Skip to main content

Advertisement

Global asymptotic stability for a nonlinear density-dependent mortality Nicholson’s blowflies system involving multiple pairs of time-varying delays

Abstract

In our article, a nonlinear density-dependent mortality Nicholson’s blowflies system with patch structure has been investigated, in which the delays are time-varying and multiple pairs. Based upon the fluctuation lemma and differential inequality techniques, some sufficient conditions are found to ensure the global asymptotic stability of the addressed model. Moreover, a numerical example is provided to illustrate the feasibility and effectiveness of the obtained findings, and our consequences are new even when the considered model degenerates to the scalar Nicholson’s blowflies equation.

Introduction

Recently, Berezansky and Braverman [1] pointed out that several important classes of infinite dimensional dynamical systems arising from biological and medical sciences are special cases of the following general scalar delay differential equation:

$$ x '(t)=\sum^{m}_{j=1}F_{j} \bigl(t, x\bigl(t-\tau_{1}(t)\bigr),\ldots,x\bigl(t- \tau_{l}(t)\bigr)\bigr)-G\bigl(t, x(t)\bigr),\quad t \geq t_{0}, $$
(1.1)

where m and l are positive integers. Here G is considered to be instantaneous mortality, \(F_{j}\) (\(j\in I:=\{1,2,\ldots, m\}\)) describes the feedback controls depending on the values of the stable variable with respective delays \(\tau_{1}(t) \), \(\tau_{2}(t),\ldots,\tau_{l}(t) \). Clearly, (1.1) includes the following nonlinear density-dependent mortality Nicholson’s blowflies model:

$$ x' (t)= -\frac{a(t)x(t)}{b(t)+x(t)} +\sum _{j=1}^{m}\beta_{j}(t) x \bigl(t-h_{j} (t) \bigr)e^{-\gamma_{j}(t) x(t-g_{j}(t))}, \quad t \geq t_{0}, $$
(1.2)

which in the case \(h_{j}\equiv g_{j}\) coincide with the classical models [26]. In particular, the nonlinear density-dependent mortality term, \(\frac{a(t)x(t)}{b(t)+x(t)}\) is referred to as population mortality, \(\beta_{j}(t) x (t-h_{j} (t) )e^{-\gamma_{j}(t) x(t-g_{j}(t))}\) designates the time-dependent birth function with maturation delay \(h_{ j}(t)\) and incubation delay \(g_{ j}(t)\), and gets the maximum reproduces rate \(\frac{1}{\gamma_{ j}(t)}\), and \(j\in I \).

For the past decade or so, for the special case of (1.2) with \(h_{j}\equiv g_{j}\) (\(j\in I\)), not only the dynamic behaviors of time-delay Nicholson’s blowflies models, such as existence, persistence, oscillation, periodicity and stability, but also the variants of the models have aroused current research interest, and some useful results have been obtained in the existing papers; for example, see [715]. In addition, it is proved that more than one delay involved in the identical nonlinear function \(F_{j}\) can cause chaotic oscillations in [1], and an example is given to represent that two delays, rather than one delay, can produce a continuous oscillation. As a matter of fact, when more than one delay occurs, the delay feedback function \(F_{j}\) should be regarded as a multi-variable function. This will make it more difficult to study the dynamic behaviors of (1.1) and (1.2).

On the other hand, it is of great practical significance to investigate the dynamic behaviors of a Nicholson’s blowflies model with patch structure. Consequently, the scalar equation (1.1) can be naturally generalized as the following nonlinear density-dependent mortality Nicholson’s blowflies model with patch structure:

$$\begin{aligned} x_{i }'(t) =&-\frac{a_{ii}(t)x_{i }(t)}{b_{ii}(t)+x_{i }(t) } +\sum _{j=1,j\neq i}^{n} \frac{a_{ij}(t)x_{j }(t)}{b_{ij}(t)+x_{j }(t) } \\ &{}+\sum_{j=1}^{m} \beta_{ij}(t)x_{i}\bigl(t-\tau_{ij}(t) \bigr)e^{- \gamma_{ij}(t)x_{i}(t-\sigma_{ij}(t))}, \quad i \in Q:=\{1,2,\ldots ,n\}, \end{aligned}$$
(1.3)

which in the classical case \(\tau_{ij}\equiv\sigma_{ij}\) (\(i \in Q\), \(j\in I\)) has been widely studied in the literature of the past [1620]. In the ith patch, \(\frac{a_{ii}(t)x_{i }(t)}{b_{ii}(t)+x_{i }(t) }\) labels the death rate of the the current population level \(x_{i }(t)\); \(\beta_{ij}(t)x_{i}(t-\tau_{ij}(t))e^{-\gamma_{ij}(t)x_{i}(t- \sigma_{ij}(t))}\) designates the time-dependent birth function which requires maturation delays \(\tau_{ij}(t)\) and incubation delays \(\sigma_{ij}(t)\), and gets the maximum reproduction rate \(\frac{1}{\gamma_{ij}(t)}\); for \(i, j\in Q\) and \(j\neq i\), the weight function \(\frac{a_{ij}(t)x_{j }(t)}{b_{ij}(t)+x_{j }(t) } \) designates the population cooperative connection between jth patch and ith patch.

It should be mentioned that, up to now, the models (1.1), (1.2) and (1.3) relate to the global stability analysis of two or more delays are very few [1, 2124]. For the special case of (1.2) with \(h_{j}\equiv g_{j}\) (\(j\in I\)), some delay-independent criteria ensuring the global asymptotic stability have been established in [25]. More precisely, the author in [25] obtained the global asymptotical stability of (1.2) on \(C([-\tau, 0], (0, +\infty)) \) and under the following assumptions:

$$ \max_{ j \in I}\gamma_{j}^{+} \leq1 , \qquad \sup_{t \in R} \sum_{j=1}^{m} \frac{\beta_{j} (t )}{ \gamma_{j} (t ) } < \frac{a ^{-}}{\max\{1, b^{+} \}}, \qquad \limsup _{t\rightarrow+\infty} \sum_{j=1}^{m} \frac{\beta_{j}(t )}{\gamma_{j} (t )} \frac{1}{e}< \frac{a^{-} }{b^{+ }+1}, $$
(1.4)

where \(\tau:=\max\{\max_{1\leq j \leq m} g_{j}^{+}, \max_{1\leq j \leq m} h_{j}^{+} \} >0 \), and \(g^{+}\) and \(g^{-}\) be defined as

$$ g^{+}=\sup_{t\in[t_{0}, +\infty)}g(t), \qquad g^{-}= \inf_{t\in[t_{0}, +\infty)}g(t) . $$

The deficiency is that we can find some errors in the process of proving the main consequence in [25]. In fact, as pointed in [26], in lines 3–4 of page 856 in [25], letting \(t\rightarrow\eta(\varphi)\) cannot result in \(\limsup_{t\rightarrow+\infty} \sum_{j=1}^{m} \frac{\beta_{j }(t)}{\gamma_{j}(t)a(t)} \frac{1}{e} \geq1 \) because of the fact that \(\eta(\varphi)=+\infty\) has not been proved. This suggests that the above-described literature leaves space for improvement.

Based on the above considerations, we study a nonlinear density-dependent mortality Nicholson’s blowflies system involving multiple pairs of time-varying delays described in (1.3). We shall establish a delay-independent criterion to ensure the global asymptotic stability of (1.3) without \(\tau_{ij}\equiv\sigma_{ij}\) (\(i\in Q\), \(j\in I\)), which has not been investigated till now. Moreover, our consequences generalize and improve all known consequences in [25, 26], and the error mentioned above has been corrected in Lemma 2.1.

For convenience, we suppose that \(a_{ii}\), \(b_{ii}\), \(\gamma_{ij}:\mathbb{R}\rightarrow(0, +\infty) \), \(a_{ij}\) (\(i \neq j\)), \(b_{ij}\) (\(i \neq j\)), \(\beta_{ij} , \tau_{ij}, \sigma_{ij}:\mathbb{R}\rightarrow[0, +\infty)\) for all \(i\in Q\), \(j\in I \) are bounded and continuous functions, and we denote

$$ r_{i}=\max\Bigl\{ \max_{ j \in I}{ \tau_{ij}^{+}}, \max_{ j \in I}{ \sigma_{ij}^{+}}\Bigr\} , \qquad \tau=\max _{ i \in Q}r_{i}, \qquad C_{+}= \prod _{i=1}^{n}C\bigl([-r_{i}, 0], [0, +\infty)\bigr). $$

For \(x=(x_{1},\ldots,x_{n}) \in\mathbb{R}^{n}\) and \(\varphi\in\prod_{i=1}^{n}C([-r_{i}, 0], [0, +\infty))\), define \(|x|=(|x_{1}|,\ldots,|x_{n}|) \), \(\Vert x\Vert_{\infty}=\max_{ i\in Q}|x_{i}|\), and \(\Vert\varphi\Vert =\max_{ i\in Q}\{\max_{t\in[-r_{i}, 0]}| \varphi_{i}(t)|\}\). Furthermore, it will be considered the following admissible initial conditions:

$$ x_{i}(t_{0}+\theta) =\varphi_{i}(\theta), \qquad \theta\in[-r_{i}, 0],\qquad \varphi\in C_{+}^{0}= \bigl\{ \varphi\in C_{+}| \varphi_{i}(0)>0, i \in Q\bigr\} . $$
(1.5)

We denote \(x(t; t_{0}, \varphi) \) as a solution of (1.3) with the initial value problem (1.5), and let \([t_{0}, \eta(\varphi))\) be the maximal right-interval of existence of \(x(t; t_{0}, \varphi) \). Moreover, by employing the local Lipschitz property of the right side function with regard to the nonnegative function space, we find that \(x(t; t_{0}, \varphi)\) exists and is unique.

