Theory and Modern Applications

# Some new hybrid power mean formulae of trigonometric sums

## Abstract

We apply the analytic method and the properties of the classical Gauss sums to study the computational problem of a certain hybrid power mean of the trigonometric sums and to prove several new mean value formulae for them. At the same time, we also obtain a new recurrence formula involving the Gauss sums and two-term exponential sums.

## Introduction

For any integer m and odd prime $$p\ge 3$$, the cubic Gauss sums $$A(m, p)=A(m)$$ are defined as follows:

$$A(m) = \sum_{a=0}^{p-1} e \biggl( \frac{ma^{3} }{p} \biggr),$$

where, as usual, $$e(y) = e^{2\pi i y}$$.

We found that several scholars studied the hybrid mean value problems of various trigonometric sums and obtained many interesting results. For example, Chen and Hu [1] studied the computational problem of the hybrid power mean

\begin{aligned} S_{k}(p)=\sum_{m=1}^{p-1} \Biggl( \sum_{a=0}^{p-1} e \biggl( \frac{ma^{3} }{p} \biggr) \Biggr)^{k}\cdot \Biggl\vert \sum _{c=1}^{p-1}e \biggl( \frac{mc+\overline{c}}{p} \biggr) \Biggr\vert ^{2}, \end{aligned}

where denotes the multiplicative inverse of $$c\bmod p$$, that is, $$c\cdot \overline{c}\equiv 1\bmod p$$.

For $$p\equiv 1\bmod 3$$, they proved an interesting third-order linear recurrence formula for $$S_{k}(p)$$.

Li and Hu [2] studied the computational problem of the hybrid power mean

\begin{aligned} \sum_{b=1}^{p-1} \Biggl\vert \sum _{a=0}^{p-1}e \biggl(\frac{ba^{4}}{p} \biggr) \Biggr\vert ^{2}\cdot \Biggl\vert \sum_{c=1}^{p-1}e \biggl( \frac{bc+\overline{c}}{p} \biggr) \Biggr\vert ^{2} \end{aligned}
(1)

and proved an exact computational formula for (1).

Zhang and Zhang [3] proved the identity

$$\sum_{m=1}^{p-1} \Biggl\vert \sum _{a=0}^{p-1}e \biggl(\frac{ma^{3}+na}{p} \biggr) \Biggr\vert ^{4} = \textstyle\begin{cases} 2p^{3}-p^{2} &\text{if } 3\nmid p-1, \\ 2p^{3}-7p^{2} &\text{if } 3\mid p-1. \end{cases}$$

Other related contents can also be found in [412], which will not be repeated here.

In this paper, inspired by [1] and [2], we consider the following mean value:

\begin{aligned} H_{k}(c,p)=\sum_{m=1}^{p-1} \Biggl(\sum_{a=0}^{p-1}e \biggl( \frac{cma^{3}}{p} \biggr) \Biggr)^{k}\cdot \Biggl(\sum _{a=0}^{p-1}e \biggl(\frac{ma^{3}+a}{p} \biggr) \Biggr)^{3}. \end{aligned}
(2)

We do not know whether there exists a precise computational formula for (2), where c is any integer with $$(c, p)=1$$, and $$p\equiv 1\bmod 3$$.

Actually, there also exists a third-order linear recurrence formula of $$H_{k}(c, p)$$ for all integers $$k\geq 1$$ and c. But for some integers c, the initial value of $$H_{k}(c, p)$$ is very simple, whereas for other c, the initial value of $$H_{k}(c, p)$$ is more complex. So a satisfactory recursive formula for $$H_{k}(c, p)$$ is not available.

The main purpose of this paper is using an analytic method and the properties of classical Gauss sums to give an effective calculation method for $$H_{k}(c, p)$$ with some special integers c. We will prove the following two theorems.

