha +\beta <2\). Let

$$ f(t)=E_{\alpha +\beta -1} \bigl(\rho \bigl(\varphi (t)-\varphi (a) \bigr)^{ \alpha +\beta -1} \bigr),\quad a\leq t\leq b, $$

where\(\varphi \in \varPhi ^{(1)}\). Then

$$ \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\varphi )}f \bigr) (t)=\rho f(t),\quad a< t\leq b. $$

Proof

By Theorem 3.1, one has

$$ \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\varphi )}f \bigr) (t)= \bigl({}^{C}D_{a}^{\alpha +\beta -1,\varphi }f \bigr) (t). $$

Next, using [1, Lemma 2], the desired result follows. □

Theorem 3.7

Let\(\rho >0\)and\(0<\alpha , \beta <1\)with\(0< \alpha +\beta <1\). Let

$$ f(t)=E_{1-\alpha -\beta } \bigl(\rho \bigl(\varphi (t)-\varphi (a) \bigr)^{1- \alpha -\beta } \bigr), \quad a\leq t\leq b, $$

where\(\varphi \in \varPhi ^{(1)}\). Then

$$ \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\varphi )}f \bigr) (t)= \frac{f(t)}{\rho }- \biggl[ \frac{(\varphi (t)-\varphi (a))^{1-\alpha -\beta }}{\varGamma (2-\alpha -\beta )} + \frac{1}{\rho } \biggr],\quad a< t\leq b. $$

Proof

By Theorem 3.3, one has

$$ \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\varphi )}f \bigr) (t)= \frac{-1}{\varGamma (2-\alpha -\beta )} \bigl(\varphi (t)-\varphi (a)\bigr)^{1- \alpha -\beta }+ \bigl(I_{a}^{1-(\alpha +\beta ),\varphi }f \bigr) (t), $$

for all \(a< t\leq b\). On the other hand, an elementary calculation gives us

$$ \bigl(I_{a}^{1-(\alpha +\beta ),\varphi }f \bigr) (t)= \frac{f(t)-1}{\rho }, $$

for all \(a< t\leq b\). Hence, combining the above equalities, we obtain the desired result. □

Remark 3.1

By Theorems 3.6 and 3.7, one observes that, if \(0<\rho <1\), then

$$ \lim_{(\alpha +\beta )\to 1^{-}} \bigl(D_{a}^{(\alpha ,\beta ),( \varphi ,\varphi )}f \bigr) (t)=\lim_{(\alpha +\beta )\to 1^{+}} \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\varphi )}f \bigr) (t)= \frac{\rho }{1-\rho }. $$

Applications to fractional differential equations

Let \(\alpha ,\beta \in (n-1,n)\), \(\varphi \in \varPhi ^{(1)}\) and \(\psi \in \varPhi ^{(n)}\). We first consider the problem

$$ \textstyle\begin{cases} (D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )}y )(t) = \sigma (t),\quad a< t< b, \\ (L_{\psi }^{(k)}y )(a) = \mu _{k}, \quad k=0,1,\ldots ,n-1, \end{cases} $$
(17)

where \(\sigma \in C^{1}([a,b],\mathbb{R})\) and \(\sigma (a)=0\).

Proposition 4.1

Problem (17) has a unique solution\(y\in C^{n}([a,b],\mathbb{R})\), which is given by

$$ y(t)=\sum_{k=0}^{n-1} \frac{\mu _{k}}{k!}\bigl(\psi (t)-\psi (a)\bigr)^{k} +I_{a}^{ \beta ,\psi } \bigl(I_{a}^{1-(n-\alpha ),\varphi }L_{\varphi }^{(1)} \sigma \bigr) (t),\quad a\leq t\leq b. $$
(18)

Proof

Let y be the function given by (18). One observes easily that

$$ \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )} \bigl(\psi (\cdot )-\psi (a) \bigr)^{k} \bigr) (t)=0,\quad k=0,1,\ldots ,n-1. $$

Hence, using (1), one has

$$\begin{aligned} \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )} y \bigr) (t) =& D_{a}^{( \alpha ,\beta ),(\varphi ,\psi )} I_{a}^{\beta ,\psi } \bigl(I_{a}^{1-(n- \alpha ),\varphi }L_{\varphi }^{(1)} \sigma \bigr) (t) \\ =&I_{a}^{n-\alpha ,\varphi }{}^{C}\!D_{a}^{\beta ,\psi }I_{a}^{ \beta ,\psi } \bigl(I_{a}^{1-(n-\alpha ),\varphi }L_{\varphi }^{(1)} \sigma \bigr) (t). \end{aligned}$$