Preliminary results

We first present the global existence of solutions for (1.3) with the admissible initial value problem (1.5).

Lemma 2.1

For all\(i\in Q\), \(j\in I\), assume that

$$ \limsup_{t\rightarrow+\infty} \Biggl[\sum_{j=1,j\neq i }^{n} \frac{a_{i j}(t)}{a_{i i }(t)} +\sum_{j=1}^{m} \frac{\beta_{i j }(t)}{a_{i i }(t)\gamma_{ i j}(t)} \frac{1}{e}\Biggr]< 1 $$
(2.1)

and

$$ \sigma_{ij}(t)\geq\tau_{ij}(t) \quad\textit{and} \quad \lim_{t \rightarrow+\infty}\bigl( \sigma_{ij}(t)- \tau_{ij}(t)\bigr) e^{\int_{t_{0}}^{t}[ \sum_{j=1,j\neq i }^{n} a_{i j}(v)+\sum_{j=1}^{m} \beta_{ij} (v)]\,dv}=0 $$
(2.2)

hold. Then, the solution\(x (t)=x(t; t_{0}, \varphi)\)is positive and bounded for all\(t\in[t_{0}, +\infty)\).

Proof

We first assert that

$$ x_{i}(t)>0 \quad\text{for all } t\in\big[t_{0}, \eta( \varphi)\big), i \in Q. $$
(2.3)

Suppose to the contrary that Eq. (2.3) does not hold, then there exist \(\omega\in Q\) and \(\bar{t }_{\omega}\in(t_{0}, \eta(\varphi))\) such that

$$ x_{\omega}(\bar{t }_{\omega})=0,\qquad x_{j}(t)>0 \quad \text{for all } t\in[t_{0} , \bar{t }_{\omega}), j\in Q . $$

Based on the fact that

$$ \textstyle\begin{cases} x_{\omega} (t_{0})=\varphi_{w} (0)>0, \\ x_{\omega} '(t) \geq - \frac{a _{\omega\omega}(t)}{b _{\omega\omega}(t) }x_{\omega} (t) +\sum_{j=1}^{m} \beta_{ \omega j} (t)x_{ \omega} (t-\tau_{\omega j} (t))e^{- \gamma_{\omega j} (t) x_{ \omega} (t- \sigma_{\omega j} (t))},\quad t\in[t_{0} , \bar{t }_{\omega}), \end{cases} $$

we obtain

$$\begin{aligned} 0 =& x_{\omega} (\bar{t }_{\omega}) \\ \geq& e^{-\int_{t_{0}}^{\bar{t }_{\omega}} \frac{a _{\omega\omega}(u)}{b _{\omega\omega}(u)}\,du}x_{\omega}(t_{0}) \\ &{} +e^{-\int_{t_{0}}^{\bar{t }_{\omega}} \frac{a _{\omega\omega}(u)}{b _{\omega\omega}(u)}\,du} \int_{t_{0}}^{ \bar{t }_{\omega}} e^{ \int_{t_{0}}^{s} \frac{a _{\omega\omega}(v)}{b _{\omega\omega}(v)}\,dv}\sum _{j=1}^{m} \beta_{ \omega j} (s)x_{ \omega} \bigl(s-\tau_{\omega j} (s)\bigr)e^{- \gamma_{\omega j} (s) x_{ \omega} (s- \sigma_{\omega j} (s))} \,ds \\ > & 0, \end{aligned}$$

which is a contradiction and results in the above assertion.

Now, we show that \(\eta(\varphi)=+\infty\). For all \(i\in Q\) and \(t\in[t_{0}, \eta(\varphi))\), define \(y_{i}(t)=\max\{1, \max_{t_{0}-r_{i} \leq s\leq t} x_{i} (s) \}\), we obtain

$$\begin{aligned} x_{i }'(t) \leq\sum_{j=1,j\neq i}^{n} a_{ij}(t) +\sum_{j=1}^{m} \beta_{ij}(t)x_{i}\bigl(t-\tau_{ij}(t)\bigr) \leq\Biggl[\sum_{j=1,j\neq i}^{n} a_{ij}(t) +\sum_{j=1}^{m} \beta_{ij}(t)\Biggr]y_{i}(t ) \end{aligned}$$

and

$$\begin{aligned} x _{i} (t) \leq& x _{i}(t_{0}) + \int_{t_{0}}^{t} \Biggl[\sum _{j=1,j \neq i}^{n} a_{ij}(v) +\sum _{j=1}^{m}\beta_{ij}(v)\Biggr] y _{i}(v)\,dv \\ \leq& \max\bigl\{ 1, \Vert \varphi \Vert \bigr\} + \int_{t_{0}}^{t}\Biggl[\sum _{j=1,j\neq i}^{n} a_{ij}(v) +\sum _{j=1}^{m}\beta_{ij}(v)\Biggr] y _{i}(v)\,dv, \end{aligned}$$

which suggests that

$$\begin{aligned} y _{i} (t)\leq\max\bigl\{ 1, \Vert \varphi \Vert \bigr\} + \int_{t_{0}}^{t}\Biggl[\sum _{j=1,j\neq i}^{n} a_{ij}(v) +\sum _{j=1}^{m}\beta_{ij}(v)\Biggr] y _{i}(v)\,dv, \quad\forall t \in[t_{0}, \eta(\varphi)), i\in Q. \end{aligned}$$

Hence, by the Gronwall–Bellman inequality, we obtain

$$\begin{aligned} x _{i} (t)\leq y_{i} (t)\leq\max\bigl\{ 1, \Vert \varphi \Vert \bigr\} e^{\int _{t_{0}}^{t}[\sum_{j=1,j\neq i}^{n} a_{ij}(v) +\sum_{j=1}^{m}\beta_{ij}(v)]\,dv} , \quad\forall t\in[t_{0}, \eta(\varphi)), i\in Q. \end{aligned}$$

It follows from Theorem 2.3.1 in [27] that \(\eta(\varphi)=+\infty\), and then

$$ x _{i} (t)\leq y _{i} (t)\leq\max\bigl\{ 1, \Vert \varphi \Vert \bigr\} e^{\int _{t_{0}}^{t}[\sum_{j=1,j\neq i}^{n} a_{ij}(v) +\sum_{j=1}^{m}\beta_{ij}(v)]\,dv} , $$
(2.4)

for all \(t\in[t_{0}, +\infty)\), \(i\in Q\).

Furthermore, for each \(t\in[t_{0}-r_{i}, +\infty) \), we define

$$ M_{i}(t)=\max\Bigl\{ \xi:\xi\leq t, x _{i}(\xi)=\max _{t_{0}-r_{i} \leq s\leq t} x_{i} (s)\Bigr\} . $$

Next, we show that \(x _{i}(t)\) is bounded on \([t_{0}, +\infty)\) for all \(i\in Q\). Otherwise, we can choose \(i_{0}\in Q\) such that

$$ \lim_{t\rightarrow+\infty}x_{i_{0}} \bigl(M_{i_{0}}(t) \bigr)=+ \infty, \quad\text{and}\quad \lim_{t\rightarrow+\infty }M_{i_{0}}(t)=+ \infty. $$
(2.5)

Note that, for \(t\ge t_{0}\), it follows that

$$\begin{aligned} x_{i_{0}}'(s) \le& \sum_{j=1,j\neq i_{0}}^{n} a_{i_{0}j}(s) +\sum_{j=1}^{m} \beta_{i_{0}j}(s) x_{i_{0}}\bigl(M_{i_{0}}(t)\bigr) \\ \le& \Biggl[\sum_{j=1,j\neq i_{0}}^{n} a_{i_{0}j}(s) +\sum_{j=1}^{m} \beta_{i_{0}j}(s)\Biggr]y_{i_{0}}\bigl(M_{i_{0}}(t) \bigr), \end{aligned}$$
(2.6)

for all \(s\in[t_{0}, t]\) and \(t\in[t_{0}, + \infty)\). This, combined with (1.3), (2.2), (2.3), (2.4) and the fact that \(\sup_{w\ge0} we^{-w}=\frac{1}{e}\), gives us

