Skip to main content

Theory and Modern Applications

Kamenev and Philos-types oscillation criteria for fourth-order neutral differential equations

Abstract

This work is concerned with the oscillatory behavior of solutions of fourth-order neutral differential equations. By using the Riccati transformation and integral averaging techniques we obtain some new Kamenev-type and Philos-type oscillation criteria. Our results extend and improve some known results in the literature. An example is given to illustrate our main results.

1 Introduction

In this paper, we establish some oscillation criteria for the fourth-order neutral differential equation of the form

$$ L_{y}^{\prime}+q ( t ) y^{\beta} \bigl( \delta ( t ) \bigr) =0, \quad t\geq t_{0}, $$
(1)

where \(L_{y}=r ( t ) ( z^{\prime\prime\prime} ( t ) ) ^{\gamma}\) and \(z ( t ) :=y ( t ) +p ( t ) y ( \tau ( t ) ) \). We suppose that:

\(( S_{1} ) \):

γ and β are quotients of odd positive integers,

\(( S_{2} ) \):

\(r,p,q\in C[t_{0},\infty)\), \(r ( t ) >0\), \(r^{\prime} ( t ) \geq0\), \(q ( t ) >0\), \(0\leq p ( t ) < p_{0}<1\), \(\tau,\delta\in C[t_{0},\infty)\), \(\tau ( t ) \leq t\), \(\lim_{t\rightarrow\infty}\tau ( t ) =\lim_{t\rightarrow\infty}\delta ( t ) =\infty\). and

$$ \int_{t_{0}}^{\infty}\frac{1}{r^{1/\gamma} ( s ) } \,\mathrm{d}s=\infty. $$
(2)

By a solution of (1) we mean a function \(y\in C^{3}[t_{y},\infty )\), \(t_{y}\geq t_{0}\), satisfying (1) on \([t_{y},\infty)\) and such that \(r ( t ) ( z^{\prime\prime\prime} ( t ) ) ^{\gamma}\in C^{1}[t_{y},\infty)\). We consider only those solutions y of (1) that satisfy \(\sup \{ \vert y ( t ) \vert :t\geq T\}>0 \) for all \(T\geq t_{y}\).

A solution y of (1) is said to be nonoscillatory if it is ultimately positive or negative; otherwise, it is said to be oscillatory. The equation itself is called oscillatory if all its solutions are oscillatory.

Delay differential equations play an important role in applications of real-world life. One area of active research in recent years is studying the sufficient conditions for oscillation of delay differential equations, see [1–23] and the references therein.

In particular, the Emden–Fowler delay differential equations have numerous applications in mathematical, theoretical, and chemical physics; see, for instance, [24–27].

Let us briefly comment on a number of related results, which motivated our study. The authors in [28, 29] were concerned with oscillatory behavior of solutions of fourth-order neutral differential equations and established some new oscillation criteria.

In [30, 31] the authors considered the equation

$$ \bigl( y ( t ) +p ( t ) y \bigl( \tau ( t ) \bigr) \bigr) ^{ ( n ) }+q ( t ) f \bigl( y \bigl( \delta ( t ) \bigr) \bigr) =0 $$
(3)

and established the criteria for the solutions to be oscillatory when \(0\leq p ( t ) <1\).

Xing et al. [32] proved that the equation

$$ \bigl( r ( t ) \bigl( \bigl( y ( t ) +p ( t ) y \bigl( \tau ( t ) \bigr) \bigr) ^{ ( n-1 ) } \bigr) ^{\gamma} \bigr) ^{\prime}+q ( t ) y^{\gamma} \bigl( \delta ( t ) \bigr) =0 $$
(4)

is oscillatory if

$$ \bigl( \delta^{-1} ( t ) \bigr) ^{\prime}\geq \delta_{0}>0,\qquad \tau^{\prime} ( t ) \geq \tau_{0}>0,\qquad\tau ^{-1} \bigl( \delta ( t ) \bigr) < t, $$
(5)

and

$$ \underset{t\rightarrow \infty }{\lim \inf } \int_{\tau^{-1} ( \delta ( t ) ) }^{t}\frac{\widehat{q} ( s ) }{r ( s ) } \bigl( s^{n-1} \bigr) ^{\gamma}\,\mathrm{d}s> \biggl( \frac{1}{\delta _{0}}+\frac{p_{0}^{\gamma}}{\delta_{0}\tau_{0}} \biggr) \frac{ ( ( n-1 ) ! ) ^{\gamma}}{\mathrm{e}}, $$
(6)

where n is even, and \(\widehat{q} ( t ) :=\min \{ q ( \delta^{-1} ( t ) ) ,q ( \delta^{-1} ( \tau ( t ) ) ) \} \).

Moaaz et al. [33] proved that if there exist positive functions \(\eta , \zeta\in C^{1} ( [ t_{0},\infty ) ,{R} ) \) such that the equations

$$ \psi^{\prime}(t)+ \biggl( \frac{\mu ( \tau^{-1} ( \eta ( t ) ) ) ^{n-1}}{ ( n-1 ) !r^{1/\gamma} ( \tau ^{-1} ( \eta ( t ) ) ) } \biggr) ^{\gamma }q ( t ) P_{n}^{\gamma} \bigl( \delta ( t ) \bigr) \psi \bigl( \tau^{-1} \bigl( \eta ( t ) \bigr) \bigr) =0 $$
(7)

and

$$ \phi^{\prime} ( t ) +\tau^{-1} \bigl( \zeta ( t ) \bigr) R_{n-3} ( t ) \phi \bigl( \tau^{-1} \bigl( \zeta ( t ) \bigr) \bigr) =0 $$
(8)

are oscillatory, where

$$\begin{aligned}& P_{n} ( t ) =\frac{1}{p ( \tau^{-1} ( t ) ) } \biggl( 1- \frac{ ( \tau^{-1} ( \tau^{-1} ( t ) ) ) ^{n-1}}{ ( \tau^{-1} ( t ) ) ^{n-1}p ( \tau ^{-1} ( \tau^{-1} ( t ) ) ) } \biggr) , \\& R_{n-3} ( t ) = \int_{t}^{\infty}R_{n-4} ( s ) \mathrm{d}s, \end{aligned}$$

and

$$ R_{0} ( t ) = \biggl( \frac{1}{r ( t ) } \int_{t}^{\infty }q ( s ) P_{2}^{\gamma} \bigl( \sigma ( s ) \bigr) \,\mathrm{d}s \biggr) ^{1/\gamma}, $$
(9)

then (1) is oscillatory.

