Skip to main content

Applications of some fixed point theorems for fractional differential equations with Mittag-Leffler kernel

Abstract

Using some fixed point theorems for contractive mappings, including α-γ-Geraghty type contraction, α-type F-contraction, and some other contractions in \(\mathcal{F}\)-metric space, this research intends to investigate the existence of solutions for some Atangana–Baleanu fractional differential equations in the Caputo sense.

Introduction

It is well known that several physical phenomena are described by nonlinear differential equations (both ODEs and PDEs). Therefore, the study of the many analytical and numerical methods used for solving the nonlinear differential equations is a very important topic for the analysis of engineering practical problems [119].

In 2016, the interesting and new derivatives without singular kernel were introduced by Atangana and Baleanu, which generalized the Caputo–Fabrizio definition [8]. Atangana–Baleanu derivative contains Mittag-Leffler function as a nonlocal and nonsingular kernel. Many authors showed their interest in this definition as it holds the profits of Riemann–Liouville and Caputo derivatives [2030]. Last year, Atangana et al. provided the numerical approximation to the fractional advection-diffusion equation whose fractional derivatives are Atangana–Baleanu derivative of Riemann–Liouville type [14].

In the last decades, two topics have been densely studied: “fixed point theory” and “fractional differential/integral equations”. Recently, several significant results have been recorded [7, 31, 32].

In 2012, Samet et al. [33] studied the concept of α-admissible mappings that was expanded by Karapınar and Samet in [34]. Also, Wardowski [35] proposed a new inequality to guarantee the existence and uniqueness of a given mapping in the framework of standard metric space. This inequality has been known as F-contraction.

In 2016, Gopal et al. considered new concepts of α-type F-contractive mappings (see [12]). Very recently, Jleli and Samet [36] mentioned the concept of \(\mathcal{F}\)-metric space and obtained the generalization of Banach contraction principle.

In [14], the authors studied generalized Geraghty contractive mappings and their applications in b-metric spaces.

In this paper by applying some fixed point theorems for contractive mappings, like α-γ-Geraghty type, α-type F-contraction, and some other contractions in \(\mathcal{F}\)-complete \(\mathcal{F}\)-metric space, we study the existence of solutions for some Atangana–Baleanu fractional differential equations in the Caputo sense. Throughout the article J denotes \([0,1]\).

Suppose that \((M,d)\) is a complete b-metric space (with constant \(s_{1}\)), also let Ω be a set of all increasing and continuous functions \(\gamma: [0,\infty) \to[0,\infty)\) satisfying: \(\gamma(cx)\leq c\gamma(x)\leq cx\) for all \(c>1\), and Λ is the family of all nondecreasing functions \(\lambda: [0,\infty) \to[0,\frac{1}{{s_{1}}^{2}})\), \(s_{1}\geq1\).

Definition 1.1

([2])

The mapping \(g:M\rightarrow M\) is a generalized α-γ-Geraghty contraction mapping whenever there exists \(\alpha:M\times M\to[0,\infty)\) with

$$ \alpha(w,z)\gamma \bigl({s_{1}}^{3} d(gw,gz) \bigr)\leq\lambda \bigl(\gamma \bigl(d(w,z) \bigr) \bigr) \gamma \bigl(d(w,z) \bigr) $$
(1)

for \(w,z \in M\), \(\lambda\in\varLambda\), and \(\gamma\in\varOmega\).

Definition 1.2

([33])

Let \(\varphi:M\rightarrow M\), where M is nonempty, and \(\alpha: M\times M\rightarrow[0,\infty)\) be given, g is α-admissible if

$$ \alpha(w,z)\geq1 \quad \Longrightarrow\quad \alpha(\varphi w, \varphi z) \geq1,\quad \forall w,z\in M. $$
(2)

Theorem 1.3

([2])

Let\((M,d)\)be a completeb-metric space and\(\varphi:M\rightarrow M\)be a generalizedα-γ-Geraghty contraction such that

  1. (i)

    φisα-admissible;

  2. (ii)

    \(w_{0}\in M\)with\(\alpha(w_{0},\varphi w_{0})\geq1\);

  3. (iii)

    \(\{w_{n}\}\subseteq M\), \(w_{n}\rightarrow u\)inMand\(\alpha(w_{n},w_{n+1})\geq1\), then\(\alpha(w_{n},w)\geq1\).

Thenφhas a fixed point.

Definition 1.4

([8])

Let \(\delta\in H^{1}(a,b)\), \(a< b\), and \(0\leq\kappa\leq1\). The Atangana–Baleanu fractional derivative in the Caputo sense of δ of order κ is defined by

$$ \bigl({}_{a}^{ABC}D^{\kappa}\delta \bigr) (s)=\frac{B(\kappa)}{1-\kappa} \int_{a}^{s}\delta^{\prime}(\nu )E_{\kappa} \biggl[-\kappa\frac{(s-\nu)^{\kappa}}{1-\kappa} \biggr]\,d\nu, $$
(3)

where \(E_{\kappa}\) is the Mittag-Leffler function defined by \(E_{\kappa}(z)=\varSigma_{n=0}^{\infty} \frac{z^{n}}{\varGamma(n\kappa+1)}\) and \(B(\kappa)\) is a normalizing positive function satisfying \(B(0)=B(1)=1\) (see [15, 19]). The associated fractional integral is defined by

$$ \bigl({}_{a}^{AB}I^{\kappa} \delta \bigr) (s)=\frac{1-\kappa}{\kappa} \delta(s)+\frac{\kappa }{B(\kappa)} \bigl({}_{a}I^{\kappa}\delta \bigr) (s), $$
(4)

where \({}_{a}I^{\kappa}\) is the left Riemann–Liouville fractional integral given as

$$ \bigl({{}_{a}}I^{\kappa}\delta \bigr) (s)= \frac{1}{\varGamma(\kappa)} \int_{a}^{s}(s- \nu)^{\kappa-1}\delta( \nu)\,d{\nu}. $$
(5)

Consider \(d:M\times M\to[0,\infty)\) given by

$$ d(\delta,\sigma)= \bigl\Vert (\delta-\sigma)^{2} \bigr\Vert _{\infty}=\sup_{s\in J} \bigl(\delta(s)-\sigma(s) \bigr)^{2}, $$

where \(M=C(J,\mathbb{R})\) denotes the set of continuous functions, \((M,d)\) is a complete b-metric space with \(s_{1}=2\).