$$\begin{aligned} 0 \leq& x_{i_{0}} '\bigl(M_{i_{0}}(t)\bigr) \\ \leq& - \frac {a_{i_{0}i_{0}}(M_{i_{0}}(t))x_{i_{0}}(M_{i_{0}}(t))}{b_{i_{0}i_{0} }(M_{i_{0}}(t)) +x_{i_{0}}(M_{i_{0}}(t))} +\sum_{j=1,j\neq i_{0}}^{n} a_{i_{0}j}\bigl(M_{i_{0}}(t)\bigr) \\ &{}+\sum_{j=1}^{m} \beta_{i_{0}j }\bigl(M_{i_{0}}(t)\bigr) x_{i_{0}} \bigl(M_{i_{0}}(t)-\sigma_{i_{0}j} \bigl(M_{i_{0}}(t) \bigr)\bigr)e^{-\gamma_{i_{0}j}(M_{i_{0}}(t)) x_{i_{0}}(M_{i_{0}}(t)-\sigma_{i_{0}j}(M_{i_{0}}(t)))} \\ & {}+\sum_{j=1}^{m} \beta_{i_{0}j }\bigl(M_{i_{0}}(t)\bigr) \int_{M_{i_{0}}(t)- \sigma_{i_{0}j} (M_{i_{0}}(t))}^{M_{i_{0}}(t)-\tau_{i_{0}j} (M_{i_{0}}(t))}x_{i_{0}} '(s)\,ds e^{-\gamma_{i_{0}j}(M_{i_{0}}(t)) x_{i_{0}}(M_{i_{0}}(t)- \sigma_{i_{0}j} (M_{i_{0}}(t)))} \\ \leq& a_{i_{0}i_{0}}\bigl(M_{i_{0}}(t)\bigr)\Biggl[- \frac{ x_{i_{0}}(M_{i_{0}}(t))}{b_{i_{0}i_{0} }(M_{i_{0}}(t)) +x_{i_{0}}(M_{i_{0}}(t))} +\sum_{j=1,j\neq i_{0}}^{n} \frac{a_{i_{0}j}(M_{i_{0}}(t))}{a_{i_{0}i_{0}}(M_{i_{0}}(t))} \\ &{}+\sum_{j=1}^{m} \frac{\beta_{i_{0}j }(M_{i_{0}}(t))}{a_{i_{0}i_{0}}(M_{i_{0}}(t))\gamma_{i_{0}j}(M_{i_{0}}(t))} \gamma_{i_{0}j}\bigl(M_{i_{0}}(t) \bigr)x_{i_{0}} \bigl(M_{i_{0}}(t)-\sigma_{i_{0}j} \bigl(M_{i_{0}}(t)\bigr)\bigr) \\ &{} \times e^{-\gamma_{i_{0}j}(M_{i_{0}}(t)) x_{i_{0}}(M_{i_{0}}(t)- \sigma_{i_{0}j}(M_{i_{0}}(t)))}\Biggr] \\ &{} +\sum_{j=1}^{m} \beta_{i_{0}j }\bigl(M_{i_{0}}(t)\bigr) \int_{M_{i_{0}}(t)- \sigma_{i_{0}j} (M_{i_{0}}(t))}^{M_{i_{0}}(t)-\tau_{i_{0}j} (M_{i_{0}}(t))}\Biggl[ \sum _{j=1,j\neq i_{0}}^{n} a_{i_{0}j}(s) +\sum _{j=1}^{m} \beta_{i_{0}j}(s) \Biggr]y_{i_{0}}\bigl(M_{i_{0}}(t)\bigr)\,ds \\ \leq& a_{i_{0}i_{0}}\bigl(M_{i_{0}}(t)\bigr)\Biggl[- \frac{ x_{i_{0}}(M_{i_{0}}(t))}{b_{i_{0}i_{0} }(M_{i_{0}}(t)) +x_{i_{0}}(M_{i_{0}}(t))} +\sum_{j=1,j\neq i_{0}}^{n} \frac{a_{i_{0}j}(M_{i_{0}}(t))}{a_{i_{0}i_{0}}(M_{i_{0}}(t))} \\ &{}+\sum_{j=1}^{m} \frac{\beta_{i_{0}j }(M_{i_{0}}(t))}{a_{i_{0}i_{0}}(M_{i_{0}}(t))\gamma_{i_{0}j}(M_{i_{0}}(t))} \frac{1}{e}\Biggr] \\ &{} +\sum_{j=1}^{m} \beta_{i_{0}j }\bigl(M_{i_{0}}(t)\bigr) \bigl[ \sigma_{i_{0}j} \bigl(M_{i_{0}}(t)\bigr)-\tau_{i_{0}j} \bigl(M_{i_{0}}(t)\bigr) \bigr]e^{ \int_{t_{0}}^{M_{i_{0}}(t)}[\sum_{j=1,j\neq i_{0}}^{n} a_{i_{0}j}(v) +\sum_{j=1}^{m}\beta_{i_{0}j}(v)]\,dv} \\ &{}\times\Biggl[\sum_{j=1,j\neq i_{0}}^{n} a_{i_{0}j} ^{+} +\sum_{j=1}^{m} \beta_{i_{0}j} ^{+}\Biggr]\max\bigl\{ 1, \Vert \varphi \Vert \bigr\} \end{aligned}$$

and

$$\begin{aligned} 0 \leq& \Biggl[- \frac{ x_{i_{0}}(M_{i_{0}}(t))}{b_{i_{0}i_{0} }(M_{i_{0}}(t)) +x_{i_{0}}(M_{i_{0}}(t))} +\sum_{j=1,j\neq i_{0}}^{n} \frac{a_{i_{0}j}(M_{i_{0}}(t))}{a_{i_{0}i_{0}}(M_{i_{0}}(t))} \\ &{}+\sum_{j=1}^{m} \frac{\beta_{i_{0}j }(M_{i_{0}}(t))}{a_{i_{0}i_{0}}(M_{i_{0}}(t))\gamma_{i_{0}j}(M_{i_{0}}(t))} \frac{1}{e}\Biggr] \\ &{} +\frac{1}{a_{i_{0}i_{0}}(M_{i_{0}}(t))}\sum_{j=1}^{m} \beta_{i_{0}j }\bigl(M_{i_{0}}(t)\bigr) \bigl[ \sigma_{i_{0}j} \bigl(M_{i_{0}}(t)\bigr)-\tau_{i_{0}j} \bigl(M_{i_{0}}(t)\bigr) \bigr] \\ &{}\times e^{\int_{t_{0}}^{M_{i_{0}}(t)}[\sum_{j=1,j\neq i_{0}}^{n} a_{i_{0}j}(v) +\sum_{j=1}^{m}\beta_{i_{0}j}(v)]\,dv}\Biggl[\sum_{j=1,j\neq i_{0}}^{n} a_{i_{0}j} ^{+} +\sum_{j=1}^{m} \beta_{i_{0}j} ^{+}\Biggr]\max\bigl\{ 1, \Vert \varphi \Vert \bigr\} , \end{aligned}$$
(2.7)

where \(M_{i_{0}}(t)>2\tau+t_{0}\).

Letting \(t\rightarrow+\infty\), from the facts

$$ \lim_{t\rightarrow+\infty}\bigl[\sigma_{i_{0}j} (t)- \tau_{i_{0}j} (t) \bigr]e^{\int_{t_{0}}^{t}[\sum_{j=1,j\neq i_{0}}^{n} a_{i_{0}j}(v) +\sum_{j=1}^{m}\beta_{i_{0}j}(v)]\,dv}=0\quad \text{and}\quad \lim_{t\rightarrow+\infty}M_{i_{0}}(t)=+\infty, $$

Equation (2.7) yields

$$ 0 \leq-1 + \limsup_{t\rightarrow+\infty} \Biggl[\sum _{j=1,j \neq i_{0}}^{n} \frac{a_{i_{0}j}(t)}{a_{i_{0}i_{0}}(t)} +\sum _{j=1}^{m} \frac{\beta_{i_{0}j }(t)}{a_{i_{0}i_{0}}(t)\gamma_{i_{0}j}(t)} \frac{1}{e}\Biggr]< 0, $$

which is a contradiction and proves that \(x (t)\) is bounded for all \(t\in[t_{0}, +\infty)\). The proof is complete. □

Global asymptotic stability for (1.3)

Theorem 3.1

For all\(i\in Q\), \(j \in I\), let (2.2) and

$$ \left . \textstyle\begin{array}{ll} \max_{ i\in Q, j \in I} \limsup_{t\rightarrow+ \infty} \gamma_{ij}(t) \leq1, \\ \sup_{t\in[t_{0}, +\infty)}\max\{1, b_{i i }(t ) \}[ \sum_{j=1,j\neq i }^{n} \frac{a_{i j}(t ) }{a_{i i }(t ) b_{i j}(t )} +\sum_{j=1}^{m} \frac{\beta_{i j}(t )}{a_{i i }(t )}]< 1, \\ \limsup_{t\rightarrow+\infty} [1+b_{i i}(t )][\sum_{j=1,j\neq i }^{n} \frac{a_{i j}(t)}{a_{i i }(t) } +\sum_{j=1}^{m} \frac{\beta_{i j }(t)}{a_{i i }(t)\gamma_{ij}(t) }\frac{1}{e} ]< 1, \\ \limsup_{t\rightarrow+\infty} \max\{1, b_{i i }(t ) \}[ \sum_{j=1,j\neq i }^{n} \frac{a_{i j}(t)}{a_{i i }(t)b_{i j}(t )}e +\sum_{j=1}^{m} \frac{\beta_{i j }(t)}{a_{i i }(t)\gamma_{ij}(t) } ]< 1, \end{array}\displaystyle \right \} $$
(3.1)

be satisfied. Then the zero equilibrium point of (1.3) is globally asymptotically stable on\(C_{+}^{0} \).

Proof

Denote \(x(t; t_{0}, \varphi)\) by \(x (t)\). From Lemma 2.1, we find that the set of \(\{x(t; t_{0}, \varphi): t\in[t_{0}, +\infty)\}\) is bounded, and \(0\leq\limsup_{t\rightarrow+\infty} x_{i} (t ) <+\infty\) for all \(i\in Q\).

