Skip to main content

Theory and Modern Applications

Further extension of Voigt function and its properties

Abstract

In this paper, by using the confluent hypergeometric function of the first kind, we propose a further extension of the Voigt function and obtain its useful properties as (for example) explicit representation and partly bilateral and partly unilateral representation. By means of the present representations, we derive several (presumably new) generating functions which are partly bilateral and partly unilateral. Some interesting recurrence relations of the Voigt function introduced here are also indicated.

1 Introduction and preliminaries

The familiar Voigt functions \(K(x,y)\) and \(L(x,y)\) were introduced and investigated by Voigt in 1899. Mainly due to their applications in diverse research areas, such as astrophysical spectroscopy, neutrons physics, statistical communication theory, and plasma physics, the Voigt functions and their various generations have been intensively and extensively investigated by many authors. For a review of the (unification) generalizations of Voigt functions introduced from time to time, see Srivastava and Miller [17], Klusch [6], Srivastava and Chen [15], Gupta et al. [4], Pathan and Shahwan [10], Goyal and Mukherjee [2], Pathan et al. [9], Srivastava et al. [18], Pathan et al. [8], Gupta and Gupta [3], Khan et al. [5], etc.

We recall here the generalized Voigt function defined by Srivastava et al. [18, p. 53, Eq. (1.27)] needed for the present investigation:

$$\begin{aligned} &\varOmega _{\eta,\nu,\lambda }^{\mu }[x,y,z]=\sqrt{ \frac{x}{2}} \int _{0}^{ \infty }t^{\eta }e^{-yt-zt^{2}}J_{\nu,\lambda }^{\mu }(xt) \,dt \\ &\quad\bigl(x,y,z,\mu \in \Re ^{+};\mathbb{\Re }(\eta +\nu +2\lambda )>-1 \bigr), \end{aligned}$$
(1)

where \(J_{\nu,\lambda }^{\mu }(z)\) is the well-known Bessel–Maitland function defined as follows (see [7]):

$$ J_{\nu,\lambda }^{\mu } (z)=\sum _{m=0}^{\infty } \frac{(-1)^{m}(z/2)^{\nu +2\lambda +2m}}{\varGamma (\lambda +m+1)\varGamma (\nu +\lambda +\mu m+1)}. $$
(2)

Note that on setting \(z=\frac{1}{4}\) in equation (1), the generalized Voigt function defined by Srivastava and Chen [15] can be retrieved. If we set \(\lambda =0\) and \(\mu =1\) in equation (1), then it reduces to the generalized Voigt function given by Klusch [6], which, on taking \(z=\frac{1}{4}\), further reduces to the Voigt function introduced by Srivastava and Miller [17].

The paper aims at presenting a new extension of the Voigt function defined by equation (1) in a slightly modified form by involving the confluent hypergeometric function as follows:

$$\begin{aligned} &\varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta }[x,y,z]=\sqrt{ \frac{x}{2}} \int _{0}^{\infty }t^{\eta }e^{-zt^{2}}{}_{1}F_{1}( \alpha; \beta;-yt) J_{\nu,\lambda }^{\mu }(xt)\,dt \\ &\quad \bigl(x, y, z, \mu, \alpha, \beta \in \Re ^{+}; \Re (\eta +\nu +2 \lambda )>-1 \bigr), \end{aligned}$$
(3)

where \({}_{1}F_{1}(a;b;z)\) is the confluent hypergeometric function defined as follows (see [16, p. 36, Eq. (3)]):

$$ {}_{1}F_{1}(a;b;z)=\sum _{n=0}^{\infty } \frac{(a)_{n}}{(b)_{n}}\frac{z^{n}}{n!}. $$
(4)

If we set \(a=b\), then equation (4) reduces to

$$ {}_{1}F_{1}(a;a;z)=e^{z}. $$
(5)

For \(\alpha =\beta \), our extended Voigt function defined by equation (3) reduces to the Voigt function defined by Srivastava et al. [18, p. 53, Eq. (2.7)].

2 A series representation

In order to derive the explicit representation of our extended Voigt function in terms of the familiar special functions of the mathematical physics, we make use of the series representation of the confluent hypergeometric function and Bessel–Maitland function defined by equation (4) and equation (2), respectively. Reversing the order of summation and integration (under the given conditions), we get

$$\begin{aligned} \varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta }[x,y,z]={}& \biggl( \frac{x}{2} \biggr)^{\nu +2\lambda +\frac{1}{2}}\sum_{m,n=0}^{ \infty } \frac{(-1)^{m}(\alpha )_{n}(x/2)^{2m}(-y)^{n}}{\varGamma (\lambda +m+1)\varGamma (\nu +\lambda +\mu m+1)(\beta )_{n} n!} \\ &{}\times \int _{0}^{\infty }t^{\eta +\nu +2\lambda +2m+n}e^{-zt^{2}}\,dt. \end{aligned}$$
(6)

Applying the following integral, which is easily deducible from the familiar Euler gamma function,

$$\begin{aligned} &\int _{0}^{\infty }t^{\lambda }e^{-zt^{2}}\,dt= \frac{1}{2}\varGamma \biggl( \frac{\lambda +1}{2} \biggr)z^{-}{ \biggl(\frac{\lambda +1}{2} \biggr)} \\ &\quad \bigl(\Re (z)>0, \Re (\lambda )>-1 \bigr), \end{aligned}$$
(7)

to the integral in equation (6), we obtain

$$\begin{aligned} &\varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta }[x,y,z]= \frac{z^{-(\frac{\eta +\nu +2\lambda +1}{2})}x^{\nu +2\lambda +1/2}}{2^{\nu +2\lambda +3/2}} \\ &\phantom{\varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta }[x,y,z]=}{}\times \sum_{m,n=0}^{\infty } \frac{(\alpha )_{n}(-\frac{x^{2}}{4z})^{m}(-\frac{y}{\sqrt{z}})^{n}\varGamma (\frac{\eta +\nu +2\lambda +1+2m+n}{2})}{(\beta )_{n}\varGamma (\lambda +m+1)\varGamma (\nu +\lambda +\mu m+1)n!} \\ &\quad \bigl(x,y,z,\mu,\alpha,\beta \in \Re ^{+}; \Re (\eta +\nu +2\lambda )>-1 \bigr). \end{aligned}$$
(8)

On splitting the n-series into even and odd terms, we obtain

$$\begin{aligned} \varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta }[x,y,z]={}& \frac{z^{-(\frac{\eta +\nu +2\lambda +1}{2})}x^{\nu +2\lambda +1/2}}{2^{\nu +2\lambda +3/2}} \Biggl[ \frac{(\alpha )_{2n}(-\frac{x^{2}}{4z})^{m}(\frac{y^{2}}{4 z})^{n}\varGamma (\frac{\eta +\nu +2\lambda +1}{2}+m+n)}{(\beta )_{2n}(\frac{1}{2})_{n}\varGamma (\lambda +m+1)\varGamma (\nu +\lambda +\mu m+1)n!} \\ &{}-\frac{y}{\sqrt{z}}\sum_{m,n=0}^{\infty } \frac{(\alpha )_{2n+1}(-\frac{x^{2}}{4z})^{m}(\frac{y^{2}}{4z})^{n}\varGamma (\frac{\eta +\nu +2\lambda +2}{2}+m+n)}{(\beta )_{2n+1}(\frac{3}{2})_{n}\varGamma (\lambda +m+1)\varGamma (\nu +\lambda +\mu m+1)n!} \Biggr]. \end{aligned}$$
(9)

For \(\alpha =\beta \), equation (9) reduces to the explicit representation of Voigt function defined by Srivastava et al. [18, p. 55, Eq. (2.4)].