Our aim in the present paper is employing the Riccati technique to establish some new Kamenev-type and Philos-type conditions for the oscillation of all solutions of equation (1) under condition (2).

The paper is organized as follows. In Sect. 2, we give four lemmas to prove the main results. In Sect. 3, we establish new oscillation results for (1) by using Riccati transformation. In Sect. 4, we establish some new Kamenev-type oscillation criteria for (1). In Sect. 5, we use the integral averaging technique to establish some new Philos-type conditions for the oscillation of all solutions of equation (1). Finally, we present an example and some conclusions to illustrate the main results.

Remark 1.1

All functional inequalities considered in this paper are assumed to hold eventually, that is, they are satisfied for all t large enough.

Remark 1.2

Without loss of generality, we can deal only with the positive solutions of (1).

Notation

For convenience, we use the following notation:

$$\begin{aligned}& A_{1} ( t ) =q ( t ) ( 1-p_{0} ) ^{\beta }M^{\beta-\gamma} \bigl( \delta ( t ) \bigr) , \\& A_{2} ( t ) =\gamma\varepsilon\frac{\delta^{2} ( t ) \zeta\delta^{\prime} ( t ) }{r^{1/\gamma} ( t ) }, \\& \tilde{A}_{1} ( t ) = \int_{t}^{\infty}A_{1} ( s ) \,\mathrm{d}s,\qquad B_{1} ( t ) =\frac{\pi^{\prime} ( t ) }{\pi ( t ) }, \\& B_{2} ( t ) =\pi ( t ) q ( t ) ( 1-p_{0} ) ^{\beta}M^{\beta-\gamma} \bigl( \delta ( t ) \bigr), \end{aligned}$$

and

$$ B_{3} ( t ) =\gamma\varepsilon\frac{\delta^{2} ( t ) \zeta\delta^{\prime} ( t ) }{ ( \pi ( t ) r ( t ) ) ^{1/\gamma}}. $$
(10)

2 Some auxiliary lemmas

We will employ the following lemmas:

Lemma 2.1

([34], Lemma 2.1)

Let\(\gamma\geq1\)be the ratio of two odd numbers, and let\(V>0\)andUbe constants. Then

$$ Uy-Vy^{ ( \gamma+1 ) /\gamma}\leq\frac{\gamma^{\gamma}}{(\gamma+1)^{\gamma+1}}\frac{U^{\gamma+1}}{V^{\gamma}}. $$
(11)

Lemma 2.2

([1, Lemma 2.2.3])

Let\(y\in C^{n} ( [ t_{0},\infty ) , ( 0,\infty ) ) \). Assume that\(y^{ ( n ) } ( t ) \)is of fixed sign and not identically zero on\([ t_{0},\infty ) \)and that there exists\(t_{1}\geq t_{0}\)such that\(y^{ ( n-1 ) } ( t ) y^{ ( n ) } ( t ) \leq0\)for all\(t\geq t_{1}\). If\(\lim_{t\rightarrow \infty}y ( t ) \neq0\), then for every\(\mu\in ( 0,1 ) \), there exists\(t_{\mu}\geq t_{1}\)such that

$$ y ( t ) \geq\frac{\mu}{ ( n-1 ) !}t^{n-1} \bigl\vert y^{ ( n-1 ) } ( t ) \bigr\vert \quad\textit{for }t\geq t_{\mu}. $$
(12)

Lemma 2.3

([35])

Let\(y ( t ) \)be a positive andn-times differentiable function on an interval\([ T,\infty ) \)with itsnth derivative\(y^{ ( n ) } ( t ) \)nonpositive on\([ T,\infty ) \), not identically zero on any interval of the form\([ T^{\prime},\infty ) \), \(T^{\prime}\geq T\), and such that\(y^{ ( n-1 ) } ( t ) y^{ ( n ) } ( t ) \leq0\), \(t\geq t_{y}\). Then there exist constants\(0<\theta<1 \)and\(N>0 \)such that

$$ y^{\prime} ( \theta t ) \geq Nt^{n-2}y^{ ( n-1 ) } ( t ) $$
(13)

for all sufficient larget.

Lemma 2.4

Assume thatyis an eventually positive solution of (1). Then

$$ \bigl( r ( t ) \bigl( z^{\prime\prime\prime} ( t ) \bigr) ^{\gamma} \bigr) ^{\prime}\leq-q ( t ) ( 1-p_{0} ) ^{\beta}z^{\beta} \bigl( \delta ( t ) \bigr) . $$
(14)

Proof

Let y be an eventually positive solution of (1). Then there exists \(t_{1}\geq t_{0}\) such that \(y ( t ) >0\), \(y ( \tau ( t ) ) >0\) and \(y ( \delta ( t ) ) >0\) for \(t\geq t_{1}\). Since \(r^{\prime} ( t ) >0\), we have

$$ z ( t ) >0,\qquad z^{\prime} ( t ) >0,\qquad z^{\prime \prime\prime} ( t ) >0,\qquad z^{ ( 4 ) } ( t ) < 0, \qquad\bigl( r ( t ) \bigl( z^{\prime\prime \prime} ( t ) \bigr) ^{\gamma} \bigr) ^{\prime}\leq0 $$
(15)

for \(t\geq t_{1}\). From the definition of z we get

$$\begin{aligned} y ( t ) \geq&z ( t ) -p_{0}y \bigl( \tau ( t ) \bigr) \geq z ( t ) -p_{0}z \bigl( \tau ( t ) \bigr) \\ \geq& ( 1-p_{0} ) z ( t ) , \end{aligned}$$

which, together with (1), gives

$$ \bigl( r ( t ) \bigl( z^{\prime\prime\prime} ( t ) \bigr) ^{\gamma} \bigr) ^{\prime}+q ( t ) ( 1-p_{0} ) ^{\beta}z^{\beta} \bigl( \delta ( t ) \bigr) \leq0. $$
(16)

The proof is complete. □

3 Oscillation criteria

In this section, we establish new oscillation results for (1) by using the Riccati transformation.