We first claim that the zero equilibrium point is stable. Without loss of generality, let \(0<\epsilon<1\) satisfy

$$ \sup_{t\in[t_{0}, +\infty)}\max\bigl\{ 1, b_{i i }(t ) \bigr\} \Biggl[ \sum_{j=1,j\neq i }^{n} \frac{a_{i j}(t ) }{a_{i i }(t ) b_{i j}(t )} +\sum_{j=1}^{m} \frac{\beta_{i j}(t )}{a_{i i }(t )}\Biggr] < e^{-\epsilon},\quad i\in Q . $$
(3.2)

Choose \(0<\delta<\epsilon\), we claim that, for \(\|\varphi\|<\delta\),

$$ x_{i}(t)=x_{i}(t; t_{0}, \varphi)< \epsilon \quad \text{for all } t \in[t_{0}, +\infty) \text{ and } i\in Q . $$
(3.3)

In the contrary case, there exist \(t_{*}\in(t_{0}, +\infty)\) and \(i_{*}\in Q\) such that

$$ x_{i_{*}}(t_{*})=\epsilon, \qquad x_{j}(t)< \epsilon \quad \text{for all } t\in [t_{0}-\sigma_{j}, t_{*}) \text{ and } j\in Q. $$
(3.4)

Note the fact that

$$ b_{i}(t)+x < \max\bigl\{ 1, b_{i}(t) \bigr\} e^{ x}\quad \text{for all } (t, x) \in[t_{0}, +\infty) \times(0, +\infty) \text{ and } i\in Q, $$
(3.5)

and from Eqs. (1.3), (3.2) and (3.4) we have the result that

$$\begin{aligned} 0 \leq& x_{i_{*}}'(t_{*}) \\ = & - \frac{a_{i_{*}i_{*}}(t_{*})\epsilon}{b_{i_{*}i_{*}}(t_{*})+\epsilon} +\sum_{j=1,j\neq i_{*}}^{n} \frac{a_{i_{*}j}(t_{*})x_{j}(t_{*})}{b_{i_{*}j}(t_{*})+x_{j}(t_{*})} \\ &{}+\sum_{j=1}^{m} \beta_{i_{*}j}(t_{*})x_{i_{*}} \bigl(t_{*}- \tau_{i_{*}j}(t_{*}) \bigr)e^{-\gamma_{i_{*}j}(t_{*})x_{i_{*}}(t_{*}- \sigma_{i_{*}j}(t_{*}))} \\ \leq& - \frac{a_{i_{*}i_{*}}(t_{*})}{\max\{1, b_{i_{*}i_{*}}(t_{*}) \}}\epsilon e^{-\epsilon} +\sum _{j=1,j \neq i_{*}}^{n} \frac{a_{i_{*}j}(t_{*})\epsilon}{b_{i_{*}j}(t_{*})} \\ &{}+\sum_{j=1}^{m} \beta_{i_{*}j}(t_{*})x_{i_{*}} \bigl(t_{*}- \tau_{i_{*}j}(t_{*}) \bigr)e^{-\gamma_{i_{*}j}(t_{*})x_{i_{*}}(t_{*}- \sigma_{i_{*}j}(t_{*}))} \\ = & a_{i_{*}i_{*}}(t_{*}) \Biggl\{ - \frac{1}{\max\{1, b_{i_{*}i_{*}}(t_{*}) \}} \epsilon e^{-\epsilon} +\sum_{j=1,j \neq i_{*}}^{n} \frac{a_{i_{*}j}(t_{*})\epsilon}{a_{i_{*}i_{*}}(t_{*}) b_{i_{*}j}(t_{*})} \\ &{}+\sum_{j=1}^{m} \frac{\beta_{i_{*}j}(t_{*})}{a_{i_{*}i_{*}}(t_{*})}x_{i_{*}}\bigl(t_{*}- \tau_{i_{*}j}(t_{*})\bigr)e^{-\gamma_{i_{*}j}(t_{*})x_{i_{*}}(t_{*}- \sigma_{i_{*}j}(t_{*}))} \Biggr\} \\ < & \frac{a_{i_{*}i_{*}}(t_{*})}{\max\{1, b_{i_{*}i_{*}}(t_{*}) \}} \Biggl\{ - e^{-\epsilon} +\max\bigl\{ 1, b_{i_{*}i_{*}}(t_{*}) \bigr\} \\ & {}\times\Biggl[\sum_{j=1,j\neq i_{*}}^{n} \frac{a_{i_{*}j}(t_{*}) }{a_{i_{*}i_{*}}(t_{*}) b_{i_{*}j}(t_{*})} +\sum_{j=1}^{m} \frac{\beta_{i_{*}j}(t_{*})}{a_{i_{*}i_{*}}(t_{*})}\Biggr] \Biggr\} \epsilon \\ \leq& \frac{a_{i_{*}i_{*}}(t_{*})}{\max\{1, b_{i_{*}i_{*}}(t_{*}) \}} \Biggl\{ - e^{-\epsilon} +\sup _{t\in[t_{0}, +\infty)}\max\bigl\{ 1, b_{i_{*}i_{*}}(t ) \bigr\} \\ &{} \times\Biggl[\sum_{j=1,j\neq i_{*}}^{n} \frac{a_{i_{*}j}(t ) }{a_{i_{*}i_{*}}(t ) b_{i_{*}j}(t )} +\sum_{j=1}^{m} \frac{\beta_{i_{*}j}(t )}{a_{i_{*}i_{*}}(t )}\Biggr] \Biggr\} \epsilon \\ < & 0, \end{aligned}$$

which is absurd and proves (3.3). Therefore, the zero equilibrium point is stable.

Next, we just need to prove that \(u =\max_{i\in Q}\limsup_{t\rightarrow+\infty} x _{i}(t ) =0\). From the fluctuation lemma [28, Lemma A.1], one can pick a sequence \(\{t_{k} \} _{k\geq1}\) and \(i^{*}\in Q\) such that

$$ t_{k}\to+\infty,\qquad x_{i^{*}} (t_{k}) \to u,\qquad x_{i^{*}} '(t_{k}) \to0\quad \text{as }k\to+\infty. $$

Moreover, from the boundedness of the coefficient and delay functions in (1.3), we can suppose that, for \(j\in I\),

$$\begin{aligned}& \begin{aligned}&\lim_{k \rightarrow+ \infty} a_{i^{*}j}(t_{k}) =a_{i^{*}j}^{*} \in\bigl[ a_{i^{*}j}^{-} , a_{i^{*}j}^{+} \bigr],\qquad \lim_{k \rightarrow+ \infty } b_{i^{*}j}(t_{k}) =b_{i^{*}j}^{*} \in\bigl[ b_{i^{*}j}^{-} , b_{i^{*}j}^{+} \bigr], \\ &\lim_{k \rightarrow+ \infty} \beta_{i^{*}j}(t_{k})= \beta_{i^{*}j}^{*} \in\bigl[ \beta_{i^{*}j}^{-} , \beta_{i^{*}j}^{+} \bigr], \\ &\lim_{k \rightarrow+ \infty} \gamma_{i^{*}j}(t_{k})= \gamma_{i^{*}j}^{*} \in\bigl[ \gamma_{i^{*}j}^{-} , \gamma_{i^{*}j}^{+} \bigr],\qquad \lim _{k \rightarrow+ \infty} \tau_{i^{*}j}(t_{k})= \tau_{i^{*}j}^{*} \in\bigl[ \tau_{i^{*}j}^{-} , \tau_{i^{*}j}^{+} \bigr], \\ &\lim_{k \rightarrow+ \infty} \sigma_{i^{*}j}(t_{k})= \sigma_{i^{*}j}^{*} \in\bigl[\sigma_{i^{*}j}^{-} , \sigma_{i^{*}j}^{+} \bigr],\qquad \lim _{k \rightarrow+ \infty}\gamma_{i^{*}j}(t_{k}) x_{i^{*}} \bigl(t_{k}-\sigma_{i^{*}j} (t_{k})\bigr)= \mu_{i^{*}j}^{*} \in[ 0, u ], \\ &\lim_{k \rightarrow+ \infty}\bigl(b_{i^{*}i^{*}}(t_{k}) +1\bigr) \Biggl(\sum_{j=1,j\neq i^{*}}^{n} \frac{a_{i^{*}j} (t_{k})}{a_{i^{*}i^{*}} (t_{k})}+ \sum_{j=1}^{m} \frac{\beta_{i^{*}j } (t_{k})}{a_{i^{*}i^{*}} (t_{k})\gamma_{i^{*}j} (t_{k})} \frac{1}{e} \Biggr) \\ &\quad =\bigl(b_{i^{*}i^{*}}^{*} +1\bigr) \Biggl(\sum _{j=1,j\neq i^{*}}^{n} \frac{a_{i^{*}j} ^{*}}{a_{i^{*}i^{*}} ^{*}}+ \sum _{j=1}^{m} \frac{\beta_{i^{*}j } ^{*}}{a_{i^{*}i^{*}} ^{*}\gamma_{i^{*}j} ^{*}} \frac{1}{e} \Biggr) \\ &\quad \leq \limsup_{t\rightarrow+\infty}\bigl(b_{i^{*}i^{*}}(t ) +1 \bigr) \Biggl( \sum_{j=1,j\neq i^{*}}^{n} \frac{a_{i^{*}j} (t )}{a_{i^{*}i^{*}} (t )}+ \sum_{j=1}^{m} \frac{\beta_{i^{*}j } (t )}{a_{i^{*}i^{*}} (t )\gamma_{i^{*}j} (t )} \frac{1}{e} \Biggr)< 1 , \end{aligned} \end{aligned}$$
(3.6)

and

$$\begin{aligned}& \lim_{k \rightarrow+ \infty}\max\bigl\{ 1, b_{i^{*}i^{*}} (t_{k}) \bigr\} \Biggl(\sum_{j=1,j\neq i^{*}}^{n} \frac{a_{i^{*}j} (t_{k})}{a_{i^{*}i^{*}} (t_{k})b_{i^{*}j} (t_{k})}e +\sum_{j=1}^{m} \frac{\beta_{i^{*}j } (t_{k})}{a_{i^{*}i^{*}}(t_{k}) \gamma_{i^{*}j} (t_{k})} \Biggr) \\& \quad =\max\bigl\{ 1, b_{i^{*}i^{*}}^{*}\bigr\} \Biggl(\sum _{j=1,j\neq i^{*}}^{n} \frac{a_{i^{*}j} ^{*}}{a_{i^{*}i^{*}} ^{*}b_{i^{*}j} ^{*}}e +\sum _{j=1}^{m} \frac{\beta_{i^{*}j } ^{*}}{a_{i^{*}i^{*}} ^{*}\gamma_{i^{*}j} ^{*}} \Biggr) \\& \quad \leq \limsup_{t\rightarrow+\infty}\max\bigl\{ 1, b_{i^{*}i^{*}} (t )\bigr\} \Biggl(\sum_{j=1,j\neq i^{*}}^{n} \frac{a_{i^{*}j} (t )}{a_{i^{*}i^{*}} (t )b_{i^{*}j} (t )}e +\sum_{j=1}^{m} \frac{\beta_{i^{*}j } (t )}{a_{i^{*}i^{*}}(t ) \gamma_{i^{*}j} (t )} \Biggr)< 1 . \end{aligned}$$
(3.7)