On using the definition of Kampé de Fériet function \(F_{s:t;u}^{p:q;r}\) (see [16, p. 63]) in equation (9), we arrive at the following explicit representation of our extended Voigt function \(\varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta }\):

$$\begin{aligned} &\varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta }[x,y,z] \\ &\quad =\frac{x^{\nu +2\lambda +\frac{1}{2}}}{2^{\nu +2\lambda +\frac{3}{2}}z^{p}\varGamma (\lambda +1)\varGamma (\nu +\lambda +1)} \\ &\qquad{}\times \left\{ \varGamma (P)F_{0:\mu +1;3}^{1:1;2} \begin{bmatrix} P:1;\Delta (2;\alpha +1); \\ &-\frac{x^{2}}{4z\mu ^{\mu }},\frac{y^{2}}{4z} \\ -:\lambda +1,\Delta (\mu;\nu +\lambda +1);\Delta (2;\beta ), \frac{1}{2};\end{bmatrix}\right. \\ &\qquad{}-\left.\frac{\alpha y}{\beta \sqrt{z}}\varGamma \biggl(p+\frac{1}{2} \biggr)F_{0:\mu +1;3}^{1:1;2} \begin{bmatrix} P+\frac{1}{2}:1;\Delta (2;\alpha +1); \\ &-\frac{x^{2}}{4z\mu ^{\mu }},\frac{y^{2}}{4z} \\ -:\lambda +1,\Delta (\mu;\nu +\lambda +1);\Delta (2;\beta +1), \frac{3}{2};\end{bmatrix} \right\} \\ &\quad\bigl(x,y,z,\mu,\alpha,\beta \in \Re ^{+}; \Re (\lambda )>-1, \Re (\nu + \lambda )>-1, \Re (P)>0 \bigr), \end{aligned}$$
(10)

where \(P=\frac{\eta +\nu +2\lambda +1}{2}\) and \(\Delta (m;a)\) abbreviates the array of m parameters \(\frac{a}{m},\frac{a+1}{m},\ldots,\frac{a+m+1}{m}\), \(m\geq 1\).

For the case \(\beta =\alpha \), equation (10) reduces to the representation defined by Srivastava et al. [18] in a slightly modified form (i.e., in terms of the parameters μ and λ):

$$\begin{aligned} &\varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\alpha }[x,y,z] \\ &\quad =\varOmega ^{ \mu }_{\eta, \nu, \lambda }[x,y,z] \\ &\quad = \frac{x^{\nu +2\lambda +\frac{1}{2}}}{2^{\nu +2\lambda +\frac{3}{2}}z^{p}\varGamma (\lambda +1)\varGamma (\nu +\lambda +1)} \\ &\qquad{}\times \left\{ \varGamma (P)F_{0:\mu +1;1}^{1:1;0} \begin{bmatrix} P:1;-; \\ &-\frac{x^{2}}{4z\mu ^{\mu }},\frac{y^{2}}{4z} \\ -:\lambda +1,\Delta (\mu;\nu +\lambda +1);\frac{1}{2};\end{bmatrix}\right. \\ &\qquad{}-\left.\frac{y}{\sqrt{z}}\varGamma \biggl(p+\frac{1}{2} \biggr)F_{0:\mu +1;1}^{1:1;0} \begin{bmatrix} P+\frac{1}{2}:1;-; \\ &-\frac{x^{2}}{4z\mu ^{\mu }},\frac{y^{2}}{4z} \\ -:\lambda +1,\Delta (\mu;\nu +\lambda +1);\frac{3}{2};\end{bmatrix} \right\} \\ &\quad \bigl(x,y,z,\mu \in \Re ^{+}; \Re (\lambda )>-1, \Re (\nu +\lambda )>-1, \Re (P)>0 \bigr). \end{aligned}$$
(11)

On setting \(y=0\) in equation (10) and equation (11), respectively, we get the following (presumably new) interesting result:

$$\begin{aligned} &\varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta }[x,0,z] \\ &\quad =\varOmega _{ \eta,\nu,\lambda }^{\mu }[x,0,z] \\ &\quad = \frac{x^{\nu +2\lambda +\frac{1}{2}}\varGamma (P)}{2^{\nu +2\lambda +\frac{3}{2}}z^{p}\varGamma (\lambda +1)\varGamma (\nu +\lambda +1)} \\ &\qquad{} \times {}_{2}F_{\mu +1} \begin{bmatrix} P:1; \\ &-\frac{x^{2}}{4z\mu ^{\mu }} \\ \lambda +1,\Delta (\mu;\nu +\lambda +1);\end{bmatrix} \\ &\quad \bigl(x,z,\mu \in \Re ^{+}; \Re (\lambda )>-1, \Re (\nu +\lambda )>-1, \Re (P)>0 \bigr), \end{aligned}$$
(12)

where \({}_{p}F_{q}\) is the generalized hypergeometric function (see [12, p. 73]).

Thus, we obtain

$$ \varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta }[x,0,z]=\varOmega _{ \eta,\nu,\lambda }^{\mu }[x,0,z], $$
(13)

where \(\varOmega _{\eta,\nu,\lambda }^{\mu }\) corresponds to the generalized Voigt function given in equation (1) (see, for details, [18]).

3 Partly bilateral and partly unilateral representation of \(\varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta }\)

We begin by recalling here the following known result (see [14, p. 8, Eq. (1.3)]):

$$ \exp \biggl[s+t-\frac{xt}{s} \biggr]=\sum _{m=-\infty }^{ \infty }\sum_{p=0}^{\infty } \frac{s^{m}}{m!}\frac{t^{p}}{p!} {}_{1}F_{1} [-p;m+1;x ], $$
(14)

where \({}_{1}F_{1}\) is the confluent hypergeometric function defined by equation (4).