Lemma 3.1

Letybe an eventually positive solution of (1). If there exist constants\(\varepsilon\in ( 0,1 ) \)and\(\zeta>0 \)such that

$$ \varphi ( t ) :=\frac{r ( t ) ( z^{\prime\prime \prime} ( t ) ) ^{\gamma}}{z^{\gamma} ( \zeta \delta ( t ) ) }, $$
(17)

then

$$ \varphi^{\prime} ( t ) +A_{1} ( t ) +A_{2} ( t ) \varphi^{ ( \gamma+1 ) /\gamma} ( t ) \leq0. $$
(18)

Proof

Let y be an eventually positive solution of (1). Using Lemma 2.4, we obtain that (14) holds. From (17) we see that \(\varphi ( t ) >0 \) for \(t\geq t_{1}\), and using (14), we obtain

$$ \varphi^{\prime} ( t ) \leq\frac{-q ( t ) ( 1-p_{0} ) ^{\beta}z^{\beta} ( \delta ( t ) ) .}{z^{\gamma} ( \zeta\delta ( t ) ) }-\gamma \frac{r ( t ) ( z^{\prime\prime\prime} ( t ) ) ^{\gamma}z^{\prime} ( \zeta\delta ( t ) ) \zeta \delta^{\prime} ( t ) }{z^{\gamma+1} ( \zeta\delta ( t ) ) }. $$
(19)

From Lemma 2.3 we have

$$ \varphi^{\prime} ( t ) \leq-q ( t ) ( 1-p_{0} ) ^{\beta}z^{\beta-\gamma} \bigl( \delta ( t ) \bigr) -\gamma \frac{r ( t ) ( z^{\prime\prime\prime } ( t ) ) ^{\gamma}\varepsilon\delta^{2} ( t ) z^{\prime\prime\prime} ( \delta ( t ) ) \zeta \delta ^{\prime} ( t ) }{z^{\gamma+1} ( \zeta\delta ( t ) ) }, $$
(20)

which is

$$ \varphi^{\prime} ( t ) \leq-q ( t ) ( 1-p_{0} ) ^{\beta}z^{\beta-\gamma} \bigl( \delta ( t ) \bigr) -\gamma\varepsilon \frac{r ( t ) \delta^{2} ( t ) \zeta\delta^{\prime} ( t ) ( z^{\prime\prime \prime} ( t ) ) ^{\gamma+1}}{z^{\gamma+1} ( \zeta \delta ( t ) ) }. $$
(21)

Using (17) we have

$$ \varphi^{\prime} ( t ) \leq-q ( t ) ( 1-p_{0} ) ^{\beta}z^{\beta-\gamma} \bigl( \delta ( t ) \bigr) -\gamma\varepsilon \frac{\delta^{2} ( t ) \zeta \delta ^{\prime} ( t ) }{r^{1/\gamma} ( t ) }\varphi ^{ ( \gamma+1 ) /\gamma} ( t ) . $$
(22)

Since \(z^{\prime} ( t ) >0\), there exist \(t_{2}\geq t_{1}\) and a constant \(M>0\) such that

$$ z ( t ) >M. $$
(23)

Then (22) turns into

$$ \varphi^{\prime} ( t ) \leq-q ( t ) ( 1-p_{0} ) ^{\beta}M^{\beta-\gamma} \bigl( \delta ( t ) \bigr) -\gamma\varepsilon \frac{\delta^{2} ( t ) \zeta \delta ^{\prime} ( t ) }{r^{1/\gamma} ( t ) }\varphi ^{ ( \gamma+1 ) /\gamma} ( t ) , $$
(24)

that is,

$$ \varphi^{\prime} ( t ) +A_{1} ( t ) +A_{2} ( t ) \varphi^{ ( \gamma+1 ) /\gamma} ( t ) \leq0. $$
(25)

The proof is complete. □

Theorem 3.1

Assume that (2) holds. If

$$ \underset{t\rightarrow \infty }{\lim \inf }\frac{1}{\tilde{A}_{1} ( t ) } \int_{t}^{\infty}A_{2} ( s ) \tilde{A}_{1}^{\frac {\gamma +1}{\gamma}} ( s ) \,\mathrm{d}s>\frac{\gamma}{ ( \gamma +1 ) ^{\frac{\gamma+1}{\gamma}}}, $$
(26)

then (1) is oscillatory.

Proof

Let y be an eventually positive solution of (1). Then there exists \(t_{1}\geq t_{0}\) such that \(y ( t ) >0\), \(y ( \tau ( t ) ) >0\), and \(y ( \delta ( t ) ) >0\) for \(t\geq t_{1}\). By Lemma 3.1 we get that (18) holds.