Furthermore, from (1.3), (2.2), (2.4), we get

$$\begin{aligned} x _{i^{*}}'(t_{k}) = & - \frac {a_{i^{*}i^{*}}(t_{k})x_{i^{*}}(t_{k})}{b_{i^{*}i^{*}}(t_{k})+x_{i^{*}}(t_{k})} +\sum_{j=1,j\neq i^{*}}^{n} \frac{ a_{i^{*}j}(t_{k})x_{j}(t_{k})}{b_{i^{*}j}(t_{k})+x_{j}(t_{k})} \\ & {}+\sum_{j=1}^{m} \beta_{i^{*}j }(t_{k}) x_{i^{*}} \bigl(t_{k}- \sigma_{i^{*}j} (t_{k}) \bigr)e^{-\gamma_{i^{*}j}(t_{k}) x_{i^{*}}(t_{k}- \sigma_{i^{*}j}(t_{k}))} \\ &{} +\sum_{j=1}^{m} \beta_{i^{*}j }(t_{k}) \int_{t_{k}- \sigma_{i^{*}j}(t_{k})}^{t_{k}-\tau_{i^{*}j}(t_{k})}x _{i^{*}}'(s) \,ds e^{-\gamma_{i^{*}j}(t_{k}) x_{i^{*}}(t_{k}-\sigma_{i^{*}j}(t_{k}))} \\ \leq& a_{i^{*}i^{*}}(t_{k}) \Biggl\{ - \frac{x_{i^{*}}(t_{k})}{b_{i^{*}i^{*}}(t_{k})+x_{i^{*}}(t_{k})} + \sum_{j=1,j\neq i^{*}}^{n} \frac{ a_{i^{*}j}(t_{k})x_{j}(t_{k})}{ a_{i^{*}i^{*}}(t_{k})[b_{i^{*}j}(t_{k})+x_{j}(t_{k})]} \\ &{} +\sum_{j=1}^{m} \frac{\beta_{i^{*}j }(t_{k})}{a_{i^{*}i^{*}}(t_{k})\gamma_{i^{*}j}(t_{k})} \gamma _{i^{*}j}(t_{k})x_{i^{*}} \bigl(t_{k}-\sigma_{i^{*}j} (t_{k}) \bigr)e^{-\gamma_{i^{*}j}(t_{k}) x_{i^{*}}(t_{k}- \sigma_{i^{*}j}(t_{k}))} \\ & {}+\sum_{j=1}^{m} \frac{\beta_{i^{*}j }(t_{k})}{a_{i^{*}i^{*}}(t_{k})} \int_{t_{k}- \sigma_{i^{*}j}(t_{k})}^{t_{k}-\tau_{i^{*}j}(t_{k})}\Biggl[\sum _{j=1,j \neq i^{*}}^{n} a_{i^{*}j}(s) +\sum _{j=1}^{m}\beta_{i^{*}j}(s) \Biggr]y_{i^{*}}(t_{k} )\,ds \Biggr\} \\ \leq& a_{i^{*}i^{*}}(t_{k}) \Biggl\{ - \frac{x_{i^{*}}(t_{k})}{b_{i^{*}i^{*}}(t_{k})+x_{i^{*}}(t_{k})} + \sum_{j=1,j\neq i^{*}}^{n} \frac{ a_{i^{*}j}(t_{k})x_{j}(t_{k})}{ a_{i^{*}i^{*}}(t_{k})[b_{i^{*}j}(t_{k})+x_{j}(t_{k})]} \\ &{} +\sum_{j=1}^{m} \frac{\beta_{i^{*}j }(t_{k})}{a_{i^{*}i^{*}}(t_{k})\gamma_{i^{*}j}(t_{k})} \gamma _{i^{*}j}(t_{k})x_{i^{*}} \bigl(t_{k}-\sigma_{i^{*}j} (t_{k}) \bigr)e^{-\gamma_{i^{*}j}(t_{k}) x_{i^{*}}(t_{k}- \sigma_{i^{*}j}(t_{k}))} \\ & {}+\sum_{j=1}^{m} \frac{\beta_{i^{*}j }(t_{k})}{a_{i^{*}i^{*}}(t_{k})} \bigl(\sigma_{i^{*}j}(t_{k})- \tau_{i^{*}j}(t_{k}) \bigr) \\ & {}\times e^{\int_{t_{0}}^{t_{k}}[\sum_{j=1,j\neq i^{*}}^{n} a_{i^{*}j}(v) +\sum_{j=1}^{m}\beta_{i^{*}j}(v)]\,dv} \Biggl(\sum_{j=1,j\neq i^{*}}^{n} a_{i^{*}j} ^{+} +\sum_{j=1}^{m} \beta_{i^{*}j} ^{+}\Biggr) \max\bigl\{ 1, \Vert \varphi \Vert \bigr\} \Biggr\} \end{aligned}$$

and

$$\begin{aligned}& \frac{1}{a_{i^{*}i^{*}}(t_{k})}x_{i^{*}} '(t_{k}) \\& \quad \leq - \frac{x_{i^{*}}(t_{k})}{b_{i^{*}i^{*}}(t_{k})+x_{i^{*}}(t_{k})} + \sum_{j=1,j\neq i^{*}}^{n} \frac{ a_{i^{*}j}(t_{k})x_{j}(t_{k})}{ a_{i^{*}i^{*}}(t_{k})[b_{i^{*}j}(t_{k})+x_{j}(t_{k})]} \\& \qquad {} +\sum_{j=1}^{m} \frac{\beta_{i^{*}j }(t_{k})}{a_{i^{*}i^{*}}(t_{k})\gamma_{i^{*}j}(t_{k})}\gamma _{i^{*}j}(t_{k})x_{i^{*}} \bigl(t_{k}-\sigma_{i^{*}j} (t_{k}) \bigr)e^{-\gamma_{i^{*}j}(t_{k}) x_{i^{*}}(t_{k}- \sigma_{i^{*}j}(t_{k}))} \\& \qquad {} +\sum_{j=1}^{m} \frac{\beta_{i^{*}j }(t_{k})}{a_{i^{*}i^{*}}(t_{k})} \bigl(\sigma_{i^{*}j}(t_{k})- \tau_{i^{*}j}(t_{k}) \bigr) \\& \qquad {} \times e^{\int_{t_{0}}^{t_{k}}[\sum_{j=1,j\neq i^{*}}^{n} a_{i^{*}j}(v) +\sum_{j=1}^{m}\beta_{i^{*}j}(v)]\,dv} \Biggl(\sum_{j=1,j\neq i^{*}}^{n} a_{i^{*}j} ^{+} +\sum_{j=1}^{m} \beta_{i^{*}j} ^{+}\Biggr) \max\bigl\{ 1, \Vert \varphi \Vert \bigr\} , \end{aligned}$$
(3.8)

where \(t_{k}>2\tau+t_{0}\). If \(u\geq1\), from (2.2), (3.1), (3.6), (3.8) and the facts that \(\frac{u}{b _{ii}^{*}+u}\geq\frac{1}{b_{ii} ^{*}+1}\) and \(\sup_{u\geq0} ue^{- u}=\frac{1}{ e}\), letting \(k\rightarrow+\infty\) leads to

$$\begin{aligned} 0 \leq&-\frac{1}{b_{i^{*}i^{*}}^{*} +1} +\sum_{j=1,j\neq i^{*}}^{n} \frac{a_{i^{*}j} ^{*}u}{a_{i^{*}i^{*}} ^{*}(b_{i^{*}j} ^{*}+u)} +\sum_{j=1}^{m} \frac{\beta_{i^{*}j } ^{*}}{a_{i^{*}i^{*}} ^{*}\gamma_{i^{*}j} ^{*}} \frac{1}{e} \\ < &\frac{1}{b_{i^{*}i^{*}}^{*} +1} \Biggl[-1 +\bigl(b_{i^{*}i^{*}}^{*} +1\bigr) \Biggl( \sum_{j=1,j\neq i^{*}}^{n} \frac{a_{i^{*}j} ^{*}}{a_{i^{*}i^{*}} ^{*}}+ \sum_{j=1}^{m} \frac{\beta_{i^{*}j } ^{*}}{a_{i^{*}i^{*}} ^{*}\gamma_{i^{*}j} ^{*}} \frac{1}{e} \Biggr)\Biggr] < 0, \end{aligned}$$

which is a contradiction and we have the result that \(0\leq u<1\).