### Theorem 1

Letpbe a prime with$$p\equiv 1\bmod 3$$. If 3 is not a cubic residue$$\bmod~p$$, then we have

\begin{aligned}& \sum_{m=1}^{p-1} \Biggl(\sum _{a=0}^{p-1}e \biggl(\frac{3ma^{3}}{p} \biggr) \Biggr) \Biggl(\sum_{b=0}^{p-1}e \biggl( \frac{mb^{3}+b}{p} \biggr) \Biggr)^{3} =3p^{2}+dp^{2}, \\& \sum_{m=1}^{p-1} \Biggl(\sum _{a=0}^{p-1}e \biggl(\frac{ma^{3}}{p} \biggr) \Biggr)^{2} \Biggl(\sum_{b=0}^{p-1}e \biggl( \frac{mb^{3}+b}{p} \biggr) \Biggr)^{3} =p^{2} (3p-5d ), \end{aligned}

and

\begin{aligned} \sum_{m=1}^{p-1} \Biggl(\sum _{a=0}^{p-1}e \biggl(\frac{3ma^{3}}{p} \biggr) \Biggr)^{3} \Biggl(\sum_{b=0}^{p-1}e \biggl( \frac{mb^{3}+b}{p} \biggr) \Biggr)^{3} =p^{2} \bigl(5dp+9p-d^{2} \bigr). \end{aligned}

### Theorem 2

Letpbe an odd prime with$$p\equiv 1\bmod 3$$. If 3 is a cubic residue$$\bmod~p$$, then for any integer$$k\geq 3$$, we have the third-order linear recurrence formula

$$H_{k}(1,p)=3pH_{k-2}(1,p)+ dpH_{k-3}(1,p),$$

where the first three terms are$$H_{0}(1,p)=2p^{2}-pd$$, $$H_{1}(1,p)=p^{2} (d-6 )$$, and$$H_{2}(1,p)=p^{2}(6p-5d)$$.

Some notes: First, in Theorem 1, if $$(3,p-1)=1$$, then the question we are discussing is trivial, because in this case, we have

$$\sum_{a=0}^{p-1}e \biggl(\frac{ma^{3}}{p} \biggr)=\sum_{a=0}^{p-1}e \biggl( \frac{ma}{p} \biggr)=0.$$

Second, in the first and third formulas of Theorem 1, we take $$c=3$$ (and $$c=1$$ in the second formula). These are all for getting the exact value of the mean value. Otherwise, the results will not be pretty.

## Several lemmas

To complete the proofs of our theorems, several lemmas are essential. Hereafter, we will use related properties of the classical Gauss sums and the third-order character $$\bmod~p$$, all of which can be found in books concerning elementary number theory or analytic number theory, such as [13] and [14]. First we have the following:

### Lemma 1

Letpbe a prime with$$p\equiv 1\bmod 3$$. Then for any third-order character$$\psi \bmod p$$, we have the identity

\begin{aligned} \sum_{m=1}^{p-1}\psi (m) \Biggl(\sum _{a=0}^{p-1}e \biggl( \frac{ma^{3}+a}{p} \biggr) \Biggr)^{3}=\overline{\psi }(3)p\tau ^{2} (\overline{\psi } )-3p \tau (\psi ). \end{aligned}

### Proof

First, applying the trigonometric identity

\begin{aligned} \sum_{m=1}^{q}e \biggl( \frac{nm}{q} \biggr)= \textstyle\begin{cases} q &\text{if }q\mid n, \\ 0 &\text{if }q\nmid n \end{cases}\displaystyle \end{aligned}
(3)

and noting that $$\psi ^{3}=\chi _{0}$$, the principal character $$\bmod~p$$, we have

