Skip to main content

Theory and Modern Applications

Table 4 Andronov–Hopf bifurcation conditions and values for \(\tau _{c}\) in HIV and ELM delay models

From: Andronov–Hopf and Neimark–Sacker bifurcations in time-delay differential equations and difference equations with applications to models for diseases and animal populations

Version

Disease-free

HIV: \(R_{0} = \frac{\varepsilon }{\delta }\)

ELM: Λ = β − r, \(R_{0} = \frac{\beta }{r}\)

Bifurcation

\(\tau _{c}\)

Bifurcation

\(\tau _{c}\)

dnn

\(R_{0} < 1\)

\(\frac{1}{\phi _{c}}\cos ^{-1} (\frac{\varepsilon }{\delta } ) \)

\(R_{0}<1\)

\(\frac{1}{\phi _{c}}\cos ^{-1} (\frac{\beta }{r} )\)

ε<δ

\(\phi _{c}= \sqrt{\delta ^{2}-\varepsilon ^{2}}\)

β<r

\(\phi _{c} = \sqrt{r^{2}+\beta ^{2}}\)

ndn

No

No

nnd

No

No

ddn

\(R_{0} < 1\)

\(\frac{\pi }{2\phi _{c}} \)

\(R_{0}<1\)

\(\frac{\pi }{2\phi _{c}}\)

ε<δ

δ − ε

β<r

\(\phi _{c} = r-\beta \)

dnd

\(R_{0} < 1\)

\(\frac{1}{\phi _{c}}\cos ^{-1} (\frac{\varepsilon }{\delta } ) \)

\(R_{0}<1\)

\(\frac{1}{\phi _{c}}\cos ^{-1} (\frac{\beta }{r} )\)

ε>δ

\(\phi _{c} = \sqrt{\varepsilon ^{2}-\delta ^{2}}\)

β<r

\(\phi _{c} = \sqrt{r^{2}+\beta ^{2}}\)

ndd

No

No

ddd

\(R_{0} < 1\)

\(\frac{\pi }{2\phi _{c}} \)

\(R_{0}<1\)

\(\frac{\pi }{2\phi _{c}}\)

ε<δ

\(\phi _{c} = \delta -\varepsilon \)

β<r

\(\phi _{c} = r-\beta \)

Version

Endemic

HIV: \(R_{0} = \frac{\varepsilon }{\delta }\)

ELM: Λ = β − r, \(R_{0} = \frac{\beta }{r}\)

Bifurcation

\(\tau _{c}\)

Bifurcation

\(\tau _{c}\)

dnn

\(1 < R_{0} <3\)

\(\frac{1}{\phi _{c} }\cos ^{-1} (\frac{2\delta -\varepsilon }{\delta } ) \)

\(1 < R_{0} < 1+\frac{2}{\gamma }\)

\(\frac{1}{\phi _{c}}\cos ^{-1} (\frac{r-\gamma \varLambda }{r} )\)

δ<ε<3δ

\(\phi _{c}= \sqrt{4\delta \varepsilon - \varepsilon ^{2}-3\delta ^{2}}\)

0<γΛ<2r

\(\phi _{c} = \sqrt{2r\gamma \varLambda +\gamma ^{2}\varLambda ^{2}}\)

ndn

No

No

nnd

\(R_{0} > 1\)

\(\frac{\pi }{2\phi _{c}} \)

\(R_{0} > 1\)

\(\frac{\pi }{2\phi _{c}}\)

ε>δ

\(\phi _{c}= \varepsilon -\delta \)

Λ>0

\(\phi _{c} = \gamma \varLambda \)

ddn

No

No

dnd

\(R_{0} > 1\)

\(\frac{1}{\phi _{c}}\cos ^{-1} (\frac{\delta }{\varepsilon } ) \)

\(R_{0} > 1\)

\(\frac{1}{\phi _{c}}\cos ^{-1} (\frac{r}{r+\gamma \varLambda } )\)

ε>δ

\(\phi _{c} = \sqrt{\varepsilon ^{2}-\delta ^{2}}\)

Λ>0

\(\phi _{c} = \sqrt{\gamma ^{2}\varLambda ^{2}+2r\gamma \varLambda }\)

ndd

\(R_{0} > 3\)

\(\frac{1}{\phi _{c}}\cos ^{-1} (\frac{\delta }{\varepsilon -2\delta } ) \)

\(R_{0} > 1 +\frac{2}{\gamma } \)

\(\frac{1}{\phi _{c}}\cos ^{-1} (\frac{r}{\gamma \varLambda -r} )\)

ε>3δ

\(\phi _{c}= \sqrt{\varepsilon ^{2}+3\delta ^{2}-4\delta \varepsilon } \)

γΛ>2r

\(\phi _{c} = \sqrt{\gamma ^{2}\varLambda ^{2}-2r\gamma \varLambda }\)

ddd

\(R_{0}>1\)

\(\frac{\pi }{2\phi _{c}} \)

\(R_{0} > 1\)

\(\frac{\pi }{2\phi _{c}}\)

ε>δ

\(\phi _{c} = \varepsilon -\delta \)

Λ>0

\(\phi _{c} = \gamma \varLambda \)