We discuss the problem

$$\begin{aligned} & \bigl({}_{0}^{ABC}D^{\kappa} \delta \bigr) (s)=h \bigl(s,\delta(s) \bigr), \quad s \in J, 1\leq\kappa\leq1, \end{aligned}$$
(6)
$$\begin{aligned} &\delta(0)=\delta_{0}, \end{aligned}$$
(7)

where \(D^{\kappa}\) is the Atangana–Baleanu derivative in the Caputo sense of order κ and \(h:J\times M\rightarrow M\) is continuous with \(h(0,\delta(0))=0\).

Proposition 1.5

([10])

For\(0<\kappa<1\), we have

$$ \bigl({}^{AB}{I^{\kappa}_{b}} {{}^{ABC}}D^{\kappa}\delta \bigr) (s)=\delta(s)- \delta(b). $$
(8)

Main result

Theorem 2.1

Suppose

  1. (i)

    \(\exists \omega:\mathbb{R}^{2}\rightarrow\mathbb{R}\)such that

    $$\begin{aligned}& \bigl\vert h \bigl(s,\delta(s) \bigr)-h \bigl(s,\sigma(s) \bigr)\bigr\vert \\& \quad \leq \frac{1}{2\sqrt{2}} \frac{{B(\kappa)\varGamma(\kappa)}}{(1-\kappa)\varGamma(\kappa)+1} \sqrt{\lambda \bigl(\gamma \bigl(\bigl\vert \delta(s)- \sigma(s)\bigr\vert ^{2} \bigr) \bigr) \gamma \bigl(\bigl\vert \delta(s)- \sigma(s)\bigr\vert ^{2} \bigr)} \end{aligned}$$

    for\(s\in J\), \(\gamma\in\varOmega\), and\(\delta,\sigma\in\mathbb{R}\)with\(\omega(\delta,\sigma)\geq0\);

  2. (ii)

    \(\exists \delta_{1}\in C(J)\)with\(\omega(\delta_{1}(s),T\delta_{1}(s))\geq0\)for\(s\in J\), where\(T:C(J)\rightarrow C(J)\)is defined by

    $$ (T\delta) (s)=\delta_{0}+{}_{0}^{AB}I^{\kappa}h \bigl(s,\delta(s) \bigr); $$
  3. (iii)

    for\(s\in J\)and\(\delta,\sigma\in C(J)\), \(\omega(\delta(s),\sigma(s))\geq0\)implies\(\omega(T\delta(s),T\sigma(s))\geq0\);

  4. (iv)

    \(\{\delta_{n}\}\subseteq C(J)\), \(\delta_{n}\rightarrow\delta\)in\(C(J)\)and\(\omega(\delta_{n},\delta_{n+1})\geq0\), then\(\omega(\delta_{n},\delta)\geq0\), \(n\in\mathbb{N}\).

Then problem (6) has at least one solution.

Proof

Applying the Atangana–Baleanu integral to both sides of (6) and using Proposition 1.5, we get

$$ \delta(s)=\delta_{0}+{}_{0}^{AB}I^{\kappa}h\bigl(s, \delta(s)\bigr). $$

We show that T has a fixed point:

$$\begin{aligned}& \bigl\vert T\delta(s)-T\sigma(s) \bigr\vert ^{2} \\& \quad = \bigl\vert _{0}^{AB}I^{\kappa} \bigl[h \bigl(s, \delta(s) \bigr)-h \bigl(s,\sigma(s) \bigr) \bigr] \bigr\vert ^{2} \\& \quad \quad \leq \biggl\vert \biggl[\frac{1-\kappa}{B(\kappa)} \bigl[h \bigl(s,\delta(s) \bigr)-h \bigl(s, \sigma(s) \bigr) \bigr]+\frac{\kappa}{B(\kappa)} {{}_{0}}I^{\kappa} \bigl[h \bigl(s,\delta(s) \bigr)-h \bigl(s, \sigma(s) \bigr) \bigr] \biggr] \biggr\vert ^{2} \\& \quad \leq \biggl\{ \frac{1-\kappa}{B(\kappa)} \bigl\vert h \bigl(s,\delta(s) \bigr)-h \bigl(s, \sigma(s) \bigr) \bigr\vert +\frac{\kappa}{B(\kappa )}{{}_{0}}I^{\kappa} \bigl\vert h \bigl(s,\delta(s) \bigr)-h \bigl(s, \sigma(s) \bigr) \bigr\vert \biggr\} ^{2} \\& \quad \leq \biggl\{ \frac{1}{2\sqrt{2}}\frac{1-\kappa}{B(\kappa)}\times \frac{{B(\kappa)\varGamma(\kappa)}}{(1-\kappa)\varGamma(\kappa)+1} \sqrt {\lambda \bigl(\gamma \bigl( \bigl\vert \delta(s)- \sigma(s) \bigr\vert ^{2} \bigr) \bigr)\gamma \bigl( \bigl\vert \delta(s)- \sigma(s) \bigr\vert ^{2} \bigr)} \\& \qquad {} + \frac{1}{2\sqrt{2}}\frac{\kappa}{B(\kappa)} \frac{{B(\kappa )\varGamma(\kappa)}}{(1-\kappa)\varGamma(\kappa)+1} {{}_{0}}I^{ \kappa}(1)\sqrt{\lambda \bigl(\gamma \bigl( \bigl\vert \delta(s)-\sigma(s) \bigr\vert ^{2} \bigr) \bigr) \gamma \bigl( \bigl\vert \delta(s)-\sigma(s) \bigr\vert ^{2} \bigr)} \biggr\} ^{2} \\& \quad = \biggl\{ \frac{1}{2\sqrt{2}} \frac{{B(\kappa)\varGamma(\kappa )}}{(1-\kappa)\varGamma(\kappa)+1} \sqrt{\lambda \bigl( \gamma \bigl( \bigl\vert \delta(s)-\sigma(s) \bigr\vert ^{2} \bigr) \bigr) \gamma \bigl( \bigl\vert \delta(s)- \sigma(s) \bigr\vert ^{2} \bigr)} \biggr\} ^{2} \\& \qquad {} \times \biggl\{ \frac{1-\kappa}{B(\kappa)}+ \frac{\kappa}{B(\kappa)} \frac{1}{\kappa\varGamma(\kappa)} \biggr\} ^{2} \\& \quad \leq \biggl\{ \frac{1}{2\sqrt{2}} \frac{{B(\kappa)\varGamma(\kappa )}}{(1-\kappa)\varGamma(\kappa)+1} \sqrt{\lambda \Bigl( \gamma \Bigl(\sup_{s\in J} \bigl\vert \delta(s)-\sigma(s) \bigr\vert ^{2} \Bigr) \Bigr) \gamma \Bigl(\sup_{s\in J} \bigl\vert \delta(s)-\sigma(s) \bigr\vert ^{2} \Bigr)} \biggr\} ^{2} \\& \qquad {} \times \biggl\{ \frac{1-\kappa}{B(\kappa)}+ \frac{\kappa}{B(\kappa)} \frac{1}{\kappa\varGamma(\kappa)} \biggr\} ^{2} \\& \quad = \biggl\{ \frac{1}{2\sqrt{2}} \frac{{B(\kappa)\varGamma(\kappa )}}{(1-\kappa)\varGamma(\kappa)+1} \sqrt{\lambda \bigl( \gamma \bigl(d(\delta,\sigma) \bigr) \bigr)\gamma \bigl(d(\delta ,\sigma) \bigr)} \biggr\} ^{2}\times \biggl\{ \frac{1-\kappa}{B(\kappa)}+ \frac{1}{B(\kappa)\varGamma(\kappa)} \biggr\} ^{2} \\& \quad =\frac{1}{8}\lambda \bigl(\gamma \bigl(d(\delta,\sigma) \bigr) \bigr) \gamma \bigl(d(\delta, \sigma) \bigr). \end{aligned}$$

Hence, for \(\delta,\sigma\in C(J)\), \(s\in J\) with \(\omega(\delta(s),\sigma(s))\geq0\), we have

$$ 8 \bigl\Vert (T\delta-T\sigma)^{2} \bigr\Vert _{\infty}\leq \lambda \bigl( \gamma \bigl(d(\delta,\sigma) \bigr) \bigr)\gamma \bigl(d(\delta, \sigma) \bigr). $$

Put \(\alpha: C(J)\times C(J)\rightarrow[0,\infty)\) by

$$ \alpha(\delta,\sigma)= \textstyle\begin{cases} 1&\omega(\delta(s),\sigma(s))\geq0 \mbox{ for all } s\in J, \\ 0&\mbox{else}, \end{cases} $$

and

$$\begin{aligned} \alpha(\delta,\sigma)\gamma \bigl(8d(T\delta,T\sigma) \bigr)&\leq8d(T \delta,T \sigma) \\ &\leq\lambda \bigl(\gamma \bigl(d(\delta,\sigma) \bigr) \bigr)\gamma \bigl(d( \delta,\sigma) \bigr). \end{aligned}$$

Then T is an α-γ-contractive mapping. From (iii),

$$\begin{aligned} \alpha(\delta,\sigma)\geq1&\quad \Rightarrow\quad \omega \bigl(\delta (s),\sigma(s) \bigr) \geq0 \\ &\quad \Rightarrow\quad \omega \bigl(T(\delta),T(\sigma) \bigr)\geq 0 \\ &\quad \Rightarrow \quad \alpha \bigl(T(\delta),T(\sigma) \bigr)\geq1, \end{aligned}$$

for \(\delta,\sigma\in C(J)\). Therefore, T is α-admissible. From (ii), there exists \(\delta_{0}\)\(\in C(J)\) with \(\alpha(\delta_{0},T\delta_{0})\geq1\). By (iv) and Theorem 1.3, we conclude there exists \(\delta^{*}\in C(J)\) with \(\delta^{*}=T\delta^{*}\). Hence, \(\delta^{*}\) is a solution of the problem. □

We denote by \(\mathcal{F}\) the family of all functions that satisfy the following conditions:

  1. (i)

    \(F:\mathbb{R}_{+}\rightarrow\mathbb{R}\) is a strictly increasing mapping;

  2. (ii)

    \(\lim_{n\rightarrow\infty}F(\alpha_{n})=-\infty\) if and only if, for each sequence \(\{\alpha_{n}\}_{n\in\mathbb{N}}\) of positive numbers, \(\lim_{n\to\infty}\alpha_{n}=0\);

  3. (iii)

    there exists \(k\in(0,1)\) such that \(\lim_{\alpha\rightarrow0^{+}}\alpha^{k}F(\alpha)=0\).