\begin{aligned} &\sum_{m=1}^{p-1}\psi (m) \Biggl(\sum _{a=0}^{p-1}e \biggl( \frac{ma^{3}+a}{p} \biggr) \Biggr)^{3} \\ &\quad = \sum_{m=1}^{p-1}\psi (m) \Biggl(\sum_{a=0}^{p-1}e \biggl( \frac{ma^{3}+a}{p} \biggr) \Biggr)^{2} \\ &\qquad {}+\sum_{m=1}^{p-1}\psi (m) \Biggl(\sum _{a=0}^{p-1}e \biggl( \frac{ma^{3}+a}{p} \biggr) \Biggr)^{2} \Biggl(\sum_{a=1}^{p-1}e \biggl( \frac{ma^{3}+a}{p} \biggr) \Biggr) \\ &\quad =2\sum_{m=1}^{p-1}\psi (m)\sum _{a=1}^{p-1}e \biggl( \frac{ma^{3}+a}{p} \biggr)+ \sum _{m=1}^{p-1}\psi (m) \Biggl(\sum _{a=1}^{p-1}e \biggl(\frac{ma^{3}+a}{p} \biggr) \Biggr)^{2} \\ &\qquad {}+\tau (\psi )\sum_{a=0}^{p-1}\sum _{b=0}^{p-1}\sum_{c=1}^{p-1} \overline{\psi } \bigl(a^{3}+b^{3}+c^{3} \bigr)e \biggl( \frac{a+b+c}{p} \biggr) \\ &\quad =-2\tau (\psi )+\tau (\psi )\sum_{a=1}^{p-1} \overline{\psi } \bigl(a^{3}+1 \bigr)\sum_{b=1}^{p-1}e \biggl(\frac{b(a+1)}{p} \biggr) \\ &\qquad {}+ \tau (\psi )\sum_{a=0}^{p-1}\sum _{b=0}^{p-1}\overline{\psi } \bigl(a^{3}+b^{3}+1 \bigr)\sum_{c=1}^{p-1}e \biggl( \frac{c(a+b+1)}{p} \biggr) \\ &\quad =-2\tau (\psi )-\tau (\psi )\sum_{a=1}^{p-1} \overline{\psi } \bigl(a^{3}+1 \bigr)+ p\tau (\psi )\mathop{\sum _{a=0}^{p-1}\sum_{b=0}^{p-1}}_{a+b+1 \equiv 0\bmod p} \overline{\psi } \bigl(a^{3}+b^{3}+1 \bigr) \\ &\qquad {} -\tau (\psi )\sum_{a=0}^{p-1}\sum _{b=0}^{p-1}\overline{\psi } \bigl(a^{3}+b^{3}+1 \bigr) \\ &\quad =-2\tau (\psi )-\tau (\psi )\sum_{a=1}^{p-1} \overline{\psi } \bigl(a^{3}+1 \bigr)+ p\tau (\psi )\sum _{a=0}^{p-1}\overline{\psi } \bigl(a^{3}-(a+1)^{3}+1 \bigr) \\ &\qquad {}-\tau (\psi )\sum_{a=0}^{p-1}\sum _{b=0}^{p-1}\overline{\psi } \bigl(a^{3}+b^{3}+1 \bigr). \end{aligned}
(4)

Noting that $$\psi ^{2}=\overline{\psi }$$ and $$\tau (\psi )\tau (\overline{\psi } )=p$$, from the properties of Gauss sums we have

\begin{aligned}& \begin{aligned}[b] \sum_{a=1}^{p-1}\overline{ \psi } \bigl(a^{3}+1 \bigr)&=\sum_{a=1}^{p-1} \overline{\psi }(a+1) \bigl(1+\psi (a)+\overline{\psi }(a) \bigr) \\ &=\sum_{a=1}^{p-1}\overline{\psi }(a+1)+\sum _{a=1}^{p-1} \overline{\psi } (1+\overline{a} )+\sum_{a=1}^{p-1} \overline{\psi } \bigl(a^{2}+a \bigr) \\ &=-2+\frac{1}{\tau (\psi )}\sum_{b=1}^{p-1}\psi (b)\sum_{a=1}^{p-1} \overline{\psi }(a)e \biggl(\frac{b(a+1)}{p} \biggr) \\ &=-2+\frac{\tau ^{2} (\overline{\psi } )}{\tau (\psi )}=-2+ \frac{\tau ^{3} (\overline{\psi } )}{p}, \end{aligned} \end{aligned}
(5)
\begin{aligned}& \begin{aligned}[b] \sum_{a=0}^{p-1}\overline{ \psi } \bigl(a^{3}-(a+1)^{3}+1 \bigr)&= \sum _{a=0}^{p-1}\overline{\psi } \bigl(-3a(a+1) \bigr) \\ &=\overline{\psi }(3)\sum_{a=1}^{p-1} \overline{\psi } \bigl(a(a+1) \bigr)= \frac{\overline{\psi }(3)\tau ^{3} (\overline{\psi } )}{p}. \end{aligned} \end{aligned}
(6)