Using the property (see [1]) \({}^{C}\!D_{a}^{\beta ,\psi }I_{a}^{\beta ,\psi }f=f\), one obtains

$$ \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )} y \bigr) (t)= I_{a}^{n- \alpha ,\varphi } \bigl(I_{a}^{1-(n-\alpha ),\varphi }L_{\varphi }^{(1)} \sigma \bigr) (t). $$

Next, using the semigroup property, we have

$$\begin{aligned} \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )} y \bigr) (t) =& \bigl(I_{a}^{1,\varphi }L_{\varphi }^{(1)} \sigma \bigr) (t) \\ =& \int _{a}^{t} \varphi '(s) \frac{1}{\varphi '(s)} \sigma '(s) \,ds \\ =& \sigma (t)-\sigma (a). \end{aligned}$$

Since \(\sigma (a)=0\), one deduces that

$$ \bigl(D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )} y \bigr) (t)=\sigma (t). $$

On the other hand, one can check easily that

$$ \bigl(L_{\psi }^{(k)}y \bigr) (a)= \mu _{k} $$

for all \(k=0,1,\ldots ,n-1\). Therefore, the function y given by (18) solves (17).

Now, suppose that \(y\in C^{n}([a,b],\mathbb{R})\) is a solution of (18). By (1), one has

$$ I_{a}^{n-\alpha ,\varphi } \bigl({}^{C} \!D_{a}^{\beta ,\psi }y \bigr) (t)= \sigma (t), $$

which yields

$$ {}^{C}\!D_{a}^{n-\alpha ,\varphi }I_{a}^{n-\alpha ,\varphi } \bigl({}^{C} \!D_{a}^{\beta ,\psi }y \bigr) (t)= \bigl({}^{C}\!D_{a}^{n-\alpha , \varphi }\sigma \bigr) (t), $$

i.e.

$$ \bigl({}^{C}\!D_{a}^{\beta ,\psi }y \bigr) (t)= \bigl({}^{C}\!D_{a}^{n- \alpha ,\varphi }\sigma \bigr) (t). $$

Then we have

$$ I_{a}^{\beta ,\psi } \bigl({}^{C} \!D_{a}^{\beta ,\psi }y \bigr) (t)=I_{a}^{ \beta ,\psi } \bigl({}^{C}\!D_{a}^{n-\alpha ,\varphi }\sigma \bigr) (t)=I_{a}^{ \beta ,\psi } \bigl(I_{a}^{1-(n-\alpha ),\varphi }L_{\varphi }^{(1)} \sigma \bigr) (t). $$
(19)

On the other hand, one has (see [1])

$$ I_{a}^{\beta ,\psi } \bigl({}^{C} \!D_{a}^{\beta ,\psi }y \bigr) (t)=y(t)- \sum _{k=0}^{n-1} \frac{ (L_{\psi }^{(k)}y )(a)}{k!}\bigl(\psi (t)- \psi (a)\bigr)^{k}. $$

Using the initial conditions, one obtains

$$ I_{a}^{\beta ,\psi } \bigl({}^{C} \!D_{a}^{\beta ,\psi }y \bigr) (t)=y(t)- \sum _{k=0}^{n-1} \frac{\mu _{k}}{k!}\bigl(\psi (t)- \psi (a)\bigr)^{k}. $$
(20)

Further, combining (19) with (20), one deduces that

$$ y(t)=\sum_{k=0}^{n-1} \frac{\mu _{k}}{k!}\bigl(\psi (t)-\psi (a)\bigr)^{k} +I_{a}^{ \beta ,\psi } \bigl(I_{a}^{1-(n-\alpha ),\varphi }L_{\varphi }^{(1)} \sigma \bigr) (t). $$

 □

Consider now the nonlinear problem

$$\begin{aligned} \textstyle\begin{cases} (D_{a}^{(\alpha ,\beta ),(\varphi ,\psi )}y )(t) = \int _{a}^{t} f(s,y(s)) \,ds,\quad a< t< b, \\ (L_{\psi }^{(k)}y )(a) = \mu _{k},\quad k=0,1,\ldots ,n-1, \end{cases}\displaystyle \end{aligned}$$
(21)

where \(f: [a,b]\times \mathbb{R}\to \mathbb{R}\) is a continuous function. We suppose that

$$ \bigl\vert f(t,\lambda )-f(t,\eta ) \bigr\vert \leq C_{f} \vert \lambda -\eta \vert $$
(22)

for all \(t\in [a,b]\) and \(\lambda ,\eta \in \mathbb{R}\), where

$$ 0< C_{f}< \frac{\varGamma (\beta +1)\varGamma (2-n+\alpha )}{(\varphi (b)-\varphi (a))^{1-n+\alpha }(\psi (b)-\psi (a))^{\beta }}. $$
(23)