Definition 2.2

Let \((M,d)\) be a metric space, \(g:M\rightarrow M\) is said to be an α-type F-contraction on M if there exist \(\nu>0\) and two functions \(F\in\mathcal{F}\) and \(\alpha:M\times M\rightarrow{\{-\infty\}}\cup(0,\infty)\) such that, for all \(\delta,\sigma\in M\) satisfying \(d(g\delta,g\sigma)>0\), we have

$$ \nu+\alpha(\delta,\sigma)F \bigl(d(g\delta,g\sigma) \bigr)\leq F \bigl(d( \delta, \sigma) \bigr). $$

Theorem 2.3

([12])

Let\((M,d)\)be a metric space and\(g:M\rightarrow M\)be anα-typeF-contraction such that:

  1. (i)

    \(\exists \delta_{0}\in M\)with\(\alpha(\delta_{0},g\delta_{0})\geq1\),

  2. (ii)

    gisα-admissible,

  3. (iii)

    if\(\{\delta_{n}\}\subseteq M\)with\(\alpha(\delta_{n},\delta_{n+1})\geq1\)and\(\delta_{n} \to\delta\), then\(\alpha(\delta_{n},\delta)\geq1\), \(n\in N\),

  4. (iv)

    Fis continuous.

Thenghas a fixed point\(\delta^{*}\in M\)and, for every\(\delta_{0}\in M\), the sequence\(\{g^{n}\delta_{0}\}_{n\in N}\)is convergent to\(\delta^{*}\).

Theorem 2.4

Suppose

  1. (i)

    \(\exists \omega:\mathbb{R}^{2}\rightarrow\mathbb{R}\)such that

    $$ \bigl\vert h \bigl(s,\delta(s) \bigr)-h \bigl(s,\sigma(s) \bigr) \bigr\vert \leq\frac{{B(\kappa)\varGamma(\kappa)}}{(1-\kappa)\varGamma(\kappa)+1}e^{ \frac{-\nu}{2}} \bigl\vert \delta(s)-\sigma(s) \bigr\vert $$

    for\(s\in J\)and\(\delta,\sigma\in\mathbb{R}\)with\(\omega(\delta,\sigma)\geq0\);

  2. (ii)

    \(\exists \delta_{1}\in C(J)\)such that\(\omega(\delta_{1}(s),T\delta_{1}(s))\geq0\)for\(s\in J\), where\(T:C(J)\rightarrow C(J)\)is defined by

    $$ (T\delta) (s)=\delta_{0}+{}_{0}^{AB}I^{\kappa}h \bigl(s,\delta(s) \bigr); $$
    (9)
  3. (iii)

    for\(s\in J\)and\(\delta,\sigma\in C(J)\), \(\omega(\delta(s),\sigma(s))\geq0\)implies\(\omega(T\delta(s),T\sigma(s))\geq0\):

  4. (iv)

    \(\{\delta_{n}\}\subseteq C(J)\), \(\delta_{n}\rightarrow\delta\)in\(C(J)\)and\(\omega(\delta_{n},\delta_{n+1})\geq0\), then\(\omega(\delta_{n},\delta)\geq0\), \(n\in N\).

Then problem (6) has at least one solution.

Proof

Similar to the previous theorem, we demonstrate that T has a fixed point:

$$\begin{aligned}& \bigl\vert T\delta(s)-T\sigma(s) \bigr\vert ^{2} \\& \quad = \bigl\vert _{0}^{AB}I^{\kappa} \bigl[h \bigl(s, \delta(s) \bigr)-h \bigl(s,\sigma(s) \bigr) \bigr] \bigr\vert ^{2} \\& \quad \leq \biggl\vert \biggl[\frac{1-\kappa}{B(\kappa)} \bigl[h \bigl(s,\delta(s) \bigr)-h \bigl(s, \sigma(s) \bigr) \bigr]+\frac{\kappa}{B(\kappa )}{{}_{0}}I^{\kappa} \bigl[h \bigl(s,\delta(s) \bigr)-h \bigl(s, \sigma(s) \bigr) \bigr] \biggr] \biggr\vert ^{2} \\& \quad \leq \biggl\{ \frac{1-\kappa}{B(\kappa)} \bigl\vert h \bigl(s,\delta(s) \bigr)-h \bigl(s, \sigma(s) \bigr) \bigr\vert +\frac{\kappa}{B(\kappa)} {{}_{0}}I^{\kappa} \bigl\vert h \bigl(s,\delta(s) \bigr)-h \bigl(s, \sigma(s) \bigr) \bigr\vert \biggr\} ^{2} \\& \quad \leq \biggl\{ \frac{1-\kappa}{B(\kappa)}\times\frac{{B(\kappa )\varGamma(\kappa)}}{(1-\kappa)\varGamma(\kappa)+1} e^{ \frac{-\nu}{2}}\sqrt{ \bigl\vert \delta(s)-\sigma(s) \bigr\vert ^{2}} \\& \qquad {} + \frac{\kappa}{B(\kappa)} \frac{{B(\kappa)\varGamma(\kappa )}}{(1-\kappa)\varGamma(\kappa)+1} {{}_{0}}I^{ \kappa}(1)e^{\frac{-\nu}{2}} \sqrt{ \bigl\vert \delta(s)-\sigma(s) \bigr\vert ^{2}} \biggr\} ^{2} \\& \quad = \biggl\{ \frac{{B(\kappa)\varGamma(\kappa)}}{(1-\kappa)\varGamma (\kappa)+1}e^{ \frac{-\nu}{2}}\sqrt{ \bigl\vert \delta (s)-\sigma(s) \bigr\vert ^{2}} \biggr\} ^{2} \\& \qquad {} \times \biggl\{ \frac{1-\kappa}{B(\kappa)}+ \frac{\kappa}{B(\kappa)} \frac{1}{\kappa\varGamma(\kappa)} \biggr\} ^{2} \\& \quad \leq \biggl\{ \frac{{B(\kappa)\varGamma(\kappa)}}{(1-\kappa)\varGamma (\kappa)+1}e^{ \frac{-\nu}{2}}\sqrt{\sup _{s\in J} \bigl\vert \delta(s)-\sigma(s) \bigr\vert ^{2}} \biggr\} ^{2} \\& \qquad {} \times \biggl\{ \frac{1-\kappa}{B(\kappa)}+ \frac{\kappa}{B(\kappa)} \frac{1}{\kappa\varGamma(\kappa)} \biggr\} ^{2} \\& \quad = \biggl\{ \frac{{B(\kappa)\varGamma(\kappa)}}{(1-\kappa)\varGamma (\kappa)+1}e^{ \frac{-\nu}{2}}\sqrt{d(\delta,\sigma)} \biggr\} ^{2}\times \biggl\{ \frac{1-\kappa}{B(\kappa)}+ \frac{1}{B(\kappa)\varGamma(\kappa)} \biggr\} ^{2} \\& \quad =e^{-\nu} d(\delta,\sigma). \end{aligned}$$