Since ψ is a third-order character $$\bmod~p$$, for any integer c with $$(c,p)=1$$, from the properties of the classical Gauss sums we have

\begin{aligned} \sum_{a=0}^{p-1}e \biggl( \frac{ca^{3}}{p} \biggr)=1+\sum_{a=1}^{p-1} \bigl(1+\psi (a)+\overline{\psi }(a) \bigr)e \biggl(\frac{ca}{p} \biggr) = \overline{\psi }(c)\tau (\psi )+\psi (c)\tau ( \overline{\psi } ). \end{aligned}
(7)

Applying (7), we have

\begin{aligned} \sum_{a=0}^{p-1}\sum _{b=0}^{p-1}\overline{\psi } \bigl(a^{3}+b^{3}+1 \bigr) =&\frac{1}{\tau (\psi )} \sum_{c=1}^{p-1} \psi (c)\sum_{a=0}^{p-1} \sum _{b=0}^{p-1}e \biggl(\frac{ca^{3}+cb^{3}+c}{p} \biggr) \\ =&\frac{1}{\tau (\psi )} \sum_{c=1}^{p-1}\psi (c)e \biggl( \frac{c}{p} \biggr) \Biggl(\sum_{a=0}^{p-1}e \biggl(\frac{ca^{3}}{p} \biggr) \Biggr)^{2} \\ =&\frac{1}{\tau (\psi )} \sum_{c=1}^{p-1}\psi (c)e \biggl( \frac{c}{p} \biggr) \bigl(\psi (c)\tau ^{2}(\psi )+2p+ \overline{\psi }(c)\tau ^{2} (\overline{\psi } ) \bigr) \\ =&\tau (\psi )\tau (\overline{\psi } )+2p- \frac{\tau ^{3} (\overline{\psi } )}{p}=3p- \frac{\tau ^{3} (\overline{\psi } )}{p}. \end{aligned}
(8)

Combining (4), (5), (6), and (8), we have the identity

\begin{aligned} \sum_{m=1}^{p-1}\psi (m) \Biggl(\sum _{a=0}^{p-1}e \biggl( \frac{ma^{3}+a}{p} \biggr) \Biggr)^{3} =\overline{\psi }(3)p\tau ^{2} (\overline{\psi } )-3p\tau (\psi ). \end{aligned}

This proves Lemma 1. □

### Lemma 2

Letpbe a prime with$$p\equiv 1\bmod 3$$, and letψbe any third-order character$$\bmod~p$$. Then we have

$$\tau ^{3} (\psi )+ \tau ^{3} (\overline{\psi } )=dp,$$

where$$\tau (\psi )$$denotes the classical Gauss sums, anddis uniquely determined by$$4p=d^{2}+27b^{2}$$and$$d\equiv 1\bmod 3$$.

### Proof

See [4] or [9]. □

### Lemma 3

Letpbe a prime with$$p\equiv 1\bmod 3$$. Then we have the identity

\begin{aligned} \sum_{m=1}^{p-1} \Biggl(\sum _{a=0}^{p-1}e \biggl(\frac{ma^{3}+a}{p} \biggr) \Biggr)^{3}=2p^{2}-pd. \end{aligned}