Integrating (18) from t to l, we get

$$ \varphi ( l ) -\varphi ( t ) + \int_{t}^{l}A_{1} ( s ) \,\mathrm{d}s+ \int_{t}^{l}A_{2} ( s ) \varphi^{\frac {\gamma +1}{\gamma}} ( s ) \,\mathrm{d}s\leq0. $$
(27)

Letting \(l\rightarrow\infty\) and using \(\varphi>0\) and \(\varphi ^{\prime }<0\), we have

$$ \varphi ( t ) \geq\tilde{A}_{1} ( t ) + \int _{t}^{\infty }A_{2} ( s ) \varphi^{\frac{\gamma+1}{\gamma}} ( s ) \,\mathrm{d}s. $$
(28)

This implies

$$ \frac{\varphi ( t ) }{\tilde{A}_{1} ( t ) }\geq 1+\frac{1}{\tilde{A}_{1} ( t ) } \int_{t}^{\infty}A_{2} ( s ) \tilde{A}_{1}^{\frac{\gamma+1}{\gamma}} ( s ) \biggl( \frac{\varphi ( s ) }{\tilde{A}_{1} ( s ) } \biggr) ^{\frac{ \gamma+1}{\gamma}}\,\mathrm{d}s. $$
(29)

Let \(\lambda=\inf_{t\geq T}\varphi ( t ) /\tilde{A}_{1} ( t ) \). Then obviously \(\lambda\geq1\). Thus from (26) and (29) we see that

$$ \lambda\geq1+\gamma \biggl( \frac{\lambda}{\gamma+1} \biggr) ^{ ( \gamma+1 ) /\gamma} $$
(30)

or

$$ \frac{\lambda}{\gamma+1}\geq\frac{1}{\gamma+1}+\frac{\gamma }{\gamma+1} \biggl( \frac{\lambda}{\gamma+1} \biggr) ^{ ( \gamma+1 ) /\gamma}, $$
(31)

which contradicts the admissible values of \(\lambda\geq1 \) and \(\gamma >0\). Therefore the proof is complete. □

4 Kamenev-type criteria

In this section, we establish new Kamenev-type oscillation criteria for (1).

Lemma 4.1

Letybe an eventually positive solution of (1), and suppose that (15) holds. If there exist a function\(\pi\in C^{1} ( [ t_{0},\infty ) ,R ^{+} ) \)and constants\(\varepsilon\in ( 0,1 ) \)and\(\zeta>0\)such that

$$ \varpi ( t ) :=\pi ( t ) \frac{r ( t ) ( z^{\prime\prime\prime} ( t ) ) ^{\gamma}}{z^{\gamma } ( \zeta\delta ( t ) ) }, $$
(32)

then

$$ \varpi^{\prime} ( t ) -B_{1} ( t ) \varpi ( t ) +B_{2} ( t ) +B_{3} ( t ) \varpi^{ ( \gamma +1 ) /\gamma} ( t ) \leq0. $$
(33)

Proof

Let y be an eventually positive solution of (1). Using Lemma 2.4, we obtain that (14) holds. From (32) we see that \(\varpi ( t ) >0 \) for \(t\geq t_{1}\), and using (14), we obtain

$$\begin{aligned} \varpi^{\prime} ( t ) \leq&\pi^{\prime} ( t ) \frac{r ( t ) ( z^{\prime\prime\prime} ( t ) ) ^{\gamma}}{z^{\gamma} ( \zeta\delta ( t ) ) }+\pi ( t ) \frac{-q ( t ) ( 1-p_{0} ) ^{\beta }z^{\beta} ( \delta ( t ) ) }{z^{\gamma} ( \zeta \delta ( t ) ) } \\ &{}-\gamma\pi ( t ) \frac{r ( t ) ( z^{\prime \prime \prime} ( t ) ) ^{\gamma}z^{\prime} ( \zeta\delta ( t ) ) \zeta\delta^{\prime} ( t ) }{z^{\gamma +1} ( \zeta\delta ( t ) ) }. \end{aligned}$$

From Lemma 2.3 we have

$$\begin{aligned} \varpi^{\prime} ( t ) \leq&\pi^{\prime} ( t ) \frac{r ( t ) ( z^{\prime\prime\prime} ( t ) ) ^{\gamma}}{z^{\gamma} ( \zeta\delta ( t ) ) }-\pi ( t ) q ( t ) ( 1-p_{0} ) ^{\beta}z^{\beta -\gamma} \bigl( \delta ( t ) \bigr) \\ &{}-\gamma\pi ( t ) \frac{r ( t ) ( z^{\prime \prime \prime} ( t ) ) ^{\gamma}\varepsilon\delta^{2} ( t ) z^{\prime\prime\prime} ( \delta ( t ) ) \zeta\delta^{\prime} ( t ) }{z^{\gamma+1} ( \zeta \delta ( t ) ) }, \end{aligned}$$

which is

$$\begin{aligned} \varpi^{\prime} ( t ) \leq&\pi^{\prime} ( t ) \frac{r ( t ) ( z^{\prime\prime\prime} ( t ) ) ^{\gamma}}{z^{\gamma} ( \zeta\delta ( t ) ) }-\pi ( t ) q ( t ) ( 1-p_{0} ) ^{\beta}z^{\beta -\gamma} \bigl( \delta ( t ) \bigr) \\ &{}-\gamma\varepsilon\pi ( t ) \frac{r ( t ) \delta ^{2} ( t ) \zeta\delta^{\prime} ( t ) ( z^{\prime \prime\prime} ( t ) ) ^{\gamma+1}}{z^{\gamma+1} ( \zeta\delta ( t ) ) }. \end{aligned}$$

By (32) we have

$$\begin{aligned} \begin{aligned} \varpi^{\prime} ( t ) &\leq\frac{\pi^{\prime} ( t ) }{\pi ( t ) }\varpi ( t ) -\pi ( t ) q ( t ) ( 1-p_{0} ) ^{\beta}z^{\beta-\gamma} \bigl( \delta ( t ) \bigr) \\ &\quad{}-\gamma\varepsilon\frac{\delta^{2} ( t ) \zeta\delta ^{\prime } ( t ) }{ ( \pi ( t ) r ( t ) ) ^{1/\gamma}}\varpi^{ ( \gamma+1 ) /\gamma} ( t ) .\end{aligned} \end{aligned}$$

Since \(z^{\prime} ( t ) >0\), there exist \(t_{2}\geq t_{1}\) and \(M>0\) such that

$$ z ( t ) >M. $$
(34)