The replacement of s, t, and x by \(s\xi ^{2}\), \(t\xi ^{2}\), and \(x\xi ^{2}\), respectively, and further multiplying both sides of the resulting identity by \(\xi ^{\eta }e^{-z\xi ^{2}}{}_{1}F_{1}(\alpha;\beta;-w\xi )J_{\nu, \lambda }^{\mu }(q\xi )\) and integrating both sides of the last resulting identity with respect to ξ from 0 to ∞, and interchanging the summations and integration gives

$$\begin{aligned} &\int _{0}^{\infty }\xi ^{\eta }\exp \biggl[- \biggl(z-s-t+\frac{xt}{s} \biggr)\xi ^{2} \biggr]{}_{1}F_{1}( \alpha;\beta;-w\xi )J_{\nu,\lambda }^{\mu }(q \xi )\,d\xi \\ &\quad =\sum_{m=-\infty }^{\infty }\sum _{p=0}^{\infty } \frac{s^{m}}{m!}\frac{t^{p}}{p!} \int _{0}^{\infty }\xi ^{\eta +2m+2p}e^{-z \xi ^{2}}{}_{1}F_{1}( \alpha;\beta;-w\xi ) \\ &\qquad{} \times J_{\nu,\lambda }^{\mu }(q\xi ){}_{1}F_{1} \bigl[-p;m+1;x\xi ^{2} \bigr]\,d\xi. \end{aligned}$$
(15)

On comparing equation (15) and equation (3), we get

$$\begin{aligned} &\varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta } \biggl[q,w,z-s-t+ \frac{xt}{s} \biggr] \\ &\quad =\sqrt{\frac{q}{2}}\sum_{m=-\infty }^{\infty } \sum_{p=0}^{ \infty }\frac{s^{m}}{m!} \frac{t^{p}}{p!} \int _{0}^{\infty }\xi ^{ \eta +2m+2p}e^{-z\xi ^{2}}{}_{1}F_{1}( \alpha;\beta;-w\xi ) \\ &\qquad{} \times J_{\nu,\lambda }^{\mu }(q\xi ){}_{1}F_{1} \bigl[-p;m+1;x\xi ^{2} \bigr]\,d\xi. \end{aligned}$$
(16)

Expanding the confluent hypergeometric function \({}_{1}F_{1}(\alpha;\beta;-w\xi )\) and Bessel–Maitland function \(J_{\nu,\lambda }^{\mu }(q\xi )\) in equation (16) in their defining series, interchanging the integration and summations, and finally integrating the involved integral with the help of the following known integral formula (see [1, p. 337, Eq. (9)]):

$$\begin{aligned} &\int _{0}^{\infty }x^{s-1}e^{-\alpha x^{2}}{}_{1}F_{1} \bigl(a;b;\beta x^{2} \bigr)\,dx= \frac{1}{2}\alpha ^{-s/2}\varGamma \biggl(\frac{s}{2} \biggr){}_{2}F_{1} \biggl(a, \frac{s}{2};b;\frac{\beta }{\alpha } \biggr) \\ &\quad \bigl(\Re (\alpha )>{\mathrm{max}} \bigl\{ 0,\Re (\beta ) \bigr\} ; \Re (s)>0 \bigr), \end{aligned}$$
(17)

we obtain

$$\begin{aligned} &\varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta } \biggl[q,w,z-s-t+ \frac{xt}{s} \biggr] \\ &\quad = \frac{q^{\nu +2\lambda +\frac{1}{2}}}{2^{\nu +2\lambda +\frac{3}{2}}z^{P}} \sum_{m=-\infty }^{\infty } \sum_{p=0}^{\infty } \frac{(\frac{s}{z})^{m}}{m!} \frac{(\frac{t}{z})^{p}}{p!} \\ &\qquad{}\times \sum_{i,j=0}^{\infty } \frac{(\alpha )_{i}(\frac{-w}{\sqrt{z}})^{i}(\frac{-q^{2}}{4z})^{j}\varGamma (P+m+p+j+\frac{i}{2})}{(\beta )_{i}\varGamma (\lambda +j+1)\varGamma (\nu +\lambda +\mu j+1) i!} \\ &\qquad{}\times {}_{2}F_{1} \biggl(-p,P+m+p+j+ \frac{i}{2};m+1;\frac{x}{z} \biggr), \end{aligned}$$
(18)

where \(P=\frac{\eta +\nu +2\lambda +1}{2}\). For \(\alpha =\beta \), equation (18) reduces to the known result of Srivastava et al. [18, p. 59, Eq. (3.5)].

Now expanding the hypergeometric function \({}_{2}F_{1}\) in its defining series, separation of i-series into its even and odd terms, and a little simplification leads us to

$$\begin{aligned} &\varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta } \biggl[q,w,z-s-t+ \frac{xt}{s} \biggr] \\ &\quad = \frac{q^{\nu +2\lambda +\frac{1}{2}}}{2^{\nu +2\lambda +\frac{3}{2}}z^{p}\varGamma (\lambda +1)\varGamma (\nu +\lambda +1)} \sum_{m=-\infty }^{\infty } \sum_{p=0}^{\infty } \frac{(\frac{s}{z})^{m}}{m!} \frac{(\frac{t}{z})^{p}}{p!} \\ &\qquad{}\times \left\{ \varGamma (P+m+p)F_{0:2;2;1}^{1:1;1;1} \begin{bmatrix} (P+m+p:1,1,1):(\alpha,2);(1,1);(-p,1); \\ &\frac{w^{2}}{4z},-\frac{q^{2}}{4z},\frac{x}{z} \\ -:(\beta,2),(\frac{1}{2},1);(\lambda +1,1),(\nu +\lambda +1,\mu );(m+1,1)\end{bmatrix}\right. \\ &\qquad{}-\frac{w}{\sqrt{z}}\frac{\alpha }{\beta }\varGamma \biggl(P+p+m+\frac{1}{2} \biggr) \\ &\qquad{}\times \left. F_{0:2;2;1}^{1:1;1;1} \begin{bmatrix} (P+m+p+\frac{1}{2}:1,1,1): (\alpha +1,2);(1,1);(-p,1); \\ &\frac{w^{2}}{4z},-\frac{q^{2}}{4z},\frac{x}{z} \\ -:(\beta +1,1),(\frac{3}{2},1);(\lambda +1,1),(\nu +\lambda +1,\mu );(m+1,1);\end{bmatrix} \right\} \\ &\quad \bigl(x,y,z,\mu,\alpha,\beta \in \Re ^{+}; \Re (\lambda )>-1, \Re (\nu )>0, \Re (P)>0 \bigr), \end{aligned}$$
(19)

where \(F_{e:f;g;h}^{a:b;c;d}\) is the well-known Srivastava and Daoust function [16, p. 64].

On setting \(\alpha =\beta \) in equation (19), and after some simplification, we get the representation (partly bilateral and partly unilateral) of the Voigt function given in [18, p. 59, Eq. (3.6)].