If \(0< u< 1\), from (2.2), (3.1), (3.5), (3.7), (3.8) and the fact that

$$ xe^{-x}\quad \text{is monotonously increasing on } [0, 1] , $$

we have

$$\begin{aligned}& \frac{1}{a_{i^{*}i^{*}}(t_{k})}x_{i^{*}} '(t_{k}) \\& \quad \leq \frac{1}{\max\{1, b_{i^{*}i^{*}}(t_{k})\} } \Biggl\{ - x_{i^{*}}(t_{k})e^{-x_{i^{*}}(t_{k})} +\max\bigl\{ 1, b_{i^{*}i^{*}}(t_{k})\bigr\} \Biggl[\sum _{j=1,j\neq i^{*}}^{n} \frac{ a_{i^{*}j}(t_{k})x_{j}(t_{k})}{ a_{i^{*}i^{*}}(t_{k}) b_{i^{*}j}(t_{k}) } \\& \qquad {} +\sum_{j=1}^{m} \frac{\beta_{i^{*}j }(t_{k})}{a_{i^{*}i^{*}}(t_{k})\gamma_{i^{*}j}(t_{k})}\gamma _{i^{*}j}(t_{k})x_{i^{*}} \bigl(t_{k}-\sigma_{i^{*}j} (t_{k}) \bigr)e^{-\gamma_{i^{*}j}(t_{k}) x_{i^{*}}(t_{k}- \sigma_{i^{*}j}(t_{k}))} \\& \qquad {} +\sum_{j=1}^{m} \frac{\beta_{i^{*}j }(t_{k})}{a_{i^{*}i^{*}}(t_{k})} \bigl(\sigma_{i^{*}j}(t_{k})- \tau_{i^{*}j}(t_{k}) \bigr)e^{\int_{t_{0}}^{t_{k}}[\sum_{j=1,j \neq i^{*}}^{n} a_{i^{*}j}(v) +\sum_{j=1}^{m}\beta_{i^{*}j}(v)]\,dv} \\& \qquad {} \times\Biggl(\sum_{j=1,j\neq i^{*}}^{n} a_{i^{*}j} ^{+} + \sum_{j=1}^{m} \beta_{i^{*}j} ^{+}\Biggr) \max\bigl\{ 1, \Vert \varphi \Vert \bigr\} \Biggr] \Biggr\} ,\quad \text{where } t_{k}>2 \tau+t_{0}, \end{aligned}$$

and then

$$\begin{aligned} 0 \leq& -u e^{-u} +\max\bigl\{ 1, b_{i^{*}i^{*}}^{*} \bigr\} \Biggl(\sum_{j=1,j \neq i^{*}}^{n} \frac{a_{i^{*}j} ^{*}}{a_{i^{*}i^{*}} ^{*}b_{i^{*}j} ^{*}}u +\sum_{j=1}^{m} \frac{\beta_{i^{*}j } ^{*}}{a_{i^{*}i^{*}} ^{*}\gamma_{i^{*}j} ^{*}} \mu^{*}_{i^{*}j} e^{ -\mu^{*}_{ i^{*}j}} \Biggr) \\ < & \Biggl[-1 +\max\bigl\{ 1, b_{i^{*}i^{*}}^{*}\bigr\} \Biggl(\sum_{j=1,j\neq i^{*}}^{n} \frac{a_{i^{*}j} ^{*}}{a_{i^{*}i^{*}} ^{*}b_{i^{*}j} ^{*}}e +\sum_{j=1}^{m} \frac{\beta_{i^{*}j } ^{*}}{a_{i^{*}i^{*}} ^{*}\gamma_{i^{*}j} ^{*}} \Biggr)\Biggr]ue^{-u} \\ < & 0, \end{aligned}$$

which is absurd and proves that \(u=0\). The proof is complete. □

Remark 3.1

Obviously, for the scalar equation (1.2), all the results of [25, 26] are special cases in Theorem 3.1 because the adopted assumptions are weaker.

A numerical example

This section presents a numerical example to illustrate the applicability of the analytical results derived in this article.

Example 4.1

Consider the following equations:

$$ \textstyle\begin{cases} x'_{1} (t) = -\frac{(2+\cos t)x_{1}(t)}{3+x_{1}(t)}+ \frac{\frac{1}{10}(1+\cos t)x_{2}(t)}{2+x_{2}(t)} \\ \hphantom{x'_{1} (t) =}{}+\frac{1}{60}(1+\sin^{2}t)x_{1}(t-2e^{|\arctan t|})e^{- (1+ \frac{100}{1+t^{2}})x_{1}(t-2e^{|\arctan t|}-100e^{-1.5t})} \\ \hphantom{x'_{1} (t) =}{}+ \frac{1}{80}(1+\sin^{2}2t)x_{1}(t-2e^{| \arctan2t|})e^{- (1+\frac{200}{1+t^{2}}) x_{1}(t-2e^{|\arctan 2t|}-150e^{-1.5t})}, \\ x'_{2} (t) = -\frac{(2+\sin t)x_{2}(t)}{4+x_{2}(t)}+ \frac{\frac{1}{20}(1+\cos2t)x_{1}(t)}{2+x_{1}(t)} \\ \hphantom{x'_{2} (t) =}{}+\frac{1}{130}(1+\cos^{2}t)x_{2}(t-2e^{|\arctan4t|})e^{- (1+ \frac{100}{1+t^{2}})x_{2}(t-2e^{|\arctan4t|}-100e^{-1.4t})} \\ \hphantom{x'_{2} (t) =}{}+ \frac{1}{150}(1+\cos^{4}2t)x_{2}(t-2e^{| \arctan4t|})e^{- (1+\frac{200}{1+t^{2}}) x_{2}(t-2e^{|\arctan 4t|}-145e^{-1.45t})}. \end{cases} $$
(4.1)

Obviously, it is elementary to check that the assumptions (2.2) and (3.1) are satisfied in (4.1). Therefore, by Theorem 3.1, we find that \((0, 0)\) is a globally asymptotically stable equilibrium point on \(C_{+}^{0} =\{\varphi\in C([-(2e^{ \frac{\pi}{2}}+150), 0], [0, + \infty)) \times C([-(2e^{\frac{\pi}{2}}+145), 0], [0, +\infty)) \text{ and } \varphi_{i}(0)>0, i=1,2\}\). Figure 1 reveals the above consequences through a numerical solution of different initial values.

Figure 1
figure1

Numerical solutions \(x(t)\) on system (4.1). Numerical solutions \(x(t)\) to Example 4.1 with initial values: \(( \sin t+1,-\cos t-3,\cos t,\sin t)\), \((2\cos t+2, 3\sin t-1,-2\sin t,3 \cos t)\), \((-3\sin t-2,-4\sin t+3,-3\cos t,-4\cos t)\).

Remark 4.1

It should be pointed out that the global asymptotic stability on the patch structure Nicholson’s blowflies systems with nonlinear density-dependent mortality terms and multiple pairs of time-varying delays has not been touched in the previous literature. As in [1626] and [2974], the authors still do not make a point of the global asymptotic stability on the Nicholson’s blowflies systems involving multiple pairs of time-varying delays, and we also mention that none of the consequences in [1626] and [2997] can obtain the convergence of the zero equilibrium point in (4.1).

Conclusions

In the present manuscript, we studied nonlinear density-dependent mortality Nicholson’s blowflies systems with patch structure, in which the delays are time-varying and come in multiple pairs. Here, we develop a method based on differential inequality techniques combining the application of the fluctuation lemma to obtain some sufficient conditions for the global asymptotic stability of the given system. The derived results of this manuscript complement some earlier publications to some extent. To the best of our knowledge, it is the first time one deals with this aspect. In addition, the method used in this paper provides a possible method for studying the global asymptotic stability of other patch structure population dynamic models with multiple pairs of different time-varying delays.

References

  1. 1.

    Berezansky, L., Braverman, E.: A note on stability of Mackey–Glass equations with two delays. J. Math. Anal. Appl. 450, 1208–1228 (2017)

  2. 2.

    Berezansky, L., Braverman, E., Idels, L.: Nicholson’s blowflies differential equations revisited: main results and open problems. Appl. Math. Model. 34, 1405–1417 (2010)

  3. 3.

    Yao, L.: Global attractivity of a delayed Nicholson-type system involving nonlinear density-dependent mortality terms. Math. Methods Appl. Sci. 41, 2379–2391 (2018)

  4. 4.

    Chen, D., Zhang, W., Cao, J., Huang, C.: Fixed time synchronization of delayed quaternion-valued memristor-based neural networks. Adv. Differ. Equ. 2020, 92 (2020). https://doi.org/10.1186/s13662-020-02560-w

  5. 5.

    Liu, B., Gong, S.: Permanence for Nicholson-type delay systems with nonlinear density-dependent mortality terms. Nonlinear Anal., Real World Appl. 12, 1931–1937 (2011)

  6. 6.

    Huang, C., Long, X., Cao, J.: Stability of anti-periodic recurrent neural networks with multi-proportional delays. Math. Methods Appl. Sci. 2020, 6350 (2020). https://doi.org/10.1002/mma.6350

  7. 7.

    Yao, L.: Dynamics of Nicholson’s blowflies models with a nonlinear density-dependent mortality. Appl. Math. Model. 64, 185–195 (2018)

  8. 8.

    Zhou, Y., Wan, X., Huang, C., Yang, X.: Finite-time stochastic synchronization of dynamic networks with nonlinear coupling strength via quantized intermittent control. Appl. Math. Comput. 376, Article ID 125157 (2020). https://doi.org/10.1016/j.amc.2020.125157

  9. 9.

    Zhang, J., Huang, C.: Dynamics analysis on a class of delayed neural networks involving inertial terms. Adv. Differ. Equ. (2020). https://doi.org/10.1186/s13662-020-02566-4

  10. 10.

    Berezansky, L., Braverman, E.: Mackey–Glass equation with variable coefficients. Comput. Math. Appl. 51, 1–16 (2006)

  11. 11.

    Berezansky, L., Braverman, E., Idels, L.: The Mackey–Glass model of respiratory dynamics: review and new results. Nonlinear Anal. 75, 6034–6052 (2012)

  12. 12.