Hence we obtain

$$\begin{aligned} \varpi^{\prime} ( t ) \leq&\frac{\pi^{\prime} ( t ) }{\pi ( t ) }\varpi ( t ) -\pi ( t ) q ( t ) ( 1-p_{0} ) ^{\beta}M^{\beta-\gamma} \bigl( \delta ( t ) \bigr) \\ &{}-\gamma\varepsilon\frac{\delta^{2} ( t ) \zeta\delta ^{\prime } ( t ) }{ ( \pi ( t ) r ( t ) ) ^{1/\gamma}}\varpi^{ ( \gamma+1 ) /\gamma} ( t ) , \end{aligned}$$

that is,

$$ \varpi^{\prime} ( t ) -B_{1} ( t ) \varpi ( t ) +B_{2} ( t ) +B_{3} ( t ) \varpi^{ ( \gamma +1 ) /\gamma} ( t ) \leq0. $$
(35)

The proof is complete. □

Theorem 4.1

Assume that (2) holds. If there exist a function\(\pi \in C^{1} ( [ t_{0},\infty ) ,R ^{+} ) \)such that

$$ \underset{t\rightarrow \infty }{\lim \sup }\frac{1}{t^{n}}\int_{t_{0}}^{t} ( t-s ) ^{n} \biggl( B_{2} ( t ) -\frac {r ( s ) }{ ( \gamma+1 ) ^{\gamma+1}}\frac{ ( \pi ^{\prime} ( s ) ) ^{\gamma+1}}{ ( \varepsilon\pi ( s ) \delta^{2} ( t ) \zeta\delta^{\prime} ( s ) ) ^{\gamma}} \biggr) \,\mathrm{d}s=\infty, $$
(36)

then (1) is oscillatory.

Proof

Let y be a nonoscillatory solution of (1) on \([ t_{0},\infty ) \). Without loss of generality, we can assume that u is eventually positive. Using Lemma 4.1, we get that (33) holds. From Lemma 2.1 we set

$$ U=\pi^{\prime}/\pi,\qquad V=\gamma\varepsilon\delta^{2} ( t ) \zeta\delta^{\prime} ( t ) / \bigl( \pi ( t ) r ( t ) \bigr) ^{1/\gamma} \quad\mbox{and}\quad y=\varpi ( t ) . $$
(37)

Thus we have

$$ \varpi^{\prime} ( t ) \leq-B_{2} ( t ) + \frac {r ( t ) }{ ( \gamma+1 ) ^{\gamma+1}}\frac{ ( \pi ^{\prime } ( t ) ) ^{\gamma+1}}{ ( \varepsilon\pi ( t ) \delta^{2} ( t ) \zeta\delta^{\prime} ( t ) ) ^{\gamma}} $$
(38)

and

$$ -\int_{t_{0}}^{t}\left( t-s\right) ^{n}\varpi ^{\prime }\left( s\right) \mathrm{d}s\geq \int_{t_{0}}^{t}\left( t-s\right) ^{n}\left( B_{2}\left( t\right) -\frac{r\left( s\right) }{\left( \gamma +1\right) ^{\gamma +1}}\frac{\left( \pi ^{\prime }\left( s\right) \right) ^{\gamma +1}}{\left( \varepsilon \pi \left( s\right) \delta ^{2}\left( t\right) \zeta \delta ^{\prime }\left( s\right) \right) ^{\gamma }}\right) \mathrm{d}s. $$
(39)

Since

$$ \int_{t_{0}}^{t} ( t-s ) ^{n} \varpi^{\prime} ( s ) \,\mathrm{d}s=n \int_{t_{0}}^{t} ( t-s ) ^{n-1}\varphi ( s ) \,\mathrm{d}s- ( t-t_{0} ) ^{n}\varpi ( t_{0} ) , $$
(40)

we get

$$\begin{aligned} & \left( \frac{t-t_{0}}{t}\right) ^{n}\varpi ^{\prime }\left( t_{0}\right) -\frac{n}{t^{n}}\int_{t_{0}}^{t}\left( t-s\right) ^{n-1}\varpi \left( s\right) \mathrm{d}s \\ &\quad\geq\frac{1}{t^{n}} \int_{t_{0}}^{t} ( t-s ) ^{n} \biggl( B_{2} ( t ) -\frac{r ( s ) }{ ( \gamma+1 ) ^{\gamma+1}}\frac{ ( \pi^{\prime} ( s ) ) ^{\gamma+1}}{ ( \varepsilon\pi ( s ) \delta^{2} ( t ) \zeta \delta^{\prime} ( s ) ) ^{\gamma}} \biggr) \,\mathrm{d}s. \end{aligned}$$

Hence

$$ \frac{1}{t^{n}} \int_{t_{0}}^{t} ( t-s ) ^{n} \biggl( B_{2} ( t ) -\frac{r ( s ) }{ ( \gamma+1 ) ^{\gamma+1}} \frac{ ( \pi^{\prime} ( s ) ) ^{\gamma+1}}{ ( \varepsilon\pi ( s ) \delta^{2} ( t ) \zeta\delta ^{\prime} ( s ) ) ^{\gamma}} \biggr) \,\mathrm{d}s\leq \left( \frac{t-t_{0}}{t}\right) ^{n}\varpi \left( t_{0}\right) , $$
(41)

and so

$$ \underset{t\rightarrow \infty }{\lim \sup }\frac{1}{t^{n}}\int_{t_{0}}^{t} ( t-s ) ^{n} \biggl( B_{2} ( t ) -\frac {r ( s ) }{ ( \gamma+1 ) ^{\gamma+1}}\frac{ ( \pi ^{\prime} ( s ) ) ^{\gamma+1}}{ ( \varepsilon\pi ( s ) \delta^{2} ( t ) \zeta\delta^{\prime} ( s ) ) ^{\gamma}} \biggr) \,\mathrm{d}s\rightarrow\varpi ( t_{0} ) , $$
(42)

which contradicts (36), and this completes the proof. □

5 Philos-type oscillation result

In the section, we employ the integral averaging technique to establish a Philos-type oscillation criterion for (1).