4 Generating functions

In this section, we give a set of (presumably) new generating functions which are partly bilateral and partly unilateral.

A generating relation between the Kampé de Fériet function and Srivastava and Daoust function can be obtained by expanding the L.H.S. of equation (19) with the help of equation (10). We have indeed

$$\begin{aligned} &\biggl(\frac{z}{Z} \biggr)^{P} \left\{ \varGamma (P)F_{0:\mu +1;3}^{1:1;2} \begin{bmatrix} P:1;\Delta (2;\alpha ); \\ &-\frac{q^{2}}{4Z\mu ^{\mu }},\frac{w^{2}}{4Z} \\ -:\lambda +1,\Delta (\mu;\nu +\lambda +1);\Delta (2;\beta ), \frac{1}{2};\end{bmatrix}\right. \\ &\qquad{}-\left.\frac{\alpha w}{\beta \sqrt{Z}}\varGamma \biggl(P+\frac{1}{2} \biggr)F_{0:\mu +1;3}^{1:1;2} \begin{bmatrix} P+\frac{1}{2}:1;\Delta (2;\alpha +1); \\ &-\frac{q^{2}}{4Z\mu ^{\mu }},\frac{w^{2}}{4Z} \\ -:\lambda +1,\Delta (\mu;\nu +\lambda +1);\Delta (2;\beta +1), \frac{3}{2};\end{bmatrix} \right\} \\ &\quad=\sum_{m=-\infty }^{\infty }\sum _{p=0}^{\infty } \frac{(\frac{s}{z})^{m}}{m!}\frac{(\frac{t}{z})^{p}}{p!} \\ &\qquad{}\times \left\{ \varGamma (P+m+p)F_{0:2;2;1}^{1:1;1;1} \begin{bmatrix} (P+m+p:1,1,1):(\alpha,2);(1,1);(-p,1); \\ &\frac{w^{2}}{4z},-\frac{q^{2}}{4z},\frac{x}{z} \\ -:(\beta,2),(\frac{1}{2},1);(\lambda +1,1),(\nu +\lambda +1,\mu );(m+1,1)\end{bmatrix}\right. \\ &\qquad{}-\frac{w}{\sqrt{z}}\frac{\alpha }{\beta }\varGamma \biggl(P+p+m+\frac{1}{2} \biggr) \\ &\qquad{} \times\left. F_{0:2;2;1}^{1:1;1;1} \begin{bmatrix} (P+m+p+\frac{1}{2}:1,1,1): (\alpha +1,2);(1,1);(-p,1); \\ &\frac{w^{2}}{4z},-\frac{q^{2}}{4z},\frac{x}{z} \\ -:(\beta +1,2),(\frac{3}{2},1);(\lambda +1,1),(\nu +\lambda +1,\mu );(m+1,1);\end{bmatrix} \right\} \\ &\quad \bigl(q,w,z,Z,\mu,\alpha,\beta \in \Re ^{+}; \Re (\lambda )>-1,\Re ( \nu )>0, \Re (\alpha )>-1,\Re (\beta )>-1, \Re (P)>0 \bigr), \end{aligned}$$
(20)

where \(Z=z-s-t+\frac{xt}{s}\) and \(P=(\frac{\eta +\nu +2\lambda +1}{2})\).

If we set \(\beta =\alpha \), \(\lambda =0\), and \(\mu =1\) in equation (20), then it reduces to the know result given in [18, p. 62, Eq. (4.1)].

On setting \(q=0\) in equation (20), we obtain a (presumably) new relation between the generalized hypergeometric function and Kampé de Fériet function given by

$$\begin{aligned} &\biggl(\frac{z}{Z} \biggr)^{P} \left\{ \varGamma (P) {}_{3}F_{3} \begin{bmatrix} P, \Delta (2;\alpha ); \\ &\frac{w^{2}}{4Z} \\ \Delta (2;\beta ),\frac{1}{2};\end{bmatrix}\right. \\ &\qquad{}-\left.\frac{\alpha w}{\beta \sqrt{Z}}\varGamma \biggl(P+\frac{1}{2} \biggr) {}_{3}F_{3} \begin{bmatrix} P+\frac{1}{2}, \Delta (2;\alpha +1); \\ &\frac{w^{2}}{4Z} \\ \Delta (2;\beta +1),\frac{3}{2};\end{bmatrix} \right\} \\ &\quad =\sum_{m=-\infty }^{\infty }\sum _{p=0}^{\infty } \frac{(\frac{s}{z})^{m}}{m!}\frac{(\frac{t}{z})^{p}}{p!} \\ &\qquad{}\times \left\{ \varGamma (P+m+p) F_{0:3;1}^{1:2;1} \begin{bmatrix} P+m+p:\Delta (2;\alpha );-p; \\ &\frac{w^{2}}{4z},\frac{x}{z} \\ -:\Delta (2;\beta ),\frac{1}{2};m+1;\end{bmatrix}-\frac{w}{\sqrt{z}}\frac{\alpha }{\beta }\right. \\ &\qquad{}\times\left. \varGamma \biggl(P+p+m+\frac{1}{2} \biggr) F_{0:3;1}^{1:2;1} \begin{bmatrix} P+m+p+\frac{1}{2}:\Delta (2;\alpha +1);-p; \\ &\frac{w^{2}}{4z},\frac{x}{z} \\ -:\Delta (2;\beta +1),\frac{3}{2};m+1;\end{bmatrix} \right\} \\ &\quad \bigl(w,x,z,\alpha,\beta \in \mathbb{\Re }^{+}; \Re (P)>0 \bigr). \end{aligned}$$
(21)

For \(\beta =\alpha \), \(\lambda =0\), and \(\mu =1\), equation (20) and equation (21) reduce to the known results (4.1) and (4.2), respectively, of Srivastava et al. [18, p. 62].