Theorem 4.1

Problem (21) admits one and only one solution\(y^{*}\in C^{n}([a,b],\mathbb{R})\). Moreover, for any\(y_{0}\in C([a,b],\mathbb{R})\), the Picard sequence\(\{y_{n}\}\subset C([a,b],\mathbb{R})\)defined by

$$ y_{n+1}(t)=\sum_{k=0}^{n-1} \frac{\mu _{k}}{k!}\bigl(\psi (t)-\psi (a)\bigr)^{k} +I_{a}^{\beta ,\psi } \biggl(I_{a}^{1-(n-\alpha ),\varphi } \frac{1}{\varphi '}f\bigl(\cdot ,y_{n}(\cdot )\bigr) \biggr) (t),\quad a \leq t \leq b, $$

converges uniformly to\(y^{*}\).

Proof

Let A be the self-mapping defined in \(C([a,b],\mathbb{R})\) by

$$ (Az) (t)=\sum_{k=0}^{n-1} \frac{\mu _{k}}{k!}\bigl(\psi (t)-\psi (a)\bigr)^{k} +I_{a}^{ \beta ,\psi } \biggl(I_{a}^{1-(n-\alpha ),\varphi } \frac{1}{\varphi '}f\bigl( \cdot ,z(\cdot )\bigr) \biggr) (t),\quad a\leq t\leq b, $$

i.e.

$$ \begin{aligned} (Az) (t)&=\sum_{k=0}^{n-1} \frac{\mu _{k}}{k!}\bigl(\psi (t)-\psi (a)\bigr)^{k} \\ &\quad {} +\frac{1}{\varGamma (\beta )\varGamma (1-n+\alpha )} \\ &\quad {}\times \int _{a}^{t} \psi '(s) \bigl( \psi (t)-\psi (s)\bigr)^{\beta -1} \biggl( \int _{a}^{s} \bigl(\varphi (s)-\varphi (\tau ) \bigr)^{-(n-\alpha )}f\bigl(\tau ,z(\tau )\bigr) \,d\tau \biggr) \,ds. \end{aligned} $$

By Proposition 4.1, \(y\in C^{n}([a,b],\mathbb{R})\) is a solution of (21) if and only if \(y\in C([a,b],\mathbb{R})\) is a fixed point of A. We shall show that A is a contraction in \((C([a,b],\mathbb{R}),\|\cdot \|_{\infty })\), and then, by the fixed point theorem of Banach, we obtain the desired result. For any \(y,z\in C([a,b],\mathbb{R})\), one has

$$ \begin{aligned} & \bigl\vert (Az) (t)-(Ay) (t) \bigr\vert \\ &\quad \leq \frac{1}{\varGamma (\beta )\varGamma (1-n+\alpha )}\int _{a}^{t} \psi '(s) \bigl( \psi (t)-\psi (s)\bigr)^{\beta -1} \\ &\qquad {}\times \biggl( \int _{a}^{s} \bigl(\varphi (s)-\varphi (\tau ) \bigr)^{-(n-\alpha )} \bigl\vert f\bigl(\tau ,z( \tau )\bigr)-f\bigl(\tau ,y( \tau )\bigr) \bigr\vert \,d\tau \biggr) \,ds. \end{aligned} $$