    Tian, Z., Liu, Y., Zhang, Y., Liu, Z., Tian, M.: The general inner-outer iteration method based on regular splittings for the PageRank problem. Appl. Math. Comput. 356, 479–501 (2019)

  13. 13.

    Xiao, Q., Liu, W.: On derivations of quantales. Open Math. 14, 338–346 (2016)

  14. 14.

    Huang, C., Yang, Z., Yi, T., Zou, X.: On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities. J. Differ. Equ. 256, 2101–2114 (2014)

  15. 15.

    Huang, C., Zhang, H., Huang, L.: Almost periodicity analysis for a delayed Nicholson’s blowflies model with nonlinear density-dependent mortality term. Commun. Pure Appl. Anal. 18(6), 3337–3349 (2019)

  16. 16.

    Huang, C., Qiao, Y., Huang, L., Agarwal, R.P.: Dynamical behaviors of a food-chain model with stage structure and time delays. Adv. Differ. Equ. 2018, 186 (2018). https://doi.org/10.1186/s13662-018-1589-8

  17. 17.

    Li, J., Guo, B.: Divergent sqlution to the nonlinear Schrodinger equation with the combined power-type nonlinearities. J. Appl. Anal. Comput. 7(1), 249–263 (2017)

  18. 18.

    Qian, C., Hu, Y.: Novel stability criteria on nonlinear density-dependent mortality Nicholson’s blowflies systems in asymptotically almost periodic environments. J. Inequal. Appl. 2020, 13 (2020). https://doi.org/10.1186/s13660-019-2275-4

  19. 19.

    Shi, M., Guo, J., Fang, X., Huang, C.: Global exponential stability of delayed inertial competitive neural networks. Adv. Differ. Equ. 2020, 87 (2020). https://doi.org/10.1186/s13662-019-2476-7

  20. 20.

    Liu, P., Zhang, L., Liu, S., et al.: Global exponential stability of almost periodic solutions for Nicholson’s blowflies system with nonlinear density-dependent mortality terms and patch structure. Math. Model. Anal. 22(4), 484–502 (2017)

  21. 21.

    Győri, I., Hartung, F., Mohamady, N.A.: Permanence in a class of delay differential equations with mixed monotonicity. Electron. J. Qual. Theory Differ. Equ. 2018, 53 (2018)

  22. 22.

    El-Morshedy, H.A., Ruiz-Herrera, A.: Global convergence to equilibria in non-monotone delay differential equations. Proc. Am. Math. Soc. 147, 2095–2105 (2019)

  23. 23.

    Huang, C., Yang, X., Cao, J.: Stability analysis of Nicholson’s blowflies equation with two different delays. Math. Comput. Simul. 171, 201–206 (2020)

  24. 24.

    Long, X., Gong, S.: New results on stability of Nicholson’s blowflies equation with multiple pairs of time-varying delays. Appl. Math. Lett. 100, 106027 (2020). https://doi.org/10.1016/j.aml.2019.106027

  25. 25.

    Tang, Y.: Global asymptotic stability for Nicholson’s blowflies model with a nonlinear density-dependent mortality term. Appl. Math. Comput. 250, 854–859 (2015)

  26. 26.

    Cao, Q., Wang, G., Zhang, H., Gong, S.: New results on global asymptotic stability for a nonlinear density-dependent mortality Nicholson’s blowflies model with multiple pairs of time-varying delays. J. Inequal. Appl. 2020, 7 (2020). https://doi.org/10.1186/s13660-019-2277-2

  27. 27.

    Hale, J., Verduyn Lunel, S.: Introduction to Functional Differential Equations. Applied Mathematical Sciences, vol. 99. Springer, New York (1993)

  28. 28.

    Smith, H.L.: An Introduction to Delay Differential Equations with Applications to the Life Sciences. Springer, New York (2011)

  29. 29.

    Li, L., Wang, W., Huang, L., Wu, J.: Some weak flocking models and its application to target tracking. J. Math. Anal. Appl. 480(2), 123404 (2019). https://doi.org/10.1016/j.jmaa.2019.123404

  30. 30.

    Tan, Y., Huang, C., Sun, B., Wang, T.: Dynamics of a class of delayed reaction-diffusion systems with Neumann boundary condition. J. Math. Anal. Appl. 458(2), 1115–1130 (2018)

  31. 31.

    Huang, C., Zhang, H., Cao, J., Hu, H.: Stability and Hopf bifurcation of a delayed prey–predator model with disease in the predator. Int. J. Bifurc. Chaos 29(7), Article ID 1950091 (2019)

  32. 32.

    Duan, L., Fang, X., Huang, C.: Global exponential convergence in a delayed almost periodic Nicholson’s blowflies model with discontinuous harvesting. Math. Methods Appl. Sci. 41(5), 1954–1965 (2018)

  33. 33.

    Chen, T., Huang, L., Yu, P., Huang, W.: Bifurcation of limit cycles at infinity in piecewise polynomial systems. Nonlinear Anal., Real World Appl. 41, 82–106 (2018)

  34. 34.

    Wang, J., Huang, C., Huang, L.: Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type. Nonlinear Anal. Hybrid Syst. 33, 162–178 (2019)

  35. 35.

    Wang, J., Chen, X., Huang, L.: The number and stability of limit cycles for planar piecewise linear systems of node-saddle type. J. Math. Anal. Appl. 469(1), 405–427 (2019)

  36. 36.

    Yang, X., Wen, S., Liu, Z., Li, C., Huang, C.: Dynamic properties of foreign exchange complex network. Mathematics 7(9), 832 (2019). https://doi.org/10.3390/math7090832

  37. 37.

    Iswarya, M., Raja, R., Rajchakit, G., Cao, J., Alzabut, J., Huang, C.: Existence, uniqueness and exponential stability of periodic solution for discrete-time delayed BAM neural networks based on coincidence degree theory and graph theoretic method. Mathematics (2019). https://doi.org/10.3390/math7111055

  38. 38.

    Zhang, H.: Global large smooth solutions for 3-D hall-magnetohydrodynamics. Discrete Contin. Dyn. Syst. 39(11), 6669–6682 (2019)

  39. 39.

    Li, W., Huang, L., Ji, J.: Periodic solution and its stability of a delayed Beddington–DeAngelis type predator–prey system with discontinuous control strategy. Math. Methods Appl. Sci. 42(13), 4498–4515 (2019)

  40. 40.

    Li, X., Li, Y., Liu, Z., Li, J.: Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions. Fract. Calc. Appl. Anal. 21(6), 1439–1470 (2018)

  41. 41.

    Tan, Y., Liu, L.: Boundedness of Toeplitz operators related to singular integral operators. Izv. Math. 82(6), 1225–1238 (2018)

  42. 42.

    Zhu, K.X., Xie, Y.Q., Zhou, F.: Pullback attractors for a damped semilinear wave equation with delays. Acta Math. Sin. Engl. Ser. 34(7), 1131–1150 (2018)

  43. 43.

    Zuo, Y., Wang, Y., Liu, X.: Adaptive robust control strategy for rhombus-type lunar exploration wheeled mobile robot using wavelet transform and probabilistic neural network. Comput. Appl. Math. 37(1), 314–337 (2018)

  44. 44.

    Tan, Y., Liu, L.: Weighted boundedness of multilinear operator associated to singular integral operator with variable Calderón–Zygmund Kernel. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 111(4), 931–946 (2017)

  45. 45.

    Fang, X., Deng, Y., Li, J.: Plasmon resonance and heat generation in nanostructures. Math. Methods Appl. Sci. 38(18), 4663–4672 (2015)

  46. 46.

    Fang, X., Deng, Y., Li, J.: Numerical methods for reconstruction of source term of heat equation from the final overdetermination. Bull. Korean Math. Soc. 52(5) (2013)

  47. 47.

    Zhao, J., Liu, J., Fang, L.: Anti-periodic boundary value problems of second-order functional differential equations. Bull. Malays. Math. Sci. Soc. 37(2), 311–320 (2014)

  48. 48.

    Li, X., Liu, Y., Wu, J.: Flocking and pattern motion in a modified Cucker–Smale model. Bull. Korean Math. Soc. 53(5), 1327–1339 (2016)

  49. 49.

    Xie, Y., Li, Q., Zhu, K.: Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity. Nonlinear Anal., Real World Appl. 31, 23–37 (2016)

  50. 50.

    Xie, Y., Li, Y., Zeng, Y.: Uniform attractors for nonclassical diffusion equations with memory. J. Funct. Spaces 2016, 5340489 (2016)

  51. 51.

    Wang, F., Wang, P., Yao, Z.: Approximate controllability of fractional partial differential equation. Adv. Differ. Equ. 2015(1), 367 (2015). https://doi.org/10.1186/s13662-015-0692-3

  52. 52.

    Liu, Y., Wu, J.: Multiple solutions of ordinary differential systems with min–max terms and applications to the fuzzy differential equations. Adv. Differ. Equ. 2015(1), 379 (2015). https://doi.org/10.1186/s13662-015-0708-z

  53. 53.

    Yan, L., Liu, J., Luo, Z.: Existence and multiplicity of solutions for second-order impulsive differential equations on the half-line. Adv. Differ. Equ. 2013(1), 293 (2013). https://doi.org/10.1007/s00025-011-0178-x

  54. 54.

    Liu, Y., Wu, J.: Fixed point theorems in piecewise continuous function spaces and applications to some nonlinear problems. Math. Methods Appl. Sci. 37(4), 508–517 (2014)

  55. 55.