Further, on setting \(w=0\) and replacing P by c in equation (21), we get

$$ \biggl(\frac{z}{Z} \biggr)^{c}=\sum _{m=-\infty }^{\infty } \sum_{p=0}^{\infty } \frac{(\frac{s}{z})^{m}}{m!} \frac{(\frac{t}{z})^{p}}{p!}(c)_{m+p} {}_{2}F_{1} \begin{bmatrix} c+m+p,-p; \\ &\frac{x}{z} \\ m+1;\end{bmatrix}. $$
(22)

Now, by using the definition of Jacobi polynomials \(P_{n}^{(\alpha,\beta )}(x)\) (see [12, p. 254])

$$ P_{n}^{(\alpha,\beta )}(x)=\frac{(1+\alpha )_{n}}{n!}{}_{2}F_{1} \begin{bmatrix} -n,\alpha +\beta +n+1; \\ &\frac{1-x}{z} \\ \alpha +1;\end{bmatrix}, $$
(23)

equation (22) reduces to the following known result of Pathan and Yasmeen [11, p. 242, Eq. (2.2)]:

$$\begin{aligned} &\biggl(\frac{z}{Z} \biggr)^{c}=\sum _{m=-\infty }^{\infty } \sum_{p=0}^{\infty } \frac{(\frac{s}{z})^{m}(\frac{t}{z})^{p}}{(m+p)!}(c)_{m+p} P_{p}^{(m,c-1)} \biggl( \frac{z-2x}{z} \biggr) \\ &\quad \bigl(x,z,Z\in \Re ^{+}; \Re (c)>0 \bigr). \end{aligned}$$
(24)

If we set \(w=0\) in equation (20), then we obtain the following new generating relation between the generalized hypergeometric function and Kampé de Fériet function:

$$\begin{aligned} &\biggl(\frac{z}{Z} \biggr)^{P}{}_{2}F_{\mu +1} \begin{bmatrix} P, 1; \\ &-\frac{q^{2}}{4Z\mu ^{\mu }} \\ \lambda +1,\Delta (\mu;\nu +\lambda +1);\end{bmatrix} \\ &\quad =\sum_{m=-\infty }^{\infty }\sum _{p=0}^{ \infty }\frac{(\frac{s}{z})^{m}}{m!} \frac{(\frac{t}{z})^{p}}{p!} (P)_{m+p} \\ &\qquad{}\times F_{0:\mu +1;1}^{1:1;1} \begin{bmatrix} P+m+p:1;-p; \\ &-\frac{q^{2}}{4z\mu ^{\mu }},\frac{x}{z} \\ -:\lambda +1,\Delta (\mu;\nu +\lambda +1);m+1;\end{bmatrix} \\ &\quad \bigl(q,x,z,Z\in \Re ^{+}; \Re (\lambda )>-1, \Re (\nu )>0, \Re (P)>0 \bigr). \end{aligned}$$
(25)

For \(\lambda =0\) and \(\mu =1\), equation (25) reduces to the result (4.5) in [18, p. 63].

On setting \(x=0\) in equation (25), we get the following generating function for the generalized hypergeometric function:

$$\begin{aligned} &\biggl(\frac{z}{Z_{1}} \biggr)^{P}{}_{2}F_{\mu +1} \begin{bmatrix} P,1; \\ &-\frac{q^{2}}{4Z_{1} \mu ^{\mu }} \\ \lambda +1,\Delta (\mu;\nu +\lambda +1);\end{bmatrix} \\ &\quad =\sum_{m=-\infty }^{\infty }\sum _{p=0}^{ \infty }\frac{(\frac{s}{z})^{m}}{m!} \frac{(\frac{t}{z})^{p}}{p!} \\ &\qquad{}\times (P)_{m+p} {}_{2}F_{\mu +1} \begin{bmatrix} P+m+p:1; \\ &-\frac{q^{2}}{4z\mu ^{\mu }} \\ \lambda +1,\Delta (\mu;\nu +\lambda +1);\end{bmatrix} \\ &\quad \bigl(q,z,Z_{1}\in \Re ^{+}; \Re (\lambda )>-1, \Re (\nu )>0, \Re (P)>0 \bigr), \end{aligned}$$
(26)

where \(P=\frac{\eta +\nu +\lambda +1}{2}\) and \(Z_{1}=z-s-t\).

On putting \(\lambda =0\) and \(\mu =1\) in equation (26), we arrive at the following new generating function for the confluent hypergeometric function \({}_{1}F_{1}\):

$$\begin{aligned} &\biggl(\frac{z}{Z_{1}} \biggr)^{P_{1}}{}_{1}F_{1} \biggl[P_{1};\nu +1;- \frac{q^{2}}{4Z_{1}} \biggr] \\ &\quad =\sum_{m=-\infty }^{\infty }\sum _{p=0}^{\infty } \frac{(\frac{s}{z})^{m}}{m!}\frac{(\frac{t}{z})^{p}}{p!}(P_{1})_{m+p} {}_{1}F_{1} \biggl[P_{1}+m+p;\nu +1;- \frac{q^{2}}{4z} \biggr] \\ &\quad\bigl(q,z,Z_{1}\in \Re ^{+}; \Re (\nu )>-1, \Re (P_{1})>0 \bigr), \end{aligned}$$
(27)

where \(P_{1}=\frac{\eta +\nu +1}{2}\) and \(Z_{1}=z-s-t\).

Further, on setting \(\lambda =0\), \(\mu =1\), \(\eta =0\) and replacing ν by 2ν in equation (26), we get

$$\begin{aligned} &\biggl(\frac{z}{Z_{1}} \biggr)^{\nu +\frac{1}{2}}{}_{1}F_{1} \biggl[ \nu +\frac{1}{2};2\nu +1;-\frac{q^{2}}{4Z_{1}} \biggr] \\ &\quad =\sum_{m=-\infty }^{\infty }\sum _{p=0}^{\infty } \frac{(\frac{s}{z})^{m}}{m!}\frac{(\frac{t}{z})^{p}}{p!} \biggl( \nu + \frac{1}{2} \biggr)_{m+p} {}_{1}F_{1} \biggl[\nu +\frac{1}{2}+m+p;2\nu +1;- \frac{q^{2}}{4z} \biggr]. \end{aligned}$$
(28)

Now, using the following known result in equation (28) (see [16, p. 39, Eq. (21)]):

$$ {}_{1}F_{1} \biggl[\nu + \frac{1}{2};2\nu +1;-2x \biggr]=\varGamma (\nu +1)e^{-x} \biggl( \frac{x}{2} \biggr)^{-\nu }I_{\nu }(x), $$
(29)

(where \(I_{\nu }(x)\) is the modified Bessel function [16]), after a little simplification, we arrive at the following interesting result for the modified Bessel function:

$$\begin{aligned} &I_{\nu } \biggl(\frac{q^{2}}{8Z_{1}} \biggr)= \frac{ (\frac{Z_{1}}{z} )^{\nu +\frac{1}{2}}e^{\frac{q^{2}}{8Z_{1}}} (\frac{q^{2}}{16Z_{1}} )^{\nu }}{\varGamma (\nu +1)} \sum _{m=-\infty }^{\infty }\sum_{p=0}^{\infty } \frac{(\frac{s}{z})^{m}}{m!}\frac{(\frac{t}{z})^{p}}{p!} \\ &\phantom{I_{\nu } \biggl(\frac{q^{2}}{8Z_{1}} \biggr)=}{} \times \biggl(\nu +\frac{1}{2} \biggr)_{m+p} {}_{1}F_{1} \biggl[\nu + \frac{1}{2}+m+p;2\nu +1;- \frac{q^{2}}{4z} \biggr] \\ &\quad \biggl(q,z,Z_{1}\in \Re ^{+}; \Re \biggl(\nu + \frac{1}{2} \biggr)>0 \biggr). \end{aligned}$$
(30)