Using (22), we have

$$ \begin{aligned} & \bigl\vert (Az) (t)-(Ay) (t) \bigr\vert \\ &\quad \leq \frac{C_{f}}{\varGamma (\beta )\varGamma (1-n+\alpha )}\int _{a}^{t} \psi '(s) \bigl( \psi (t)-\psi (s)\bigr)^{\beta -1} \\ &\qquad {}\times \biggl( \int _{a}^{s} \bigl(\varphi (s)-\varphi (\tau ) \bigr)^{-(n-\alpha )} \bigl\vert z(\tau )-y( \tau ) \bigr\vert \,d \tau \biggr) \,ds \\ &\quad \leq \frac{C_{f} \Vert y-z \Vert _{\infty }}{\varGamma (\beta )\varGamma (1-n+\alpha )} \int _{a}^{t} \psi '(s) \bigl( \psi (t)-\psi (s)\bigr)^{\beta -1} \biggl( \int _{a}^{s} \bigl(\varphi (s)-\varphi (\tau ) \bigr)^{-(n-\alpha )} \,d\tau \biggr) \,ds \\ &\quad =\frac{C_{f} \Vert y-z \Vert _{\infty }}{\varGamma (\beta )\varGamma (2-n+\alpha )} \int _{a}^{t} \psi '(s) \bigl( \psi (t)-\psi (s)\bigr)^{\beta -1} \bigl(\varphi (s)- \varphi (a) \bigr)^{1-n+\alpha } \,ds \\ &\quad \leq \frac{C_{f}(\varphi (b)-\varphi (a))^{1-n+\alpha } \Vert y-z \Vert _{\infty }}{\varGamma (\beta )\varGamma (2-n+\alpha )} \int _{a}^{t} \psi '(s) \bigl( \psi (t)-\psi (s)\bigr)^{\beta -1} \,ds \\ &\quad = \frac{C_{f}(\varphi (b)-\varphi (a))^{1-n+\alpha }(\psi (t)-\psi (a))^{\beta }}{\varGamma (\beta +1)\varGamma (2-n+\alpha )} \Vert y-z \Vert _{\infty} \\ &\quad \leq L \Vert y-z \Vert _{\infty }, \end{aligned} $$

where

$$ L= \frac{(\varphi (b)-\varphi (a))^{1-n+\alpha }(\psi (b)-\psi (a))^{\beta }}{\varGamma (\beta +1)\varGamma (2-n+\alpha )} C_{f}. $$

Hence,

$$ \Vert Ay-Az \Vert _{\infty }\leq L \Vert y-z \Vert _{\infty} $$

for all \(y,z\in C([a,b],\mathbb{R})\). On the other hand, by (23), one has \(0< L<1\). Therefore, A is a contraction. □

Example 4.1

Consider the fractional boundary value problem

$$\begin{aligned} \textstyle\begin{cases} (D_{0}^{(\alpha ,\beta ),(\varphi ,\psi )}y )(t) = \int _{0}^{t} \frac{\cos (y(s))}{s+\rho } \,ds, \quad 0< t< 1, \\ y(0) = 0, \end{cases}\displaystyle \end{aligned}$$
(24)

where \(0<\alpha , \beta <1\), \(\varphi (t)=t\), \(\psi (t)=\ln (t+1)\) and \(\varGamma (\alpha +1)\varGamma (\beta +1)\rho >(\ln 2)^{\beta }\). Problem (24) is a particular case of problem (21) with \((a,b)=(0,1)\), \(n=1\), \(\mu _{0}=0\) and

$$ f(t,\lambda )= \frac{\cos \lambda }{t+\rho },\quad (t,\lambda )\in [0,1] \times \mathbb{R}. $$

For all \(t\in [0,1]\) and \(\lambda ,\eta \in \mathbb{R}\), one has

$$\begin{aligned} \bigl\vert f(t,\lambda )-f(t,\eta ) \bigr\vert =& \biggl\vert \frac{\cos \lambda }{t+\rho }- \frac{\cos \eta }{t+\rho } \biggr\vert \\ \leq & \frac{ \vert \lambda -\eta \vert }{t+\rho } \\ \leq & C_{f} \vert \lambda -\rho \vert , \end{aligned}$$

where \(C_{f}=\rho ^{-1}\). On the other hand, one has

$$ C_{f} < \frac{\varGamma (\alpha +1)\varGamma (\beta +1)}{(\ln 2)^{\beta }}= \frac{\varGamma (\alpha +1)\varGamma (\beta +1)}{(\varphi (1)-\varphi (0))^{\alpha }(\psi (1)-\psi (0))^{\beta }}. $$

Hence, by Theorem 4.1, problem (24) admits a unique solution \(y^{*}\in C^{1}([0,1],\mathbb{R})\). Moreover, for any \(y_{0}\in C([0,1],\mathbb{R})\), the Picard sequence

$$ y_{n+1}(t)=\frac{1}{\varGamma (\beta )\varGamma (\alpha )} \int _{0}^{t} \frac{1}{s+1} \biggl[\ln \biggl(\frac{t+1}{s+1} \biggr) \biggr]^{ \beta -1} \biggl( \int _{0}^{s} \frac{(s-\tau )^{\alpha -1}}{\tau +\rho }\cos \bigl(y_{n}(\tau )\bigr) \,d\tau \biggr) \,ds, $$

for all \(\leq t\leq 1\), converges uniformly to \(y^{*}\).