### Proof

Since the congruence equation $$x^{3}+1\equiv 0\bmod p$$ has three solutions in a reduced residue system $$\bmod~p$$, from (3) we have

\begin{aligned} &\sum_{m=1}^{p-1} \Biggl(\sum _{a=0}^{p-1}e \biggl(\frac{ma^{3}+a}{p} \biggr) \Biggr)^{3} \\ &\quad =\sum_{m=0}^{p-1} \Biggl(\sum_{a=0}^{p-1}e \biggl( \frac{ma^{3}+a}{p} \biggr) \Biggr)^{3} \\ &\quad =\sum_{m=0}^{p-1} \Biggl(\sum _{a=0}^{p-1}e \biggl( \frac{ma^{3}+a}{p} \biggr) \Biggr)^{2}+\sum_{m=0}^{p-1} \Biggl( \sum_{a=0}^{p-1}e \biggl(\frac{ma^{3}+a}{p} \biggr) \Biggr)^{2} \Biggl(\sum_{a=1}^{p-1}e \biggl(\frac{ma^{3}+a}{p} \biggr) \Biggr) \\ &\quad =p+2\sum_{m=0}^{p-1}\sum _{a=1}^{p-1}e \biggl(\frac{ma^{3}+a}{p} \biggr)+\sum _{m=0}^{p-1} \Biggl(\sum _{a=1}^{p-1}e \biggl( \frac{ma^{3}+a}{p} \biggr) \Biggr)^{2} \\ &\qquad {}+\sum_{a=0}^{p-1}\sum _{b=0}^{p-1}\sum_{c=1}^{p-1} \sum_{m=0}^{p-1}e \biggl(\frac{mc^{3} (a^{3}+b^{3}+1 )+c(a+b+1)}{p} \biggr) \\ &\quad =p+\sum_{a=1}^{p-1}\sum _{b=1}^{p-1}\sum_{m=0}^{p-1}e \biggl( \frac{mb^{3} (a^{3}+1 )+b(a+1)}{p} \biggr) \\ &\qquad {}+p\mathop{\sum_{a=0}^{p-1}\sum _{b=0}^{p-1}}_{a^{3}+b^{3}+1\equiv 0 \bmod p}\sum _{c=1}^{p-1}e \biggl(\frac{c(a+b+1)}{p} \biggr) \\ &\quad =p+p(p-1)-2p+p^{2}\mathop{\mathop{\sum_{a=0}^{p-1} \sum_{b=0}^{p-1}}_{a^{3}+b^{3}+1 \equiv 0\bmod p}}_{a+b+1\equiv 0\bmod p}1 -p\mathop{\sum_{a=0}^{p-1} \sum _{b=0}^{p-1}}_{a^{3}+b^{3}+1\equiv 0\bmod p}1. \end{aligned}
(9)

It is clear that the conditions $$a^{3}+b^{3}+1\equiv 0\bmod p$$ and $$a+b+1\equiv 0\bmod p$$ ($$0\leq a$$, $$b\leq p-1$$) imply $$a(a+1)\equiv 0\bmod p$$ and $$a+b+1\equiv 0\bmod p$$, or $$(a, b)=(0,p-1)$$ and $$(a, b)=(p-1, 0)$$. So we have

\begin{aligned} p^{2}\mathop{\mathop{\sum_{a=0}^{p-1} \sum_{b=0}^{p-1}}_{a^{3}+b^{3}+1 \equiv 0\bmod p}}_{a+b+1\equiv 0\bmod p}1=2p^{2}. \end{aligned}
(10)

From (3), (7), Lemma 2, and the properties of Gauss sums we have

\begin{aligned} p\mathop{\sum_{a=0}^{p-1}\sum _{b=0}^{p-1}}_{a^{3}+b^{3}+1\equiv 0 \bmod p}1 =&\sum _{m=0}^{p-1}\sum_{a=0}^{p-1} \sum_{b=0}^{p-1}e \biggl( \frac{m (a^{3}+b^{3}+1 )}{p} \biggr) \\ =&p^{2}+ \sum_{m=1}^{p-1}e \biggl( \frac{m}{p} \biggr) \Biggl(\sum_{a=0}^{p-1}e \biggl(\frac{ma^{3}}{p} \biggr) \Biggr)^{2} \\ =&p^{2}+\sum_{m=1}^{p-1}e \biggl( \frac{m}{p} \biggr) \bigl( \overline{\psi }(m)\tau (\psi )+\psi (m)\tau ( \overline{\psi } ) \bigr)^{2} \\ =&p^{2}+\sum_{m=1}^{p-1}e \biggl( \frac{m}{p} \biggr) \bigl(\psi (m) \tau ^{2}(\psi )+2p+\overline{ \psi }(m)\tau ^{2} ( \overline{\psi } ) \bigr) \\ =&p^{2}+\tau ^{3}(\psi )-2p+\tau ^{3} (\overline{ \psi } )=p^{2}-2p+dp. \end{aligned}
(11)