Definition

Let

$$ D=\bigl\{ ( t,s ) \in R ^{2}:t\geq s\geq t_{0}\bigr\} \quad\mbox{and}\quad D_{0}=\bigl\{ ( t,s ) \in R ^{2}:t>s\geq t_{0} \bigr\} . $$
(43)

A kernel function \(H\in C ( D,R ) \) is said to belong to the function class â„‘, written as \(H\in \Im\), if

  1. (i)

    \(H ( t,s ) =0\) for \(t\geq t_{0}\), \(H ( t,s ) >0\), \(( t,s ) \in D_{0}\);

  2. (ii)

    \(H ( t,s ) \) has a continuous and nonpositive partial derivative \(\partial H/\partial s\) on \(D_{0}\), and there exist functions \(\pi \in C^{1} ( [ t_{0},\infty ) , ( 0,\infty ) ) \) and \(h\in C ( D_{0},R ) \) such that

    $$ \frac{\partial}{\partial s}H ( t,s ) +\frac{\pi^{\prime } ( s ) }{\pi ( s ) }H ( t,s ) =h ( t,s ) H^{\gamma/ ( \gamma+1 ) } ( t,s ) . $$
    (44)

Theorem 5.1

Assume that (2) holds. If there exist a positive function\(\pi\in C^{1} ( [ t_{0},\infty ) ,R ) \)such that

$$ \underset{t\rightarrow \infty }{\lim \sup }\frac{1}{H ( t,t_{1} ) }\int_{t_{1}}^{t} \biggl( H ( t,s ) B_{2} ( s ) -\frac{h^{\gamma+1} ( t,s ) }{ ( \gamma+1 ) ^{\gamma +1}}\frac{\pi ( s ) r ( t ) }{ ( \gamma\varepsilon\delta ^{2} ( s ) \zeta\delta^{\prime} ( s ) ) ^{\gamma}} \biggr) \,\mathrm{d}s=\infty, $$
(45)

then (1) is oscillatory.

Proof

Let y is a nonoscillatory solution of (1) on \([ t_{0},\infty ) \). Without loss of generality, we can assume that u is eventually positive. From Lemma 4.1 we get that (33) holds. Multiplying (33) by \(H ( t,s ) \) and integrating the resulting inequality from \(t_{1}\) to t, we find that

$$\begin{aligned} \begin{aligned} \int_{t_{1}}^{t}H ( t,s ) B_{2} ( s ) \,\mathrm{d}s &\leq \varpi ( t_{1} ) H ( t,t_{1} ) + \int _{t_{1}}^{t} \biggl( \frac{\partial}{\partial s}H ( t,s ) +B_{1} ( s ) H ( t,s ) \biggr) \varpi ( s ) \,\mathrm{d}s \\ &\quad- \int_{t_{1}}^{t}B_{3} ( s ) H ( t,s ) \varpi ^{\frac{\gamma+1}{\gamma}} ( s ) \,\mathrm{d}s.\end{aligned} \end{aligned}$$

From (44) we get

$$\begin{aligned} \int_{t_{1}}^{t}H ( t,s ) B_{2} ( s ) \,\mathrm{d}s \leq &\varpi ( t_{1} ) H ( t,t_{1} ) + \int _{t_{1}}^{t}h ( t,s ) H^{\gamma/ ( \gamma+1 ) } ( t,s ) \varpi ( s ) \,\mathrm{d}s \\ &{}- \int_{t_{1}}^{t}B_{3} ( s ) H ( t,s ) \varpi ^{\frac{\gamma+1}{\gamma}} ( s ) \,\mathrm{d}s. \end{aligned}$$

Using Lemma 2.1 with \(V=B_{3} ( s ) H ( t,s ) \), \(U=h ( t,s ) H^{\gamma/ ( \gamma+1 ) } ( t,s ) \), and \(y=\varpi ( s ) \), we get

$$\begin{aligned} &h ( t,s ) H^{\gamma/ ( \gamma+1 ) } ( t,s ) \varpi ( s ) -B_{3} ( s ) H ( t,s ) \varpi ^{\frac{\gamma+1}{\gamma}} ( s ) \\ &\quad\leq\frac{h^{\gamma+1} ( t,s ) }{ ( \gamma+1 ) ^{\gamma+1}}\frac{\pi ( s ) r ( t ) }{ ( \gamma \varepsilon\delta^{2} ( s ) \zeta\delta^{\prime} ( s ) ) ^{\gamma}}, \end{aligned}$$

which implies that

$$ \frac{1}{H ( t,t_{1} ) } \int_{t_{1}}^{t} \biggl( H ( t,s ) B_{2} ( s ) -\frac{h^{\gamma+1} ( t,s ) }{ ( \gamma +1 ) ^{\gamma+1}}\frac{\pi ( s ) r ( t ) }{ ( \gamma\varepsilon\delta^{2} ( s ) \zeta\delta^{\prime } ( s ) ) ^{\gamma}} \biggr) \,\mathrm{d}s\leq\varpi ( t_{1} ) , $$
(46)

a contradiction to (45).

Theorem 5.1 is proved. □

Corollary 5.1

If condition (45) in Theorem5.1is replaced by the conditions

$$ \underset{t\rightarrow \infty }{\lim \sup }\frac{1}{H ( t,t_{1} ) }\int_{t_{1}}^{t}H ( t,s ) B_{2} ( s ) \,\mathrm {d}s=\infty $$
(47)

and

$$ \underset{t\rightarrow \infty }{\lim \sup }\frac{1}{H ( t,t_{1} ) }\int_{t_{1}}^{t}\frac{h^{\gamma+1} ( t,s ) }{ ( \gamma +1 ) ^{\gamma+1}} \frac{\pi ( s ) r ( t ) }{ ( \gamma\varepsilon\delta^{2} ( s ) \zeta\delta^{\prime } ( s ) ) ^{\gamma}}\,\mathrm{d}s< \infty, $$
(48)

then (1) is oscillatory.