Fractional model of a heat conduction problem

The standard Fourier law of thermal conduction in one dimension is given by

$$ -\rho \frac{dy}{dx}=z(x),\quad x>0, $$
(25)

where ρ is the material’s thermal conductivity, z is the density of the heat flux and y is the temperature. Replacing \(\frac{d}{dx}\) by \(D_{0}^{(\alpha ,\beta ),(\varphi ,\psi )}\), where \(\alpha ,\beta \in (0,1)\), we obtain the fractional version of (25)

$$ -\rho \bigl(D_{0}^{(\alpha ,\beta ),(\varphi ,\psi )}y \bigr) (x)=z(x),\quad x>0. $$
(26)

If \(z(0)=0\) and \(y(0)=y_{0}\), by Proposition 4.1, the unique solution of (26) is given by

$$ y(x)=y_{0} -I_{0}^{\beta ,\psi } \biggl(I_{0}^{\alpha ,\varphi }L_{\varphi }^{(1)} \frac{z}{\rho } \biggr) (x), \quad x\geq 0, $$

i.e.

$$\begin{aligned} y(x) =&y_{0} - \frac{1}{\rho \varGamma (\beta )\varGamma (\alpha )} \int _{0}^{x} \psi '(\eta ) \bigl(\psi (x)-\psi (\eta )\bigr)^{\beta -1} \\ &{}\times \biggl( \int _{0}^{\eta }\bigl(\varphi (\eta )-\varphi ( \lambda )\bigr)^{\alpha -1} z'(\lambda ) \,d \lambda \biggr) \,d \eta . \end{aligned}$$
(27)

Example 5.1

Consider (26) with \(\varphi =\psi \) and \(z(x)=\varphi (x)-\varphi (0)\). In this case, by (27), one has

$$ \begin{aligned} y(x)&=y_{0} - \frac{1}{\rho \varGamma (\beta )\varGamma (\alpha +1)} \int _{0}^{x} \varphi '(\eta ) \bigl(\varphi (x)-\varphi (\eta )\bigr)^{\beta -1} \bigl(\varphi ( \eta )- \varphi (0)\bigr)^{\alpha } \,d\eta \\ &= y_{0} - \frac{(\varphi (x)-\varphi (0))^{\beta -1}}{\rho \varGamma (\beta )\varGamma (\alpha +1)} \int _{0}^{x} \varphi '(\eta ) \biggl[1- \frac{(\varphi (\eta )-\varphi (0))}{(\varphi (x)-\varphi (0))} \biggr]^{\beta -1}\bigl(\varphi (\eta )- \varphi (0)\bigr)^{\alpha } \,d\eta \\ &= y_{0} - \frac{(\varphi (x)-\varphi (0))^{\alpha +\beta }}{\rho \varGamma (\beta )\varGamma (\alpha +1)} \int _{0}^{1} (1-w)^{\beta -1} w^{\alpha } \,dw, \end{aligned} $$

which yields

$$ y(x)=y_{0}-\frac{1}{\rho \varGamma (\alpha +\beta +1)} \bigl(\varphi (x)- \varphi (0) \bigr)^{\alpha +\beta },\quad x\geq 0. $$

Observe that in the case \(\varphi (x)=x\) one has

$$ \lim_{(\alpha ,\beta )\to (1^{-},1^{-})} y(x)=y_{0}-\frac{1}{2\rho } x^{2}, $$

which is the unique solution of (25) with \(z(x)=x\) and \(y(0)=y_{0}\). Figures 46 show some graphs of y for different functions φ and different values of \((\alpha ,\beta )\).

Figure 4
figure4

Graph of \(y(x)\) for \(\varphi (x)=x\)

Figure 5
figure5

Graph of \(y(x)\) for \(\varphi (x)=\ln (x+1)\)

Figure 6
figure6

Graph of \(y(x)\) for \(\varphi (x)=\sqrt{x+1}\)

Conclusion

The goal of this article was to propose a new notion of fractional derivative involving two singular kernels. Some properties of this introduced operator were proved and some examples were provided. We also presented some applications to fractional differential equations. Namely, an existence and uniqueness result was established for a nonlinear fractional boundary value problem with a higher order, and a numerical algorithm based on Picard iteration was provided for approximating the unique solution. Moreover, an application to a heat conduction problem was presented. It will be interesting to develop new numerical methods for solving fractional differential equations (or partial differential equations that are fractional in time) involving this new concept, in particular in the case \(\varphi \neq \psi \).