Combining (9), (10), and (11), we have the identity

\begin{aligned} \sum_{m=1}^{p-1} \Biggl(\sum _{a=0}^{p-1}e \biggl(\frac{ma^{3}+a}{p} \biggr) \Biggr)^{3}=2p^{2}-pd. \end{aligned}

This proves Lemma 3. □

## Proofs of the theorems

We achieve our main results in this part. First, we prove Theorem 1. For any integer m with $$(m, p)=1$$, from (7) and Lemma 2 we have

\begin{aligned} A^{3}(3m) =& \Biggl(\sum_{a=0}^{p-1}e \biggl(\frac{3ma^{3}}{p} \biggr) \Biggr)^{3}= \bigl(\overline{\psi }(3m)\tau (\psi )+\psi (3m)\tau (\overline{\psi } ) \bigr)^{3} \\ =&\tau ^{3}(\psi )+ \tau ^{3} (\overline{\psi } )+3p \bigl(\overline{\psi }(3m)\tau (\psi )+\psi (3m)\tau ( \overline{\psi } ) \bigr)=dp+3pA(3m). \end{aligned}
(12)

Applying (7) and Lemmas 1 and 2, we have

\begin{aligned} &\sum_{m=1}^{p-1}A(3m) \Biggl(\sum _{a=0}^{p-1}e \biggl( \frac{ma^{3}+a}{p} \biggr) \Biggr)^{3} \\ &\quad =\sum_{m=1}^{p-1} \bigl(\overline{\psi }(3m)\tau (\psi )+\psi (3m) \tau (\overline{\psi } ) \bigr) \Biggl(\sum _{a=0}^{p-1}e \biggl(\frac{ma^{3}+a}{p} \biggr) \Biggr)^{3} \\ &\quad =\overline{\psi }(3)\tau (\psi ) \bigl(\psi (3)p\tau ^{2} ( \psi )-3p \tau (\overline{\psi } ) \bigr)+\psi (3) \tau (\overline{\psi } ) \bigl( \overline{\psi }(3)p\tau ^{2} (\overline{\psi } )-3p \tau (\psi ) \bigr) \\ &\quad =p \bigl(\tau ^{3}(\psi )+\tau ^{3} (\overline{\psi } ) \bigr)-3p^{2} \bigl(\psi (3)+ \overline{\psi }(3) \bigr)=dp^{2}+3p^{2}-3p^{2} \bigl(1+\psi (3)+ \overline{\psi }(3) \bigr) \\ &\quad =p^{2} (d+3 ), \end{aligned}
(13)

where we have used the identity $$1+\psi (3)+ \overline{\psi }(3)=0$$.

Applying Lemmas 1, 2, and 3 and (7), we have

\begin{aligned} &\sum_{m=1}^{p-1} \Biggl(\sum _{a=0}^{p-1}e \biggl(\frac{ma^{3}}{p} \biggr) \Biggr)^{2} \Biggl(\sum_{a=0}^{p-1}e \biggl( \frac{ma^{3}+a}{p} \biggr) \Biggr)^{3} \\ &\quad =\sum_{m=1}^{p-1} \bigl(\overline{\psi }(m)\tau (\psi )+\psi (m) \tau (\overline{\psi } ) \bigr)^{2} \Biggl( \sum_{a=0}^{p-1}e \biggl(\frac{ma^{3}+a}{p} \biggr) \Biggr)^{3} \\ &\quad =2p \bigl(2p^{2}-dp \bigr)+ \tau ^{2}(\psi ) \bigl( \overline{\psi }(3)p\tau ^{2} (\overline{\psi } )-3p \tau ( \psi ) \bigr) \\ &\qquad {}+\tau ^{2} (\overline{\psi } ) \bigl(\psi (3)p\tau ^{2} (\psi )-3p \tau (\overline{\psi } ) \bigr) \\ &\quad =2p^{2} (2p-d )+ \bigl(\psi (3)+\overline{\psi }(3) \bigr)p^{3}- 3p \bigl(\tau ^{3} (\psi )+\tau ^{3} ( \overline{\psi } ) \bigr) \\ &\quad =p^{2} (3p-5d ). \end{aligned}
(14)