Further, using the following known result in equation (28) (see [16, p. 39, Eq. (20)]):

$$ {}_{1}F_{1} \biggl[\nu + \frac{1}{2};2\nu +1;2ix \biggr]=\varGamma (\nu +1)e^{ix} \biggl( \frac{x}{2} \biggr)^{-\nu }J_{\nu }(x), $$
(31)

(where \(i=\sqrt{-}1\) and \(J_{\nu }(x)\) is the Bessel function of the first kind [16]), we obtain a new result for Bessel function of the first kind:

$$\begin{aligned} &J_{\nu } \biggl(\frac{iq^{2}}{8Z_{1}} \biggr)= \frac{ (\frac{Z_{1}}{z} )^{\nu +\frac{1}{2}}e^{\frac{q^{2}}{8Z_{1}}} (\frac{iq^{2}}{16Z_{1}} )^{\nu }}{\varGamma (\nu +1)} \sum _{m=-\infty }^{\infty }\sum_{p=0}^{\infty } \frac{(\frac{s}{z})^{m}}{m!}\frac{(\frac{t}{z})^{p}}{p!} \\ &\phantom{J_{\nu } \biggl(\frac{iq^{2}}{8Z_{1}} \biggr)= }{} \times \biggl(\nu +\frac{1}{2} \biggr)_{m+p} {}_{1}F_{1} \biggl[\nu + \frac{1}{2}+m+p;2\nu +1;- \frac{q^{2}}{4z} \biggr] \\ &\quad \biggl(q,z,Z_{1}\in \Re ^{+}; \Re \biggl(\nu + \frac{1}{2} \biggr)>0 \biggr). \end{aligned}$$
(32)

If we expand \({}_{1}F_{1}\) in its defining series in equation (30) and equation (32), respectively, and arrange the resulting expressions into Kampé de Fériet function, then we get the following interesting relations between Bessel’s functions of the first kind and Kampé de Fériet function:

$$\begin{aligned} I_{\nu } \biggl(\frac{q^{2}}{8Z_{1}} \biggr)={}& \frac{ (\frac{Z_{1}}{z} )^{\nu +\frac{1}{2}}e^{\frac{q^{2}}{8Z_{1}}} (\frac{q^{2}}{16Z_{1}} )^{\nu }}{\varGamma (\nu +1)} \sum _{m=-\infty }^{\infty }\frac{(\frac{s}{z})^{m}}{m!} \biggl(\nu + \frac{1}{2} \biggr)_{m} \\ &{} \times F_{0:0;1}^{1:0;0} \begin{bmatrix} \nu +\frac{1}{2}+m: -;-; \\ &\frac{t}{z}, -\frac{q^{2}}{4z} \\ -:-;2\nu +1);\end{bmatrix} \end{aligned}$$
(33)

and

$$\begin{aligned} &J_{\nu } \biggl(\frac{iq^{2}}{8Z_{1}} \biggr)= \frac{ (\frac{Z_{1}}{z} )^{\nu +\frac{1}{2}}e^{\frac{q^{2}}{8Z_{1}}} (\frac{iq^{2}}{16Z_{1}} )^{\nu }}{\varGamma (\nu +1)} \sum _{m=-\infty }^{\infty }\frac{(\frac{s}{z})^{m}}{m!} \biggl(\nu + \frac{1}{2} \biggr)_{m} \\ &\phantom{J_{\nu } \biggl(\frac{iq^{2}}{8Z_{1}} \biggr)=}{}\times F_{0:0;1}^{1:0;0} \begin{bmatrix} \nu +\frac{1}{2}+m: -;-; \\ &\frac{t}{z}, -\frac{q^{2}}{4z} \\ -:-;2\nu +1;\end{bmatrix} \\ &\quad \biggl(q,t,z, Z_{1}\in \Re ^{+}; \Re \biggl(\nu + \frac{1}{2} \biggr) \biggr). \end{aligned}$$
(34)

On setting \(\lambda =0\), \(\mu =1\), replacing η by 2η and ν by 2ν in equation (26), we get

$$\begin{aligned} &\biggl(\frac{z}{Z_{1}} \biggr)^{\eta +\nu +\frac{1}{2}}{}_{1}F_{1} \biggl[\eta +\nu +\frac{1}{2};2\nu +1;-\frac{q^{2}}{4Z_{1}} \biggr] \\ &\quad = \sum _{m=-\infty }^{\infty }\sum_{p=0}^{\infty } \frac{(\frac{s}{z})^{m}}{m!}\frac{(\frac{t}{z})^{p}}{p!} \\ &\qquad{} \times \biggl(\eta +\nu +\frac{1}{2} \biggr)_{m+p} {}_{1}F_{1} \biggl[\eta +\nu + \frac{1}{2}+m+p;2\nu +1;-\frac{q^{2}}{4z} \biggr]. \end{aligned}$$
(35)

Now, by using the under mentioned definition of Whittaker function \(M_{k,\mu }(x)\) (see [16, p. 39, Eq. (23)]) in equation (35)

$$ M_{k,\mu }(x)=x^{\mu +\frac{1}{2}}e^{\frac{x}{2}}{}_{1}F_{1} \biggl[ \mu +k+\frac{1}{2};2\mu +1;-x \biggr], $$
(36)

we arrive at the following (presumably) new result for the Whittaker function of the first kind:

$$\begin{aligned} &M_{\eta,\nu } \biggl(\frac{q^{2}}{4Z_{1}} \biggr)= \biggl( \frac{Z_{1}}{z} \biggr)^{\eta }e^{\frac{q^{2}}{8}(\frac{1}{Z_{1}}- \frac{1}{z})} \\ &\phantom{M_{\eta,\nu } \biggl(\frac{q^{2}}{4Z_{1}} \biggr)=}{} \times \sum_{m=-\infty }^{\infty }\sum _{p=0}^{ \infty }\frac{(\frac{s}{z})^{m}}{m!} \frac{(\frac{t}{z})^{p}}{p!} \biggl( \eta +\nu +\frac{1}{2} \biggr)_{m+p} M_{\eta +m+p,\nu } \biggl( \frac{q^{2}}{4z} \biggr) \\ &\quad\biggl(q,z,Z_{1}\in \Re ^{+}; \Re \biggl(\eta +\nu + \frac{1}{2} \biggr)>0 \biggr). \end{aligned}$$
(37)