Hence, for \(\delta,\sigma\in C(J)\), \(s\in J\) with \(\omega(\delta(s),\sigma(s))\geq0\), we have

$$ d(T\delta,T\sigma)\leq e^{-\nu}d(\delta,\sigma). $$

So

$$ \ln \bigl(d(T\delta,T\sigma) \bigr)\leq\ln \bigl(e^{-\nu}d(\delta, \sigma) \bigr), $$

therefore

$$ \nu+\ln \bigl(d(T\delta,T\sigma) \bigr)\leq\ln \bigl(d(\delta ,\sigma) \bigr). $$

Now, let \(F:[0,\infty)\rightarrow R\) given by \(F(u)=\ln u\), \(u>0\), then \(F\in\mathcal{F}\).

Put \(\alpha: C(J)\times C(J)\rightarrow\{-\infty\}\cup[0,\infty)\) by

$$ \alpha(\delta,\sigma)= \textstyle\begin{cases} 1&\omega(\delta(s),\sigma(s))\geq0 \mbox{ for all } s\in J, \\ -\infty&\mbox{else}. \end{cases} $$

Therefore \(\nu+\alpha(\delta,\sigma)F(d(T\delta,T\sigma))\leq F(d(\delta, \sigma))\) for \(\delta,\sigma\in M\) with \(d(T\delta,T\sigma)>0\). For this reason, T is an α-type F-contraction. From (iii),

$$\begin{aligned} \alpha(\delta,\sigma)\geq1&\quad \Rightarrow\quad \omega \bigl(\delta (s),\sigma(s) \bigr) \geq0 \\ &\quad \Rightarrow\quad \omega \bigl(T(\delta),T(\sigma) \bigr)\geq 0 \\ &\quad \Rightarrow\quad \alpha \bigl(T(\delta),T(\sigma) \bigr)\geq1, \end{aligned}$$

for all \(\delta,\sigma\in C(J)\). Thus, T is α-admissible. From (ii), there exists \(\delta_{0}\)\(\in C(J)\) with \(\alpha(\delta_{0},T\delta_{0})\geq1\). By (iv) and Theorem 2.3, we conclude \(\delta^{*}\in C(J)\) with \(\delta^{*}=T\delta^{*}\). Hence, \(\delta^{*}\) is a solution of the problem. □

Now let \(\mathcal{F}\) be the set of functions \(g:(0, \infty)\rightarrow\mathbb{R}\) with the conditions:

\((\mathcal{F}_{1})\):

If \(0 < s< t\), then \(g(s)\leq g(t)\);

\((\mathcal{F}_{2})\):

If \(\{s_{n}\}\subset(0,+\infty)\), then

$$ \lim_{n\rightarrow+\infty}s_{n}=0\quad \mbox{if and only if} \quad \lim _{n\rightarrow+\infty}g(s_{n})=-\infty. $$
The space of an \(\mathcal{F}\)-metric is defined as follows.

Definition 2.5

([36])

Let M be nonempty, \(d: M\times M\rightarrow[0, +\infty)\) and \((g, a)\in\mathcal{F}\times[0, +\infty)\) such that

\((d_{1})\):

\((\delta, \sigma) \in M\times M\), \(d(\delta, \sigma)=0 \Leftrightarrow\delta=\sigma\);

\((d_{2})\):

\(d(\delta, \sigma)=d(\sigma,\delta)\), for \((\delta, \sigma)\in M\times M\);

\((d_{3})\):

For \((\delta, \sigma) \in M\times M\), \(N\in\mathbb{N}\), \(N\geq2\), and for \((u_{i})^{N}_{i=1}\subset M\) with \((u_{1},u_{N})=(\delta,\sigma)\), we have

$$ d(\delta, \sigma)>0 \quad \mbox{implies} \quad g \bigl(d(\delta, \sigma) \bigr)\leq g \Biggl(\sum_{i=1}^{N-1} d(u_{i}, u_{i+1}) \Biggr)+a. $$
Then d is said to be an \(\mathcal{F}\)-metric on M, and the pair \((M, d)\) is said to be an \(\mathcal{F}\)-metric space.

A sequence \(\{\delta_{n}\}\) in \((M, d)\) is convergent to δ with respect to the \(\mathcal{F}\)-metric d if

$$ \lim_{n\rightarrow\infty}d(\delta_{n}, \delta) = 0. $$

A sequence \(\{\delta_{n}\}\) in \((M, d)\) is called \(\mathcal{F}\)-Cauchy if

$$ \lim_{n, m\rightarrow+\infty}d(\delta_{n},\delta _{m})=0. $$

\((M, d)\) is \(\mathcal{F}\)-complete if every \(\mathcal{F}\)-Cauchy sequence in M is \(\mathcal{F}\)-convergent to a specified element in M. Let Γ be the set of functions \(\gamma:[0,\infty)\rightarrow[0,\infty)\) such that

\((\gamma_{1})\):

γ is nondecreasing;

\((\gamma_{2})\):

\(\sum_{n=1}^{\infty} \gamma^{n}(s)<\infty\) for \(s\in\mathbb{R}^{+}\), where \(\gamma^{n}\) is the nth iterate of γ.