References

  1. 1.

    Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Atangana, A., Baleanu, D.: New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)

    Article  Google Scholar 

  3. 3.

    Baleanu, D., Fernandez, A.: On fractional operators and their classifications. Mathematics 7(9), 830 (2019)

    Article  Google Scholar 

  4. 4.

    Baleanu, D., Wu, G.C.: Some further results of the Laplace transform for variable-order fractional difference equations. Fract. Calc. Appl. Anal. 22(6), 1641–1654 (2019)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Drapaca, C.S., Sivaloganathan, S.: A fractional model of continuum mechanics. J. Elast. 107, 105–123 (2012)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Fernandez, A., Özarslan, M.A., Baleanu, D.: On fractional calculus with general analytic kernels. Appl. Math. Comput. 354, 248–265 (2019)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Jleli, M., Kirane, M., Samet, B.: A numerical approach based on ln-shifted Legendre polynomials for solving a fractional model of pollution. Math. Methods Appl. Sci. 40, 7356–7367 (2017)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Jleli, M., Kirane, M., Samet, B.: A derivative concept with respect to an arbitrary kernel and applications to fractional calculus. Math. Methods Appl. Sci. 42, 137–160 (2019)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Luchko, Y., Trujillo, J.J.: Caputo-type modification of the Erdélyi–Kober fractional derivative. Fract. Calc. Appl. Anal. 10, 249–267 (2007)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Martynyuk, V., Ortigueira, M.: Fractional model of an electrochemical capacitor. Signal Process. 107, 355–360 (2015)

    Article  Google Scholar 

  11. 11.

    Özalp, N., Demirci, E.: A fractional order SEIR model with vertical transmission. Math. Comput. Model. 54, 1–6 (2010)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon & Breach, Amsterdam (1993)

    Google Scholar 

  13. 13.

    Srivasta, H.M., Kumar, D., Singh, J.: An efficient analytical technique for fractional model of vibration equation. Appl. Math. Model. 45, 192–204 (2017)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Wu, G.C., Zeng, D.Q., Baleanu, D.: Fractional impulsive differential equations: exact solutions, integral equations and short memory case. Fract. Calc. Appl. Anal. 22, 180–192 (2019)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Yang, X.: New general fractional-order rheological models with kernels of Mittag-Leffler functions. Rom. Rep. Phys. 69(4), 118 (2017)

    Google Scholar 

  16. 16.

    Yang, X.: General Fractional Derivatives: Theory, Methods and Applications. Chapman & Hall/CRC, New York (2019)

    Google Scholar 

  17. 17.

    Yang, X., Baleanu, D., Srivastava, H.M.: Local Fractional Integral Transforms and Their Applications. Academic Press, New York (2015)

    Google Scholar 

  18. 18.

    Yang, X., Gao, F., Srivastava, H.M.: New rheological models within local fractional derivative. Rom. Rep. Phys. 69, 113 (2017)

    Google Scholar 

  19. 19.

    Yang, X., Gao, F., Srivastava, H.M.: A new computational approach for solving nonlinear local fractional PDEs. J. Comput. Appl. Math. 339, 285–296 (2018)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Yang, X., Machado, J.A.T.: A new fractal nonlinear Burgers equation arising in the acoustic signals propagation. Math. Methods Appl. Sci. 42, 7539–7544 (2019)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Zhao, D., Yang, X., Srivastava, H.M.: Some fractal heat-transfer problems with local fractional calculus. Therm. Sci. 19, 1867–1871 (2015)

    Article  Google Scholar 

  22. 22.

    Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Google Scholar 

Download references

Acknowledgements

M. Jleli is supported by Researchers Supporting Project RSP-2019/57, King Saud University, Riyadh, Saudi Arabia.

Availability of data and materials

Not applicable.

Funding

Researchers Supporting Project RSP-2019/57, King Saud University, Riyadh, Saudi Arabia.

Author information

Affiliations

Authors

Contributions

All authors carried out the proofs and conceived of the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sunil Kumar.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baleanu, D., Jleli, M., Kumar, S. et al. A fractional derivative with two singular kernels and application to a heat conduction problem. Adv Differ Equ 2020, 252 (2020). https://doi.org/10.1186/s13662-020-02684-z

Download citation

MSC

  • 26A33
  • 34K37
  • 26A18

Keywords

  • Fractional derivative
  • Two singular kernels
  • Picard iteration
  • Heat conduction problem
\