Further, on setting \(\lambda =0\), \(\mu =1\), \(\nu =\frac{1}{2}\), and \(\eta =\frac{1}{2}\) in equation (26), and then by using the definition of error function

$$ {}_{1}F_{1} \biggl(\frac{1}{2}; \frac{3}{2};-x^{2} \biggr)= \frac{\sqrt{\pi }}{2x} \mathrm{erf}(x), $$
(38)

we arrive at

$$ \mathrm{erf} \biggl(\frac{q}{2\sqrt{Z}_{1}} \biggr)=\frac{1}{\sqrt{(}\pi z)} \sum_{m=-\infty }^{\infty }\sum _{p=0}^{\infty } \frac{(\frac{s}{z})^{m}}{m!}\frac{(\frac{t}{z})^{p}}{p!} \biggl( \frac{1}{2} \biggr)_{m+p} {}_{1}F_{1} \biggl[ \frac{1}{2}+m+p;\frac{3}{2};-\frac{q^{2}}{4z} \biggr]. $$
(39)

In equation (39), on expanding \({}_{1}F_{1}\) in a series form and arranging the resulting expression into Kampé de Fériet function, we get

$$\begin{aligned} &\mathrm{erf} \biggl(\frac{q}{2\sqrt{Z}_{1}} \biggr)=\frac{1}{\sqrt{(}\pi z)} \sum_{m=-\infty }^{\infty }\frac{(\frac{s}{z})^{m}}{m!} \biggl( \frac{1}{2} \biggr)_{m} F_{0:0;1}^{1:0;0} \begin{bmatrix} m+\frac{1}{2}:-;-; \\ &\frac{t}{z},-\frac{q^{2}}{4z} \\ -:-;\frac{3}{2};\end{bmatrix} \\ &\quad\bigl(q,t,z,Z_{1}\in \Re ^{+} \bigr). \end{aligned}$$
(40)

5 Recurrence relations

In this section, we present the following recurrence relations for our introduced extended Voigt function \(\varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta }\):

$$\begin{aligned} &(\beta -\alpha )\varLambda _{\eta,\nu,\lambda }^{\mu,\alpha -1,\beta }+(2 \alpha -\beta )\varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta }-y \varLambda _{\eta +1,\nu,\lambda }^{\mu,\alpha,\beta }- \alpha \varLambda _{\eta,\nu,\lambda }^{\mu,\alpha +1,\beta }=0; \end{aligned}$$
(41)
$$\begin{aligned} &\beta (\beta -1)\varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta -1}- \beta ( \beta -1)\varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta }+ \beta y\varLambda _{\eta +1,\nu,\lambda }^{\mu,\alpha,\beta }-y( \beta -\alpha )\varLambda _{\eta +1,\nu,\lambda }^{\mu,\alpha,\beta +1}=0; \end{aligned}$$
(42)
$$\begin{aligned} &(1+\alpha -\beta )\varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta }- \alpha \varLambda _{\eta,\nu,\lambda }^{\mu,\alpha +1,\beta }+(\beta -1) \varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta -1}=0; \end{aligned}$$
(43)
$$\begin{aligned} &\beta \varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta }-\beta \varLambda _{\eta,\nu,\lambda }^{\mu,\alpha +1,\beta }+y\varLambda _{ \eta +1,\nu,\lambda }^{\mu,\alpha,\beta +1}=0; \end{aligned}$$
(44)
$$\begin{aligned} & \alpha \beta \varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta }- \beta y \varLambda _{\eta +1,\nu,\lambda }^{\mu,\alpha,\beta }+y( \beta -\alpha )\varLambda _{\eta +1,\nu,\lambda }^{\mu,\alpha,\beta +1}- \alpha \beta \varLambda _{\eta,\nu,\lambda }^{\mu,\alpha +1,\beta }=0; \end{aligned}$$
(45)
$$\begin{aligned} &(\alpha -1) \varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta }-y \varLambda _{\eta +1,\nu,\lambda }^{\mu,\alpha,\beta }+(\beta - \alpha ) \varLambda _{\eta,\nu,\lambda }^{\mu,\alpha -1,\beta }-( \beta -1)\varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta -1}=0. \end{aligned}$$
(46)

Here, we omit the variables.

Proof

We have the following recurrence relation of the confluent hypergeometric function \({}_{1}F_{1}\) (see [13, p. 19]):

$$ (b-a){}_{1}F_{1}(a-1;b;x)+(2a-b){}_{1}F_{1}(a;b;x)+x {}_{1}F_{1}(a;b;x)-a {}_{1}F_{1}(a+1;b;x)=0. $$
(47)

By using the above relation, we can easily arrive at

$$\begin{aligned} &(\beta -\alpha )\sqrt{\frac{x}{2}} \int _{0}^{\infty }t^{\eta }e^{-zt^{2}}{}_{1}F_{1}( \alpha -1;\beta;-yt)J_{\nu,\lambda }^{\mu }(xt)\,dt \\ &\quad{}+(2\alpha -\beta )\sqrt{\frac{x}{2}} \int _{0}^{\infty }t^{\eta }e^{-zt^{2}}{}_{1}F_{1}( \alpha;\beta;-yt)J_{\nu,\lambda }^{\mu }(xt)\,dt \\ &\quad{}-y\sqrt{\frac{x}{2}} \int _{0}^{\infty }t^{\eta +1}e^{-zt^{2}}{}_{1}F_{1}( \alpha;\beta;-yt)J_{\nu,\lambda }^{\mu }(xt)\,dt \\ &\quad{}-\alpha \sqrt{\frac{x}{2}} \int _{0}^{\infty }t^{\eta }e^{-zt^{2}}{}_{1}F_{1}( \alpha +1;\beta;-yt)J_{\nu,\lambda }^{\mu }(xt)\,dt=0. \end{aligned}$$
(48)

Note here, on applying definition (3) in the above expression yields the first recurrence relation (41).

A similar argument can establish the other formulas given in equations (42)–(46), respectively, by using the following recurrence relations of \({}_{1}F_{1}\) (see [13, p. 19]):

$$\begin{aligned} & b(b-1) {}_{1}F_{1}(a;b-1;x)-b(b-1){}_{1}F_{1}(a;b;x)-bx {}_{1}F_{1}(a;b;x) \\ &\quad +(b-a)x {}_{1}F_{1}(a;b+1;x)=0; \end{aligned}$$
(49)
$$\begin{aligned} &(1+a-b){}_{1}F_{1}(a;b;x)-a {}_{1}F_{1}(a+1;b;x)+(b-1){}_{1}F_{1}(a;b-1;x)=0; \end{aligned}$$
(50)
$$\begin{aligned} & b {}_{1}F_{1}(a;b;x)-b {}_{1}F_{1}(a-1;b;x)-x {}_{1}F_{1}(a;b+1;x)=0; \end{aligned}$$
(51)
$$\begin{aligned} & ab {}_{1}F_{1}(a;b;x)+bx {}_{1}F_{1}(a;b;x)-(b-a)x {}_{1}F_{1}(a;b+1;x)-ab {}_{1}F_{1}(a+1;b;x)=0; \end{aligned}$$
(52)
$$\begin{aligned} & (a-1){}_{1}F_{1}(a;b;x)+x {}_{1}F_{1}(a;b;x)+(b-a){}_{1}F_{1}(a-1;b;x) \\ &\quad{}-(b-1){}_{1}F_{1}(a;b-1;x)=0. \end{aligned}$$
(53)