Example

Consider the differential equation

$$ \biggl( t \biggl( y ( t ) +\frac{1}{2}y \biggl( \frac{t}{3} \biggr) \biggr) ^{\prime\prime\prime} \biggr) ^{\prime}+\frac{q_{0}}{t^{4}}y \biggl( \frac{t}{2} \biggr) =0, $$
(49)

where \(q_{0}>0\) is a constant. Note that \(\gamma=\beta=1\), \(r ( t ) =t\), \(p_{0} ( t ) =1/2\), \(q ( t ) =q_{0}/t^{4}\), \(\delta ( t ) =t/2\), and \(\tau ( t ) =t/3\). If we set \(\pi ( t ) =t^{2}\), then

$$ \int_{t_{0}}^{\infty}\frac{1}{r ( s ) }\,\mathrm{d}s= \int _{t_{0}}^{\infty}\frac{1}{s}\,\mathrm{d}s= \infty $$
(50)

and

$$ B_{2} ( t ) =\pi ( t ) q ( t ) ( 1-p_{0} ) ^{\beta}M^{\beta-\gamma}\delta ( t ) =\frac {q_{0}}{4t}. $$
(51)

Thus we get

$$\begin{aligned}& \underset{t\rightarrow \infty }{\lim \sup }\frac{1}{t^{n}}\int_{t_{0}}^{t} ( t-s ) ^{n} \biggl( B_{2} ( t ) -\frac {r ( s ) }{ ( \gamma+1 ) ^{\gamma+1}}\frac{ ( \pi ^{\prime} ( s ) ) ^{\gamma+1}}{ ( \varepsilon\pi ( s ) \delta^{2} ( t ) \zeta\delta^{\prime} ( s ) ) ^{\gamma}} \biggr) \,\mathrm{d}s \\& \underset{t\rightarrow \infty }{\lim \sup }\frac{1}{t^{2}} \int _{t_{0}}^{t} ( t-s ) ^{2} \frac{1}{s} \biggl( \frac{q_{0}}{4}-8 \biggr) \,\mathrm {d}s=\infty. \end{aligned}$$

Therefore by Theorem 4.1 all solutions of (49) are oscillatory if \(q_{0}>32\).

Remark 5.1

We can easily see that the results obtained in [32, 33] cannot be applied to (36), so our results are new.

Remark 5.2

We can generalize our results by studying the equation

$$ \bigl( r ( t ) \bigl( z^{\prime\prime\prime} ( t ) \bigr) ^{\gamma} \bigr) ^{\prime}+\sum_{i=1}^{j}q_{i} ( t ) y^{\beta} \bigl( \delta_{i} ( t ) \bigr) =0,\quad t\geq t_{0}, j\geq1. $$
(52)

For this, we leave the results to interested researchers.

Remark 5.3

For interested researchers, there is a good problem of finding new results for (1) where

$$ z ( t ) :=y ( t ) -p ( t ) y \bigl( \tau ( t ) \bigr) . $$
(53)

6 Conclusions

The aim of this paper was to provide a study of asymptotic nature for a class of fourth-order neutral delay differential equations. We used a Riccati substitution and the integral averaging technique to ensure that every solution of the studied equation is oscillatory. The results presented complement some of the known results reported in the literature.

A further extension of this paper is using our results to study a class of systems of higher-order neutral differential equations, including those of fractional order. Some research in this area is in progress.

References

  1. Agarwal, R., Grace, S., O’Regan, D.: Oscillation Theory for Difference and Functional Differential Equations. Kluwer Academic, Dordrecht (2000)

    Book  Google Scholar 

  2. Agarwal, R.P., Bohner, M., Li, T., Zhang, C.: A new approach in the study of oscillatory behavior of even-order neutral delay differential equations. Appl. Math. Comput. 225, 787–794 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Baculikova, B., Dzurina, J., Li, T.: Oscillation results for even-order quasi linear neutral functional differential equations. Electron. J. Differ. Equ. 2011, Article ID 143 (2011)

    MATH  Google Scholar 

  4. Bazighifan, O., Dassios, I.: On the asymptotic behavior of advanced differential equations with a non-canonical operator. Appl. Sci. 10, Article ID 3130 (2020)

    Article  Google Scholar 

  5. Bazighifan, O., Elabbasy, E.M., Moaaz, O.: Oscillation of higher-order differential equations with distributed delay. J. Inequal. Appl. 2019, Article ID 55 (2019)

    Article  MathSciNet  Google Scholar 

  6. Chatzarakis, G.E., Elabbasy, E.M., Bazighifan, O.: An oscillation criterion in 4th-order neutral differential equations with a continuously distributed delay. Adv. Differ. Equ. 2019, Article ID 336 (2019)

    Article  MathSciNet  Google Scholar 

  7. Bazighifan, O., Cesarano, C.: A Philos-type oscillation criteria for fourth-order neutral differential equations. Symmetry 12, Article ID 379 (2020)

    Article  Google Scholar 

  8. Bazighifan, O., Abdeljawad, T.: Improved approach for studying oscillatory properties of fourth-order advanced differential equations with p-Laplacian like operator. Mathematics 8, Article ID 656 (2020)

    Article  Google Scholar 

  9. El-Nabulsi, R.A., Moaaz, O., Bazighifan, O.: New results for oscillatory behavior of fourth-order differential equations. Symmetry 12, Article ID 136 (2020)

    Article  Google Scholar 

  10. Kiguradze, I.T., Chanturiya, T.A.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluwer Academic, Dordrecht (1993)

    Book  Google Scholar 

  11. Ladde, G.S., Lakshmikantham, V., Zhang, B.: Oscillation Theory of Differential Equations with Deviating Arguments. Marcel Dekker, New York (1987)