    Cao, Q., Wang, G., Qian, C.: New results on global exponential stability for a periodic Nicholson’s blowflies model involving time-varying delays. Adv. Differ. Equ. 2020, 43 (2020). https://doi.org/10.1186/s13662-020-2495-4

  56. 56.

    Li, J., Ying, J., Xie, D.: On the analysis and application of an ion size-modified Poisson–Boltzmann equation. Nonlinear Anal., Real World Appl. 47, 188–203 (2019)

  57. 57.

    Wang, W., Chen, Y., Fang, H.: On the variable two-step IMEX BDF method for parabolic integro-differential equations with nonsmooth initial data arising in finance. SIAM J. Numer. Anal. 57(3), 1289–1317 (2019)

  58. 58.

    Tang, W., Sun, Y., Zhang, J.: High order symplectic integrators based on continuous-stage Runge–Kutta–Nystrom methods. Appl. Math. Comput. 361, 670–679 (2019)

  59. 59.

    Liang, X., Liu, Q.: Weighted moments of the limit of a branching process in a random environment. Proc. Inst. Statist. Math. 282(1), 127–145 (2013)

  60. 60.

    Jiang, Y., Xu, X.: A monotone finite volume method for time fractional Fokker–Planck equations. Sci. China Math. 62(4), 783–794 (2019)

  61. 61.

    Chen, H., Xu, D., Zhou, J.: A second-order accurate numerical method with graded meshes for an evolution equation with a weakly singular kernel. J. Comput. Appl. Math. 356, 152–163 (2019)

  62. 62.

    Yu, B., Fan, H.Y., Chu, E.K.: Large-scale algebraic Riccati equations with high-rank constant terms. J. Comput. Appl. Math. 361, 130–143 (2019)

  63. 63.

    Tang, W., Zhang, J.: Symmetric integrators based on continuous-stage Runge–Kutta–Nystrom methods for reversible systems. Appl. Math. Comput. 361, 1–12 (2019)

  64. 64.

    Liu, F., Feng, L., Anh, V., Li, J.: Unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional Bloch–Torrey equations on irregular convex domains. Comput. Math. Appl. 78(5), 1637–1650 (2019)

  65. 65.

    Zhou, S., Jiang, Y.: Finite volume methods for N-dimensional time fractional Fokker–Planck equations. Bull. Malays. Math. Sci. Soc. 42(6), 3167–3186 (2019)

  66. 66.

    Huang, C., Long, X., Huang, L., Fu, S.: Stability of almost periodic Nicholson’s blowflies model involving patch structure and mortality terms. Can. Math. Bull. (2019). https://doi.org/10.4153/S0008439519000511

  67. 67.

    Hu, H., Yi, T., Zou, X.: On spatial-temporal dynamics of a Fisher-KPP equation with a shifting environment. Proc. Am. Math. Soc. 148(1), 213–221 (2020)

  68. 68.

    Wang, F., Yao, Z.: Approximate controllability of fractional neutral differential systems with bounded delay. Fixed Point Theory 17(2), 495–508 (2016)

  69. 69.

    Hu, H., Yuan, X., Huang, L., Huang, C.: Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks. Math. Biosci. Eng. 16(5), 5729–5749 (2019)

  70. 70.

    Wei, Y., Yin, L., Long, X.: The coupling integrable couplings of the generalized coupled Burgers equation hierarchy and its Hamiltonian structure. Adv. Differ. Equ. 2019, 58 (2019). https://doi.org/10.1186/s13662-019-2004-9

  71. 71.

    Zhang, J., Lu, C., Li, X., Kim, H.J., Wang, J.: A full convolutional network based on DenseNet for remote sensing scene classification. Math. Biosci. Eng. 16(5), 3345–3367 (2019)

  72. 72.

    Hu, H., Liu, L.: Weighted inequalities for a general commutator associated to a singular integral operator satisfying a variant of Hörmander’s condition. Math. Notes 101(5–6), 830–840 (2017)

  73. 73.

    Huang, C., Liu, L.: Boundedness of multilinear singular integral operator with non-smooth kernels and mean oscillation. Quaest. Math. 40(3), 295–312 (2017)

  74. 74.

    Huang, C., Cao, J., Wen, F., Yang, X.: Stability analysis of SIR model with distributed delay on complex networks. PLoS ONE 11(8), e0158813 (2016)

  75. 75.

    Long, Z., Tan, Y.: Global attractivity for Lasota–Wazewska-type system with patch structure and multiple time-varying delays. Complexity 2020, 1947809 (2020). https://doi.org/10.1155/2020/1947809

  76. 76.

    Cao, J., Ali, U., Javaid, M., Huang, C.: Zagreb connection indices of molecular graphs based on operations. Complexity 2020, 7385682 (2020). https://doi.org/10.1155/2020/7385682

  77. 77.

    Li, Y., Vuorinen, M., Zhou, Q.: Apollonian metric, uniformity and Gromov hyperbolicity. Complex Var. Elliptic Equ. (2019). https://doi.org/10.1080/17476933.2019.1579203

  78. 78.

    Cao, Y., Cao, Y. Dinh, H.Q., Jitman, S.: An explicit representation and enumeration for self-dual cyclic codes over F2m+uF2m of length 2s. Discrete Math. 342(7), 2077–2091 (2019). https://doi.org/10.1016/j.disc.2019.04.008

  79. 79.

    Jin, Q., Li, L., Lang, G.: p-Regularity and p-regular modification in T-convergence spaces. Mathematics, 7(4), 370 (2019). https://doi.org/10.3390/math7040370

  80. 80.

    Huang, L.: Endomorphisms and cores of quadratic forms graphs in odd characteristic. Finite Fields Appl. 55, 284–304 (2019)

  81. 81.

    Huang, L., Lv, B., Wang, K.: Erdos–Ko–Rado theorem, Grassmann graphs and p(s)-Kneser graphs for vector spaces over a residue class ring. J. Comb. Theory, Ser. A 164, 125–158 (2019)

  82. 82.

    Li, Y., Vuorinen, M., Zhou, Q.: Characterizations of John spaces. Monatshefte Math. 188(3), 547–559 (2019)

  83. 83.

    Huang, L., Lv, B., Wang, K.: The endomorphisms of Grassmann graphs. Ars Math. Contemp. 10(2), 383–392 (2016)

  84. 84.

    Zhang, Y.: Right triangle and parallelogram pairs with a common area and a common perimeter. J. Number Theory 164, 179–190 (2016)

  85. 85.

    Zhang, Y.: Some observations on the Diophantine equation f(x)f(y) = f(z)(2). Colloq. Math. 142(2), 275–283 (2016)

  86. 86.

    Gong, X., Wen, F., He, Z., Yang, J., Yang, X.: Extreme return, extreme volatility and investor sentiment. Filomat 30(15), 3949–3961 (2016)

  87. 87.

    Jiang, Y., Huang, B.: A note on the value distribution of f(l) (f((k)))(n). Hiroshima Math. J. 46(2), 135–147 (2016)

  88. 88.

    Huang, L., Huang, J., Zhao, K.: On endomorphisms of alternating forms graph. Discrete Math. 338(3), 110–121 (2015)

  89. 89.

    Peng, J., Zhang, Y.: Heron triangles with figurate number sides. Acta Math. Hung. 157(2), 478–488 (2019)

  90. 90.

    Liu, W.: An incremental approach to obtaining attribute reduction for dynamic decision systems. Open Math. 14, 875–888 (2016)

  91. 91.

    Huang, L., Lv, B.: Cores and independence numbers of Grassmann graphs. Graphs Comb. 33(6), 1607–1620 (2017)

  92. 92.

    Huang, L., Su, H., Tang, G., Wang, J.: Bilinear forms graphs over residue class rings. Linear Algebra Appl. 523, 13–32 (2017)

  93. 93.

    Lv, B., Huang, Q., Wang, K.: Endomorphisms of twisted Grassmann graphs. Graphs Comb. 33(1), 157–169 (2017)

  94. 94.

    Huang, L.: Generalized bilinear forms graphs and MRD codes over a residue class ring. Finite fields and their applications. Finite Fields Appl. 51, 306–324 (2018)

  95. 95.

    Li, L., Jin, Q., Yao, B.: Regularity of fuzzy convergence spaces. Open mathematics. Open Math. 16, 1455–1465 (2018)

  96. 96.

    Gao, Z., Fang, L.: The invariance principle for random sums of a double random sequence. Bull. Korean Math. Soc. 50(5), 1539–1554 (2013)

  97. 97.

    Xu, Y., Cao, Q., Guo, X.: Stability on a patch structure Nicholson’s blowflies system involving distinctive delays. Appl. Math. Lett. 36, 106340 (2020). https://doi.org/10.1016/j.aml.2020.106340.

Download references

Acknowledgements

We would like to thank the anonymous referees and the editor for considering our original paper.

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Funding

This work was supported by the Natural Scientific Research Fund of Hunan Provincial of China (Grant Nos. 2018JJ2371, 2018JJ2372), the Foundation of Hunan Provincial Education Department of China(Grant No. 14C0806), and the Natural Scientific Research Fund of Hunan Provincial of China (Grant No. 2016JJ6104).

Author information

The two authors contributed equally to this work. All authors read and approved the final manuscript.

Correspondence to Yanli Xu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Cao, Q. Global asymptotic stability for a nonlinear density-dependent mortality Nicholson’s blowflies system involving multiple pairs of time-varying delays. Adv Differ Equ 2020, 123 (2020). https://doi.org/10.1186/s13662-020-02569-1

Download citation

Keywords

  • Nicholson’s blowflies model
  • Global asymptotic stability
  • Multiple pairs of time-varying delay
  • Nonlinear density-dependent mortality term
  • Patch structure