 □

6 Some recurrence type connection formulas

Here, we present some recurrence type connection formulas for our extended Voigt function \(\varLambda _{\eta,\nu,\lambda }^{\mu,\alpha,\beta }\) and the Voigt function \(\varOmega _{\eta,\nu,\lambda }^{\mu }\) defined by Srivastava et al. [18] as follows:

$$\begin{aligned} &\alpha \varOmega _{\eta,\nu,\lambda }^{\mu }-y \varOmega _{\eta +1,\nu, \lambda }^{\mu }-\alpha \varLambda _{\eta,\nu,\lambda }^{\mu,\alpha, \alpha +1}=0; \end{aligned}$$
(54)
$$\begin{aligned} &\alpha (\alpha -1)\varLambda _{\eta,\nu,\lambda }^{\mu,\alpha, \alpha -1}-\alpha ( \alpha -1)\varOmega _{\eta,\nu,\lambda }^{\mu }+ \alpha y\varOmega _{\eta +1,\nu,\lambda }^{\mu }=0; \end{aligned}$$
(55)
$$\begin{aligned} &\varOmega _{\eta +1,\nu,\lambda }^{\mu }-\alpha \varLambda _{\eta,\nu, \lambda }^{\mu,\alpha +1,\beta }+(\alpha -1)\varLambda _{\eta,\nu, \lambda }^{\mu,\alpha,\alpha -1}=0; \end{aligned}$$
(56)
$$\begin{aligned} & \alpha \varOmega _{\eta,\nu,\lambda }^{\mu }-\beta \varLambda _{\eta, \nu,\lambda }^{\mu,\alpha -1,\alpha }+y\varLambda _{\eta +1,\nu, \lambda }^{\mu,\alpha,\alpha +1}=0; \end{aligned}$$
(57)
$$\begin{aligned} & \alpha \varOmega _{\eta,\nu,\lambda }^{\mu }-y \varOmega _{\eta +1,\nu, \lambda }^{\mu }-\alpha \varLambda _{\eta,\nu,\lambda }^{\mu,\alpha +1, \beta }=0; \end{aligned}$$
(58)
$$\begin{aligned} &(\alpha -1)\varOmega _{\eta,\nu,\lambda }^{\mu }-y \varOmega _{\eta +1, \nu,\lambda }^{\mu }-(\alpha -1)\varLambda _{\eta,\nu,\lambda }^{\mu, \alpha,\alpha -1}=0; \end{aligned}$$
(59)

Here, we omit the variables.

Proof

On taking \(\beta =\alpha \) in equation (48) and then using the definition of Voigt functions given by equation (1) and equation (3), respectively, we get our first formula (54). The other formulas can be established (in a similar way) by taking \(\beta =\alpha \) in the integral representation of relations (42), (43), (44), (45), and (46), respectively. □

References

  1. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Table of Integral Transforms. Vol. I. MaGraw-Hill, New York (1954)

    MATH  Google Scholar 

  2. Goyal, S.P., Mukherjee, R.: Generalizations of the Voigt functions through generalized Lauricella function. Ganita Sandesh 13(1), 31–41 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Gupta, K., Gupta, A.: On the study of unified representations of the generalized Voigt functions. Palestine J. Math. 2(1), 32–37 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Gupta, K.C., Goyal, S.P., Mukherjee, R.: Some results on generalized Voigt functions. ANZIAM J. 44, 299–303 (2002)

    Article  MathSciNet  Google Scholar 

  5. Khan, N.U., Kamarujjama, M., Ghayasuddin, M.: A generalization of Voigt function involving generalized Whittaker and Bessel functions. Palestine J. Math. 4(2), 313–318 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Klusch, D.: Astrophysical spectroscopy and neutron reactions, integral transforms and Voigt functions. Astrophys. Space Sci. 175, 229–240 (1991)

    Article  MathSciNet  Google Scholar 

  7. Pathak, R.S.: Certain convergence theorems and asymptotic properties of a generalization of Lommel and Maitland transform. Proc. Natl. Acad. Sci. India Sect. A 36, 81–86 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Pathan, M.A., Garg, M., Mittal, S.: On unified presentations of the multivariable Voigt functions. East-West J. Math. 8(1), 49–59 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Pathan, M.A., Gupta, K., Agrawal, V.: Summation formulae involving Voigt functions and generalized hypergeometric functions. Scientia, Ser. A, Math. Sci. 19, 37–44 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Pathan, M.A., Shahwan, M.J.S.: New representation of the Voigt functions. Demonstr. Math. 39, 1–4 (2006)

    Article  MathSciNet  Google Scholar 

  11. Pathan, M.A., Yasmeen: On partly bilateral and partly unilateral generating functions. J. Aust. Math. Soc. Ser. B 28, 240–245 (1986)

    Article  MathSciNet  Google Scholar 

  12. Rainville, E.D.: Special Functions. Macmillan Co., New York (1960)

    MATH  Google Scholar 

  13. Slater, L.J.: Confluent Hypergeometric Functions. Cambridge University Press, Cambridge (1960)

    MATH  Google Scholar 

  14. Srivastava, H.M., Bin-Saad, M.G., Pathan, M.A.: A new theorem on multidimensional generating relations and its applications. Proc. Jangjeon Math. Soc. 10(1), 7–22 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Srivastava, H.M., Chen, M.-P.: Some unified presentations of the Voigt functions. Astrophys. Space Sci. 192, 63–74 (1992)

    Article  MathSciNet  Google Scholar 

  16. Srivastava, H.M., Manocha, H.L.: A Treatise on Generating Functions. Halsted Press, New York (1984)

    MATH  Google Scholar 

  17. Srivastava, H.M., Miller, E.A.: A unified presentation of the Voigt functions. Astrophys. Space Sci. 135, 111–118 (1987)

    Article  MathSciNet  Google Scholar 

  18. Srivastava, H.M., Pathan, M.A., Kamarujjama, M.: Some unified presentations of the generalized Voigt functions. Commun. Appl. Anal. 2, 49–64 (1998)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Not applicable.

Availability of data and materials

Not applicable.

Funding

The author T.A. would like to thank Prince Sultan University for the support through the research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kottakkaran Sooppy Nisar.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, N., Ghayasuddin, M., Khan, W.A. et al. Further extension of Voigt function and its properties. Adv Differ Equ 2020, 229 (2020). https://doi.org/10.1186/s13662-020-02663-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-020-02663-4

MSC

Keywords