Definition 2.6

([37])

Let \(\alpha:M\times M\rightarrow[0,\infty)\), then \(g:M\to M \) is said to be an α-orbital admissible if, for \(s\in M \), we have

$$ \alpha(s, gs)\geq1 \quad \Rightarrow\quad \alpha \bigl(gs, g^{2}s \bigr)\geq1. $$
(10)

Theorem 2.7

([9])

Assume\((M, d)\)to be an\(\mathcal{F}\)-complete metric space and\(g:M\rightarrow M\)such that

$$ \alpha(\delta,\sigma)d(g\delta,g\sigma)\leq\gamma \bigl(d(\delta , \sigma ) \bigr) $$

for\(\delta,\sigma\in M\), where\(\gamma\in\varGamma\). Suppose

  1. (i)

    gis orbitalα-admissible;

  2. (ii)

    there exists\(\delta_{0}\in M\)with\(\alpha(\delta_{0},g\delta_{0}) \geq1\);

  3. (iii)

    \(g\in\mathcal{F}\)verifying\((d_{3})\)is assumed to be continuous; also, γis chosen to be continuous and to satisfy that\(g(u)>g(\gamma(u))+a\), \(u\in(0, \infty)\), whereais also given in\((d_{3})\);

thenfhas a fixed point.

Consider the \(\mathcal{F}\)-metric \(d:M\times M\rightarrow[0,\infty)\) with \(M=C(J,\mathbb{N})\), given as

$$ d(\delta,\sigma)= \textstyle\begin{cases} e^{|\delta-\sigma|} &\mbox{if } \delta\neq\sigma, \\ 0 &\mbox{if } \delta=\sigma, \end{cases} $$

where \(M=\{0,1,2,\ldots\}\), \(g(s) =-\frac{1}{s}\) for \(s > 0\), \(a = 1\) and g is continuous on \((0,\infty)\). The condition \(g(u)>g(\gamma(u))+a\), \(u>0\), becomes \(-\frac{1}{u}>\frac{1}{\gamma(u)}>1\), that is, γ is chosen to be continuous such that

$$ \gamma(u)< \frac{u}{u+1}. $$

Also consider that γ satisfies the following additional condition:

$$ e^{\gamma(s)}\leq\gamma \bigl(e^{s} \bigr),\quad s\in\{0,1,2,3, \ldots\}. $$

Theorem 2.8

Assume

  1. (i)

    \(\exists\omega:\mathbb{R}^{2}\rightarrow\mathbb{R}\)with

    $$ \bigl\vert h \bigl(s,\delta(s) \bigr)-h \bigl(s,\sigma(s) \bigr) \bigr\vert \leq\frac{{B(\kappa)\varGamma(\kappa)}}{(1-\kappa)\varGamma(\kappa)+1} \gamma \bigl( \bigl\vert \delta(s)-\sigma(s) \bigr\vert \bigr) $$

    for\(s\in J\)and\(\delta,\sigma\in\mathbb{R}\)with\(\omega(\delta,\sigma)\geq0\);

  2. (ii)

    \(\delta_{1}\in C(J)\)with\(\omega(\delta_{1}(s),T\delta_{1}(s))\geq0\)for\(s\in J\), where\(T:C(J)\rightarrow C(J)\)is defined by

    $$ (T\delta) (s)=\delta_{0}+{}_{0}^{AB}I^{\kappa}h \bigl(s,\delta(s) \bigr); $$
    (11)
  3. (iii)

    for\(s\in J\)and\(\delta\in C(J)\), \(\omega(\delta(s),T\delta(s))\geq0\)implies\(\omega(T\delta(s),T^{2}\delta(s))\geq0\).

Then (6) has at least one solution.

Similar to the previous theorem, we demonstrate that T has a fixed point:

$$\begin{aligned}& \bigl\vert T\delta(s)-T\sigma(s) \bigr\vert \\& \quad = \bigl\vert {}_{0}^{AB}I^{\kappa} \bigl[h \bigl(s,\delta(s) \bigr)-h \bigl(s, \sigma(s) \bigr) \bigr] \bigr\vert \\& \quad \leq \biggl\vert \biggl[\frac{1-\kappa}{B(\kappa)} \bigl[h \bigl(s,\delta(s) \bigr)-h \bigl(s, \sigma(s) \bigr) \bigr]+\frac{\kappa}{B(\kappa )}{{}_{0}}I^{\kappa} \bigl[h \bigl(s,\delta(s) \bigr)-h \bigl(s, \sigma(s) \bigr) \bigr] \biggr] \biggr\vert \\& \quad \leq \biggl\{ \frac{1-\kappa}{B(\kappa)} \bigl\vert h \bigl(s,\delta(s) \bigr)-h \bigl(s, \sigma(s) \bigr) \bigr\vert +\frac{\kappa}{B(\kappa )}{{}_{0}}I^{\kappa} \bigl\vert h \bigl(s,\delta(s) \bigr)-h \bigl(s, \sigma(s) \bigr) \bigr\vert \biggr\} \\& \quad \leq \biggl\{ \frac{1-\kappa}{B(\kappa)}\times\frac{{B(\kappa )\varGamma(\kappa)}}{(1-\kappa)\varGamma(\kappa)+1} \gamma \bigl( \bigl\vert \delta(s)-\sigma(s) \bigr\vert \bigr) \biggr\} \\& \qquad {} + \biggl\{ \frac{\kappa}{B(\kappa)} \frac{{B(\kappa)\varGamma(\kappa )}}{(1-\kappa)\varGamma(\kappa)+1} {{}_{0}}I^{ \kappa}(1) \gamma \bigl( \bigl\vert \delta(s)-\sigma(s) \bigr\vert \bigr) \biggr\} \\& \quad = \biggl\{ \frac{{B(\kappa)\varGamma(\kappa)}}{(1-\kappa)\varGamma (\kappa)+1} \gamma \bigl( \bigl\vert \delta(s)-\sigma (s) \bigr\vert \bigr) \biggr\} \biggl\{ \frac{1-\kappa}{B(\kappa)}+ \frac{\kappa}{B(\kappa)} \frac{1}{\kappa\varGamma(\kappa)} \biggr\} \\& \quad =\gamma \bigl( \bigl\vert \delta(s)-\sigma(s) \bigr\vert \bigr). \end{aligned}$$