Applying Lemmas 1, 2, and 3 and (12), we have

\begin{aligned} &\sum_{m=1}^{p-1} \Biggl(\sum _{a=0}^{p-1}e \biggl(\frac{3ma^{3}}{p} \biggr) \Biggr)^{3} \Biggl(\sum_{a=0}^{p-1}e \biggl( \frac{ma^{3}+a}{p} \biggr) \Biggr)^{3} \\ &\quad =\sum_{m=1}^{p-1} \bigl(\overline{\psi }(3m)\tau (\psi )+\psi (3m) \tau (\overline{\psi } ) \bigr)^{3} \Biggl( \sum_{a=0}^{p-1}e \biggl(\frac{ma^{3}+a}{p} \biggr) \Biggr)^{3} \\ &\quad =dp\sum_{m=1}^{p-1} \Biggl(\sum _{a=0}^{p-1}e \biggl( \frac{ma^{3}+a}{p} \biggr) \Biggr)^{3}+ 3p\sum_{m=1}^{p-1}A(3m) \Biggl(\sum_{a=0}^{p-1}e \biggl( \frac{ma^{3}+a}{p} \biggr) \Biggr)^{3} \\ &\quad =dp \bigl(2p^{2}-pd \bigr)+ 3p \bigl(3p^{2}+dp^{2} \bigr)=p^{2} \bigl(5dp+9p-d^{2} \bigr). \end{aligned}
(15)

Now Theorem 1 follows from (13), (14), and (15).

If $$p\equiv 1\bmod 3$$ and 3 is a cubic residue $$\bmod~p$$, then $$\psi (3)=\overline{\psi }(3)=1$$. From Lemma 3 we have

\begin{aligned} H_{0}(1,p)=2p^{2}-pd. \end{aligned}
(16)

From (7) and Lemmas 1 and 2 we have

\begin{aligned} H_{1}(1,p) =&\tau (\psi ) \bigl(p\tau ^{2}(\psi )-3p\tau ( \overline{\psi } ) \bigr)+\tau (\overline{\psi } ) \bigl(p\tau ^{2} ( \overline{\psi } )-3p \tau (\psi ) \bigr) \\ =&p \bigl(\tau ^{3}(\psi )+\tau ^{3} (\overline{\psi } ) \bigr)-6p^{2}=dp^{2}-6p^{2}. \end{aligned}
(17)

From (7) and Lemmas 1, 2, and 3 we also have

\begin{aligned} H_{2}(1,p) =& 2pH_{0}(1,p)+\tau ^{2} (\overline{ \psi } ) \bigl(p\tau ^{2}(\psi )-3p\tau (\overline{\psi } ) \bigr)+ \tau ^{2} (\psi ) \bigl(p\tau ^{2} ( \overline{\psi } )-3p\tau ( \psi ) \bigr) \\ =&2p^{2}(2p-d)+ 2p^{3}-3p \bigl(\tau ^{3}(\psi )+ \tau ^{3} ( \overline{\psi } ) \bigr) =p^{2} (6p-5d ). \end{aligned}
(18)

If $$k\geq 3$$, then applying (12), we have

\begin{aligned} H_{k}(1,p) =&\sum_{m=1}^{p-1}A^{k}(m) \Biggl(\sum_{a=0}^{p-1}e \biggl( \frac{ma^{3}+a}{p} \biggr) \Biggr)^{3} \\ =&\sum_{m=1}^{p-1}A^{k-3}(m) \bigl(dp+3pA(m) \bigr) \Biggl(\sum_{a=0}^{p-1}e \biggl(\frac{ma^{3}+a}{p} \biggr) \Biggr)^{3} \\ =&3p H_{k-2}(1,p)+dpH_{k-3}(1,p). \end{aligned}
(19)

Now Theorem 2 follows from (16), (17), (18), and (19).