    MATH  Google Scholar 

  12. Graef, J.R., Grace, S.R., Tunc, E.: Oscillatory behavior of even-order nonlinear differential equations with a sublinear neutral term. Opusc. Math. 39, 39–47 (2019)

    Article  MathSciNet  Google Scholar 

  13. Li, T., Han, Z., Zhao, P., Sun, S.: Oscillation of even-order neutral delay differential equations. Adv. Differ. Equ. 2010, Article ID 184180 (2010)

    Article  MathSciNet  Google Scholar 

  14. Moaaz, O.: New criteria for oscillation of nonlinear neutral differential equations. Adv. Differ. Equ. 2019, Article ID 484 (2019)

    Article  MathSciNet  Google Scholar 

  15. Moaaz, O., Elabbasy, E.M., Bazighifan, O.: On the asymptotic behavior of fourth-order functional differential equations. Adv. Differ. Equ. 2017, Article ID 261 (2017)

    Article  MathSciNet  Google Scholar 

  16. Moaaz, O., Elabbasy, E.M., Muhib, A.: Oscillation criteria for even-order neutral differential equations with distributed deviating arguments. Adv. Differ. Equ. 2019, Article ID 297 (2019)

    Article  MathSciNet  Google Scholar 

  17. Bazighifan, O., Ruggieri, M., Scapellato, A.: An improved criterion for the oscillation of fourth-order differential equations. Mathematics 8, Article ID 610 (2020)

    Article  Google Scholar 

  18. Bazighifan, O., Postolache, M.: An improved conditions for oscillation of functional nonlinear differential equations. Mathematics 8, Article ID 552 (2020)

    Article  Google Scholar 

  19. Bazighifan, O.: An approach for studying asymptotic properties of solutions of neutral differential equations. Symmetry 12, Article ID 555 (2020)

    Article  Google Scholar 

  20. Bohner, M., Grace, S.R., Sager, I., Tunc, E.: Oscillation of third-order nonlinear damped delay differential equations. Appl. Math. Comput. 278, 21–32 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Graef, J., Grace, S., Tunc, E.: Oscillation criteria for even-order differential equations with unbounded neutral coefficients and distributed deviating arguments. Funct. Differ. Equ. 25, 143–153 (2018)

    MathSciNet  Google Scholar 

  22. Graef, J.R., Grace, S.R., Tunc, E.: Oscillation of even-order advanced functional differential equations. Publ. Math. (Debr.) 93, 445–455 (2018)

    Article  MathSciNet  Google Scholar 

  23. Graef, J.R., Tunc, E.: Oscillation of fourth-order nonlinear dynamic equations on time scales. Panam. Math. J. 25, 16–34 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Dzurina, J., Grace, S.R., Jadlovska, I., Li, T.: Oscillation criteria for second-order Emden–Fowler delay differential equations with a sublinear neutral term. Math. Nachr. 293, 910–922 (2020). https://doi.org/10.1002/mana.201800196

    Article  Google Scholar 

  25. Li, T., Rogovchenko, Yu.V.: On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations. Appl. Math. Lett. 105, Article ID 106293 (2020)

    Article  MathSciNet  Google Scholar 

  26. Li, T., Rogovchenko, Yu.V.: Oscillation criteria for second-order superlinear Emden–Fowler neutral differential equations. Monatshefte Math. 184(3), 489–500 (2017)

    Article  MathSciNet  Google Scholar 

  27. Chatzarakis, G.E., Grace, S.R., Jadlovska, I., Li, T., Tunc, E.: Oscillation criteria for third-order Emden–Fowler differential equations with unbounded neutral coefficients. Complexity 2019, Article ID 5691758 (2019)

    Article  Google Scholar 

  28. Zhang, C., Agarwal, R.P., Li, T.: Oscillation and asymptotic behavior of higher-order delay differential equations with p-Laplacian like operators. J. Math. Anal. Appl. 409(2), 1093–1106 (2014)

    Article  MathSciNet  Google Scholar 

  29. Li, T., Rogovchenko, Yu.V.: Asymptotic behavior of higher-order quasilinear neutral differential equations. Abstr. Appl. Anal. 2014, Article ID 395368 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Li, T., Rogovchenko, Yu.V.: Oscillation criteria for even-order neutral differential equations. Appl. Math. Lett. 61, 35–41 (2016)

    Article  MathSciNet  Google Scholar 

  31. Zhang, Q., Yan, J., Gao, L.: Oscillation behavior of even-order nonlinear neutral differential equations with variable coefficients. Comput. Math. Appl. 59, 426–430 (2010)

    Article  MathSciNet  Google Scholar 

  32. Xing, G., Li, T., Zhang, C.: Oscillation of higher-order quasi-linear neutral differential equations. Adv. Differ. Equ. 2011, Article ID 45 (2011)

    Article  MathSciNet  Google Scholar 

  33. Moaaz, O., Awrejcewicz, J., Bazighifan, O.: A new approach in the study of oscillation criteria of even-order neutral differential equations. Mathematics 12, Article ID 197 (2020)

    Article  Google Scholar 

  34. Agarwal, R.P., Zhang, Ch., Li, T.: Some remarks on oscillation of second order neutral differential equations. Appl. Math. Comput. 274, 178–181 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Philos, Ch.: On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delays. Arch. Math. 36, 168–178 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author express his debt of gratitude to the editors and the anonymous referee for accurate reading of the manuscript and beneficial comments.

Availability of data and materials

Please contact author for data requests.

Funding

The author received no direct funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

The author declares that he has read and approved the final manuscript.

Corresponding author

Correspondence to Omar Bazighifan.

Ethics declarations

Competing interests

The author declares that he has no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazighifan, O. Kamenev and Philos-types oscillation criteria for fourth-order neutral differential equations. Adv Differ Equ 2020, 201 (2020). https://doi.org/10.1186/s13662-020-02661-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-020-02661-6

MSC

Keywords