Hence, for \(\delta,\sigma\in C(J)\), \(s\in J\) with \(\omega(\delta(s),\sigma(s))\geq0\), we have

$$ d(T\delta,T\sigma)=e^{|T\delta(s)-T\sigma(s)|}\leq e^{\gamma(| \delta(s)-\sigma(s)|)}\leq\gamma \bigl(e^{|\delta(s)-\sigma(s)|} \bigr)= \gamma \bigl(d(\delta,\sigma ) \bigr). $$

Put \(\alpha: C(J)\times C(J)\rightarrow[0,\infty)\) by

$$ \alpha(\delta,\sigma)= \textstyle\begin{cases} 1&\omega(\delta(s),\sigma(s))\geq0 \mbox{ for all }s\in J, \\ 0 &\mbox{else}. \end{cases} $$

Therefore \(\alpha(\delta,\sigma)d(T\delta,T\sigma)\leq d(T\delta, T \sigma)\leq\gamma(d(\delta,\sigma))\) for all \(\delta,\sigma\in M\) with \(d(T\delta,T\sigma)>0\). From (iii),

$$\begin{aligned} \alpha(\delta,T\delta)\geq1&\quad \Rightarrow\quad \omega \bigl(\delta(s),T \delta(s) \bigr) \geq0 \\ &\quad \Rightarrow\quad \omega \bigl(T(\delta),T^{2}(\delta) \bigr) \geq0 \\ &\quad \Rightarrow\quad \alpha \bigl(T(\delta),T^{2}(\delta) \bigr)\geq1, \end{aligned}$$

for \(\delta\in C(J)\). Thus, T is orbital α-admissible. From (ii), there exists \(\delta_{1}\)\(\in C(J)\) with \(\alpha(\delta_{1},T\delta_{1})\geq1\). By (iii) and Theorem 2.7, we get \(\sigma^{*}\in C(J)\) with \(\delta^{*}=T\delta^{*}\). Hence, \(\delta^{*}\) is a solution of the problem.

Conclusion

In this manuscript, we extend some of the fractional differential equations of Riemann–Liouville and Caputo type to the fractional differential equations of Atangana–Baleanu in the Caputo sense.

References

  1. 1.

    Afshari, H., Aydi, H., Karapınar, E.: On generalized α-ψ-Geraghty contractions on b-metric spaces. Georgian Math. J. 27(1), 9–21 (2020). https://doi.org/10.1515/gmj-2017-0063

    MathSciNet  Article  Google Scholar 

  2. 2.

    Afshari, H., Aydi, H., Karapınar, E.: Existence of fixed points of set-valued mappings in b-metric spaces. East Asian Math. J. 32(3), 319–332 (2016)

    Article  Google Scholar 

  3. 3.

    Afshari, H.: Solution of fractional differential equations in quasi-b-metric and b-metric-like spaces. Adv. Differ. Equ. 2018, 285 (2018)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Afshari, H., Kalantari, S., Karapınar, E.: Solution of fractional differential equations via coupled fixed point. Electron. J. Differ. Equ. 2015, 286 (2015)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Afshari, H., Marasi, H.R., Aydi, H.: Existence and uniqueness of positive solutions for boundary value problems of fractional differential equations. Filomat 31, 2675–2682 (2017). https://doi.org/10.2298/FIL1709675A

    MathSciNet  Article  Google Scholar 

  6. 6.

    Ajou, A., Oqielat, M.N., Zhour, Z.A., Kumar, S., Momani, S.: Solitary solutions for time-fractional nonlinear dispersive PDEs in the sense of conformable fractional derivative. Chaos 29, 093102 (2019)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Alqahtani, B., Fulga, A., Jarad, F., Karapınar, E.: Nonlinear F-contractions on b-metric spaces and differential equations in the frame of fractional derivatives with Mittag-Leffler kernel. Chaos Solitons Fractals 128, 349–354 (2019). https://doi.org/10.1016/j.chaos.2019.08.002

    MathSciNet  Article  Google Scholar 

  8. 8.

    Atangana, A., Baleanu, D.: New fractional derivative with non-local and non-singular kernel. Therm. Sci. 20, 757–763 (2016)

    Article  Google Scholar 

  9. 9.

    Aydi, H., Karapınar, E., Mitrovi, Z.D., Rashid, T.: A remark on “Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results F-metric space”. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. (2019). https://doi.org/10.1007/s13398-019-00690-9

    Article  Google Scholar 

  10. 10.

    Abdeljawad, T., Baleanu, D.: Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 10, 1098–1107 (2017)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Doungmo Goufoa, E.F., Kumar, S., Mugisha, S.B.: Similarities in a fifth-order evolution equation with and with no singular kernel. Chaos Solitons Fractals 130, 109467 (2020)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Gopal, D., Abbas, M., Kumar, D.P., Vetro, C.: Fixed points of α-type F-contractive mappings with an application to nonlinear fractional differential equation. Acta Math. Sci. 36(3), 957–970 (2016)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Odibat, Z., Kumar, S.: A robust computational algorithm of homotopy asymptotic method for solving systems of fractional differential equation. J. Comput. Nonlinear Dyn. 14(8), 081004 (2019)

    Article  Google Scholar 

  14. 14.