This completes the proofs of all our results.

## Conclusion

The main work of this paper includes two theorems. In Theorem 1, we obtained some exact values of (2) when $$k=1, 2$$, and 3. In Theorem 2, we showed that $$H_{k}(1,p)$$ satisfies an interesting third-order linear recurrence formula. These works not only profoundly reveal the regularity of a certain hybrid power mean of the trigonometric sums, but also provide some new ideas and methods for further study of such problems.

## References

1. Chen, L., Hu, J.Y.: A linear recurrence formula involving cubic Gauss sums and Kloosterman sums. Acta Math. Sinica (Chin. Ser.) 61, 67–72 (2018)

2. Li, X.X., Hu, J.Y.: The hybrid power mean quartic Gauss sums and Kloosterman sums. Open Math. 15, 151–156 (2017)

3. Zhang, H., Zhang, W.P.: The fourth power mean of two-term exponential sums and its application. Math. Rep. 19, 75–83 (2017)

4. Zhang, W.P., Hu, J.Y.: The number of solutions of the diagonal cubic congruence equation mod p. Math. Rep. 20, 73–80 (2018)

5. Chen, Z.Y., Zhang, W.P.: On the fourth-order linear recurrence formula related to classical Gauss sums. Open Math. 15, 1251–1255 (2017)

6. Zhang, W.P., Liu, H.N.: On the general Gauss sums and their fourth power mean. Osaka J. Math. 42, 189–199 (2005)

7. Han, D.: A hybrid mean value involving two-term exponential sums and polynomial character sums. Czechoslov. Math. J. 64, 53–62 (2014)

8. Zhang, W.P., Han, D.: On the sixth power mean of the two-term exponential sums. J. Number Theory 136, 403–413 (2014)

9. Berndt, B.C., Evans, R.J.: The determination of Gauss sums. Bull. Am. Math. Soc. 5, 107–128 (1981)

10. Berndt, B.C., Evans, R.J.: Sums of Gauss, Jacobi, and Jacobsthal. J. Number Theory 11, 349–389 (1979)

11. Kim, T., Kim, D.S.: Degenerate polyexponential functions and degenerate Bell polynomials. J. Math. Anal. Appl. 487(2), 124017 (2020)

12. Kim, H.S., Kim, T.: On certain values of p-adic q-L-functions. Rep. Fac. Sci. Eng. Saga Univ., Math. 23(1–2), 1–7 (1995)

13. Apostol, T.M.: Introduction to Analytic Number Theory. Springer, New York (1976)

14. Hua, L.K.: Introduction to Number Theory. Science Press, Beijing (1979)

### Acknowledgements

The authors would like to thank the Editor and referees for their very helpful and detailed comments, which have significantly improved the presentation of this paper.

### Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

## Funding

This work is supported by the N.S.F. (11771351 and 11826205) of P.R. China.

## Author information

Authors

### Contributions

Both authors have equally contributed to this work. Both authors read and approved the final manuscript.

### Corresponding author

Correspondence to Zhuoyu Chen.

## Ethics declarations

### Competing interests

The authors declare that there are no conflicts of interest regarding the publication of this paper.

## Rights and permissions

Reprints and Permissions

Chen, L., Chen, Z. Some new hybrid power mean formulae of trigonometric sums. Adv Differ Equ 2020, 220 (2020). https://doi.org/10.1186/s13662-020-02660-7

• Accepted:

• Published:

• DOI: https://doi.org/10.1186/s13662-020-02660-7

• 11L05
• 11L07

### Keywords

• Cubic Gauss sums
• Two-term exponential sums
• Hybrid power mean
• Computational formula