    Osler, T.J.: Fractional derivatives and Leibniz rule. Am. Math. Mon. 78, 645–649 (1971)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. North Holland Math. Stud., vol. 204 (2006)

    MATH  Google Scholar 

  16. 16.

    Kumar, S., Momani, S., Aldhaifalla, M., Nisar, K.S.: Numerical solutions of nonlinear fractional model arising in the appearance of the strip patterns in two-dimensional systems. Adv. Differ. Equ. 2019, 413 (2019)

    Article  Google Scholar 

  17. 17.

    Samei, M.E., Hedayati, V., Ranjbar, G.K.: The existence of solution for k-dimensional system of Langevin Hadamard-type fractional differential inclusions with 2k different fractional orders. Mediterr. J. Math. 17, 37 (2020). https://doi.org/10.1007/s00009-019-1471-2

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Samei, M.E., Hedayati, V., Rezapour, S.: Existence results for a fraction hybrid differential inclusion with Caputo–Hadamard type fractional derivative. Adv. Differ. Equ. 2019, 163 (2019). https://doi.org/10.1186/s13662-019-2090-8

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Samko, S.G., Kilbas, A.A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Yverdon (1993)

    MATH  Google Scholar 

  20. 20.

    Owolabi, K.M.: Behavioural study of symbiosis dynamics via the Caputo and Atangana–Baleanu fractional derivatives. Chaos Solitons Fractals 122, 89–101 (2019). https://doi.org/10.1016/j.chaos.2019.03.014

    MathSciNet  Article  Google Scholar 

  21. 21.

    Owolabi, K.M.: Modelling and simulation of a dynamical system with the Atangana–Baleanu fractional derivative. Eur. Phys. J. Plus 133, 15 (2018)

    Article  Google Scholar 

  22. 22.

    Owolabi, K.M., Atangana, A.: Computational study of multi-species fractional reaction–diffusion system with ABC operator. Chaos Solitons Fractals 128, 280–289 (2019). https://doi.org/10.1016/j.chaos.2019.07.050

    MathSciNet  Article  Google Scholar 

  23. 23.

    Owolabi, K.M., Atangana, A.: Mathematical analysis and computational experiments for an epidemic system with nonlocal and nonsingular derivative. Chaos Solitons Fractals 126, 41–49 (2019). https://doi.org/10.1016/j.chaos.2019.06.001

    MathSciNet  Article  Google Scholar 

  24. 24.

    Owolabi, K.M., Atangana, A.: On the formulation of Adams–Bashforth scheme with Atangana–Baleanu–Caputo fractional derivative to model chaotic problems. Chaos 29, 023111 (2019). https://doi.org/10.1063/1.5085490

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Owolabi, K.M., Gomez-Aguilar, J.F., Karaagac, B.: Modelling, analysis and simulations of some chaotic systems using derivative with Mittag-Leffler kernel. Chaos Solitons Fractals 125, 54–63 (2019). https://doi.org/10.1016/j.chaos.2019.05.019

    MathSciNet  Article  Google Scholar 

  26. 26.

    Owolabi, K.M., Hammouch, Z.: Mathematical modeling and analysis of two-variable system with noninteger-order derivative. Chaos 29, 013145 (2019). https://doi.org/10.1063/1.5086909

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Owolabi, K.M., Pindza, E.: Modeling and simulation of nonlinear dynamical system in the frame of nonlocal and non-singular derivatives. Chaos Solitons Fractals 125, 54–63 (2019). https://doi.org/10.1016/j.chaos.2019.05.019

    MathSciNet  Article  Google Scholar 

  28. 28.

    Jarad, F., Abdeljawad, T., Hammouch, Z.: On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative. Chaos Solitons Fractals 117, 16–20 (2018)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Ravichandran, C., Logeswari, K., Jarad, F.: New results on existence in the framework of Atangana–Baleanu derivative for fractional integro-differential equations. Chaos Solitons Fractals 125, 194–200 (2019)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Avalos-Ruiza, L.F., Gomez-Aguilar, J.F., Atangana, A., Owolabi, K.M.: On the dynamics of fractional maps with power-law, exponential decay and Mittag-Leffler memory. Chaos Solitons Fractals 127, 364–388 (2019). https://doi.org/10.1016/j.chaos.2019.07.010

    MathSciNet  Article  Google Scholar 

  31. 31.

    Karapınar, E., Abdeljawad, T., Jarad, F.: Applying new fixed point theorems on fractional and ordinary differential equations. Adv. Differ. Equ. 2019, 421 (2019)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Shoaib, M., Abdeljawad, T., Sarwar, M., Jarad, F.: Fixed point theorems for multi-valued contractions in b-metric spaces with applications to fractional differential and integral equations. IEEE Access 7, 127373–127383 (2019)

    Article  Google Scholar 

  33. 33.

    Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal. 75, 2154–2165 (2012)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Karapınar, E., Samet, B.: Generalized α-ψ-contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. 2012, Article ID 793486 (2012)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Wardowski, D.: Fixed point theory of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94 (2012)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Jleli, M., Samet, B.: On a new generalization of metric spaces. Fixed Point Theory Appl. 2018, 128 (2018)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Popescu, O.: Some new fixed point theorems for α-Geraghty-contraction type maps in metric spaces. Fixed Point Theory Appl. 2014, 190 (2014)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Funding

Not applicable.

Author information

Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hojjat Afshari.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Afshari, H., Baleanu, D. Applications of some fixed point theorems for fractional differential equations with Mittag-Leffler kernel. Adv Differ Equ 2020, 140 (2020). https://doi.org/10.1186/s13662-020-02592-2

Download citation

Keywords

  • Atangana–Baleanu derivative in the Caputo sense
  • \(\mathcal{F}\)-metric space
  • α-type F-contractive mapping
  • Atangana–Baleanu fractional operator in the Caputo sense